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Abstract

The perturbed linear dynamical system of Sylvester type in infinite
dimensional space has been considered . The solvability of this class of
equations by using the perturbed composite semigroup of bounded linear
operator is presented and developed . The necessary dynamical properties have
also been presented and proved.

1. Introduction

The theory of one parameter semigroup of linear operator on Banach
spaces started in 1948 with the Hill-Yoside generation theorem, and attained its
first apex with the 1957 edition of semigroup and functional analysis by E. Hille
and R. S. Phillips, in 1970's and 80's.The theory reached a certain state of
perfection, which is well represented in the monograph by [6], [3], [5] and
others. Today, the situation is characterized by manifold applications of this
theory not only to the traditional areas, such as partial differential equations or
stochastic processes. Semigroup has become important tools for integro-
differential equations and functional differential equations in quantum
mechanics or in infinite-dimensional control theory.

This paper introduces to the concept of a composite semigroup and
applications to the analysis of the operator differential Sylvester equation. This
equation arises in various control problems on finite time horizon [0,t], for
linear infinite-dimensional systems with unbounded input / output operator.

The work of [4] introduced to the concept of a composite semigroup and
its application to the analysis of the operator differential Sylvester equation.
This equation arises in various control problems on finite time horizon [0, t],
te[0,00), for linear infinite-dimensional systems with bounded input or

operators.
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The solvability of such system and the study of some of its dynamical
properties, up to our knowledge are still a challenge for many researchers. So,
the main aim of the following work is to define such dynamical properties ,as
well as, the solvability using the concept of composite semigroup generated by
some unbounded linear generators. Some preliminaries are then needed to
understand the present approach.

The following problem have been presented an disused in this paper.
220 = (a+A8)Z(), >0
Z(0) = Zg

where & + AA : D(&+ A&) < L( L(H)) is a linear unbounded operator. The
operator A is the infinitesimal generator of a C,- composite semigroup
denoted by T(t), t > 0 and D(&) cL( L(H)). D(A;) < D(AA,) and D(A,) <
D(AA,). For Z € D(a + A&) and AA;, AA,e L(H).

The operator & + AA is the infinitesimal generator of a Cy,-composite
perturbation semigroup £(t), t >0 and D(a + Aa) — L(L(H)).and h € D(A; +
AA,), where the generator & is defined as :

((ﬁ.& + Aﬂ)Z)h = (Al + AAl)Zh + Z(A2 + AAg)h

2. Some Mathematical Concepts

In this sction, some necessary mathematical concepts for usual semigroup
theory are discussed .

Definition (2.1),[8]

Let T be an unbounded linear operator on a Hilbert space H, with domain
D(T) is dense in H. The adjoint operator T* is defined by:

<TX, y>=<x, T*y> for all x € D(T), y € D(T*), where:
D(T*) ={yeH | <Tx,y> = <x,z>, for some zeH and all xeD(T)}.

Definition(2.2), [1]

A family {T(t)}wo of bounded linear operators on a Banach space X is
called a (one-parameter) semigroup on X if it satisfies the following conditions:

Tt+s)=T{H)T(s),Vt,s=>0
T(0) =1, where | stand for identity operator.
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Definition(2.3),[5]
The linear operator A defined on the domain:

D(A) = {X € X : |im L)X =X exists} and (1)
t40 t
AX = jim TOX=X = ¢*T(t)|  for x eD(A)
t0 t dt o

Is the infinitesimal generator of the semigroup T(t), D(A) is the domain of A.

Definition(2.4), [6]

A semigroup {T(t)}=o on a Banach space X is called strongly continuous
semigroup of a bounded linear operators or (C,-semigroup) if the map t——

T(t) eL(X),t el " satisfies the following conditions:
4. T(t+s)=T@HTE), Vtse ™.
5. T(0) = lL.where | stands for identity operator.
6. im IT(t)x — X||x =0, for every x € X.

Remark(2.5 ), [5]

Let T(t) be Co,-semigroup generated by infinitesimal generator A on a
Banach space X.Then

t+h
i- liml | T(s)xds=T()x he(0,t) and for x e X
h—0 h "

Ii- Forx e D(A), T(t)x eD(A) and
4 T(t)x = AT()x = T()Ax, forall t>0
dt
li- For x € D(A)
t t

Tx - T(s)x= | TAxdr = [ AT(r)xdr.

S S

v- Forevery A € [], one can define a linear bounded operators:

R(:; A)x= [ e T(t)xdt, for all x e X,Re . >W,,.
0
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Definition(2.6), [7]

The weakest topology on L(X, Y), such that E, : L(X, Y) —— Y given by:
E«(T) = Tx are continuous for all x €X is called the strong operator topology.

Remark(2.7),[5]

A semigroup {{T(t)}=o Iis called a continuous in the uniform operator
topologyi, if:

(2)  |IT@t+AX-T()x]|x —>0,asA——> 0, V x € X.
@) ITOXx =Tt -A)X||x —> 0,a8sA——> 0,V x e X

Remarks(2.8),[6]

Suppose that x(0) € D(A) and the function f(t) with range in X is continuous
differentiable in the open interval (0, t) with continuous derivative in the
closed interval [0, t], then the (non-homogeneous) initial value problem:

d
ax(t):Ax(t)+f(t), O<t<rt (2)
X(0) =xq, given in the domain A

has a unique solution satisfying:
. X(t) is absolutely continuous in (0, 7).
ii.  x(t) e D(A),t>0.

iii. Ix(®) -x©],—> Oast——> 0".

Definition (2.9), [9]
Let Xo € D(A) and f € C([0, t] : H), then x(.) defined by

t
X(®) =T()xo + | T(t-s)f(s) ds
0

is called a strong solution of (1.11) if:

X(.) € C([0, t]; D(A)) N Cl([O, T]; H) and satisfying (2) forall t € [0, t].
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Theorem(2.10), [6]

Let X be a Banach space and let A be the unbounded linear infinitesimal
generator of a C,-semigroup T(t) on X, satisfying:

IT®)leo < Me™.

If AA is a bounded linear operator on X, then A+AA with
D(A+AA)=D(A) is the infinitesimal generator of a C,-perturbation semigroup

S(t) on X, satisfying:
MJIAA t
IS@lpo < Met™MIACO)

foranyt>0,w>0and M > 1.

3. Problem Formulation
Consider the linear initial value problem in finite state space:
2Z(t) E (& + AR)Z(1), t > 0
3)
Z(0) = 2o,

where A + AA; D(&+ AA) < L(H) —— L(H) is a linear operator, defined as
follows:

1. Th
e operator A.=A; . + . A, is the infinitesimal generator of a C,-composite
semigroup denoted by T (t) =T1(t)ZT,(t)=,t>0and D(&) < L(H) .

> I
D)l < MMM W2t ywhere My M1, wy wp>0.

3. Th
e operator A& + AA is the infinitesimal generator of a C,-composite
perturbation semigroup £(t), t > 0 and D(& + A&) < L(H).

4. D(
A1) € D(AA) and D(Az) = D(AA,).

5. For
Z € D(A+ Aa)and h € D(A; + AA;) , we have

(& + AB)Z)h = (A, + AA)Zh + Z(A, + AAYh

6.
There exists positive constants k; and k», such that

[AA[LH) < ki and [[AA|| ) < ke.
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7 1A
All ey = |AAL+ AA| L)

< [[AAL Ly + 1-AA = [[AAL Ll leey + - TeenlAA L
< (IAAl ey + TAAL ) -y -

Definition(3.1)

Let L(H) be a Banach space, a one-parameter family {S(t) }o < L(L((H)),
te[0,0) of bounded linear operators defined by:

(1) = S1(t)ZS(1) (4)

for generator & + AA, for any ZelL(H) and t €[0,») is called composite
perturbation semigroup, where S(t),S,(t) are two perturbation semigroups
defined from H into H for (A;+AA;) and(A, + AA,) respectively.

Definition(3.2)

The infinitesimal generator & + A& of £(t) of problem formulation on a
uniform operator topology defined as the limit:

(& + AB)Zh = lim, ; {s'ﬂz:"m’}, ZeD(A+A4),heH

where D(& + A&) — L(H) is the domain of A+AA defined as follows:

D(a+A&)={Z € L(H):lim, , {T222

} existin L (H]}
Concluding Remarks(3.3)

1-{L(H), t} stands for L(H) equipped with the strong operator topology T, i.e.,

topology induced by family of seminorms p={pn}n<n, Where seminorms pn(2)
= |IZhlJw,
Z € L(H).
2. Let D(A;) < D(AA,), D(A;) < D(AA,) and D(&) < D(AA).Therefore the
following
are concluded

a-The different between the usual strongly continuous semigroups of
problem formulation and the composite perturbation semigroup (4)
follows from the fact that in general for Z L (H), the function [0,0) o t
= $(t)Z e L(H) is continuous in {L(H), t}, and which cannot be
continuous in {L(H), ||.||} unless the semigroups {S:(t)}e0, {S2()} 0 <
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L(H) are uniformly continuous. However, this takes place case only if
their generators A; + AA;, A, + AA,; are bounded operators on H.

b-The generator A + AA is densely defined only in {L(H), t} and does not in
{L(H), ||.|[}- This implies that D(A+AA) in L(H) is only a proper set and
not the whole L(H).

c-The infinitesimal generator & + AA of problem formulation of the
composite perturbation semigroup {=(t)}»0 < L(L((H)) on a strong
operator topology is defined as the following limit:

(8 + AR)Z =1 - lim, o (T2} Z € D(a + AA),

where D(A + A&) — L(H)is the domain of & + AA and defined as follows:

D(A + A&) = { ZeL(H): 1- lim, o {Z22==} exist in {L(H),} }

In the following lemma some generalized results on (t),t = [0,) of [2],
are developed.

Lemma(3.4)

Consider the problem formulation,let S(t)= S;(t1)ZS,(t), t > 0 be a
composite perturbation semigroup defined on L(L(H)); Si(t) and S,(t) are,
perturbation semigroups defined on L(H) then

a- The family {5(t)}=o < L(H), t > 0 is a semigroup, i.e.,

1.8(0)Z=2,V Z e L(H)

2.5(t + 5)Z = 5(t)(5(5)2)

= 8(s)(s(1))Z
ZeL(H),t s e|[0,x).

b- (ISl < M1M2et(W1+W2)+M1IIAA1I||_(H)+'V|2||AA2||L(H) fort e [0, ).
c- 5(t) € L(L(H)) is a strong-operator and continuous at the origin, i.e.,

T- m”(g(t)Z)h —(5(0)2)h||y=0,h € H, Z € L(H).

Proof
a- Let Z be an arbitrary element in L(H). By theorem(2.10) and
definition(2.2)in chapter one,we have:
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(i) £(0)Z = S1(0)ZS,(0) = 1ZI = Z.
From definition (2.2) we get:
(i) S(t + 5)Z = Sy(t + 5)zSy(t + 5)
= S1(t)S1(5)ZS2(t)S2(S) -
From (4),we have that
= S1(t) S(s)ZS(1),
since 8(s)ZeL(H). Hence definition (3.1),implies that:
S (t+s)Z=s(t)s(s)Z = =(s)3(t)Z
b- From (4) ,we have that
SOy = 1520 ZS2(V)]|L )
< {[Si @l 121l lIS2(O)llegmy, from {theorem (2.10)}
< Ivlle(W1+'V|1||AA1||L(H))t ||Z|||_(H)M2e(W2+M2”AA2“L(H))t

< MM, e((W1+W2)+'\/|1||A'°~1||+'\/|2IIAAzll)t 1Zlee -

c- r-ltiw||(5(t)Z)h—(5(0)Z)hIIH = lim [1(S1(6)ZS(1))h—S1(0)ZS2(0)hl|

tv0

= Iiln { 1(S1()ZS,(t))h — (S2()ZS2(0))h + (S1(t)ZS2(0))h —

(Sl(O)ZSZ(O))h”H:|

= Itiﬂ; { 1(S1(1)2)[S2(t)h —S2(0)h] + [S4(t)ZS2(0)h — Sl(O)ZSZ(O)h”H:|,
By using dfintion(2.2)
t40

e-lim I(8()2)h—((0)2)hl| < e-lim { 152D Z]|LrlIS2(0)h =l +||Sl(t)Zh_Zh”Hj|,

and from theorem (2.10),we have got

w1 +Mil||AA: t

limlEODh=(0)2)h|ls < Myt MIAAILEY 70 s iy
t40 t40
il + <-tim [18:(0Z ~ Zhi)

Now, since {S;(t) }0 and {S,(t) }0 are a Co-semigroup, thus:
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wlim IS2(t)h = h||y=0= -lim IS+(t)Zh — Zh||; ,for any heD(2)
tv0 tv0

and ZeL(H).
Which implies that {s(t) }«o IS a strongly continuous perturbation semigroup.

Based on the previous results and references, the following generalization
have been proposed.

Lemma(3.5)

The operator A + A& of problem formulation is infinitesimal generator for
5(t) defined on its domain D(&+ AA&) satisfying the following properties:

() D(& + Aa) is strong-operator dense in L(H).
(g) & + AA is uniform-operator closed on L(H).
(h) ForZ e L(H) :

j(S(r)Z) dr € D(& + A&), and
0

(A +A8) ([;s()zdr)=S(t)Z - Z.
(i) ForZ e D(a) :
s(t)Z € D(& + AA), the function t:[0,:0) > S(t)ZeL(H)
is continuously differentiable in {L(H),t} and
%(E(t)z) = (A + Aa) (8(1)2)

=8(t)((a + A4)Z)
(j) ForZ e D(a + AA)and h € D(A; + AA))
(& + A&)Z2)h = (AL + AA)Zh + Z(A, + AA)h .

Proof
(a) By lemma(3.4)(c), S(t)Z is integrable, so Z; = [ $(s)Z ds

for a fixed Z € L(H), and fixed t > 0. Thus:
S(A)Zi— Z; = [;[8(s + A)Z - 8(s)]ds, A €(01) . (5)

Hence, equation (5) becomes:
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f§+t§(s]2 ds — fcf S(s)Zds = fcf S(s+t)Zds— _I"[f %(s)Z ds
= [ s(s)S(9Zds — [ S(s)Zds.
Then from Remark (2.5)(i), we have that:

T—lim == Z,=8(t)2-Z , (6)
t40

that implies to Z; € D(& + AA&) and {Z:}+~o generates a linear space contained
in D(a+AA&),which implies that {é: t >0} < D(&a+AA) and |im Zi=7, for
t tlo t

arbitrary Ze L(H) .Hence D(A + AA&) is dense in {L(H),t }.

(b) Since D(a + Aa) is dense in {L(H),t }, one can define {7z y> ;to be a |||

bounded sequence in D(a+AA) < L(H) and Z, —> Z as n —— oo In
{L(H), t},where Z is ||.|| bounded.
Now, let (& + A&)Z,—— Y; by remark(2.5)(iii) we have that:

t

lim 2272, = iim 1 [ S(s) A+ A&) Z,ds.

40 td0 t 0

Now, as n——> oo, we get:

glal— t
Tlim £ Z=t-jim ! | SV ds.
t40 tdo t 5

Then by concluding remark (2.3)(c) and Remark(2.5)(i), we get
(A+AR)Z =Y.
Hence A+ AA is a closed linear operator.

(c) Let Z € D(& + A&).

On using simple calculation of semigroup, as follows, we get :

t t
S(A)[S(s)Z ds— [S(s)Z ds }5(3+A)z ds—jt'S(s)Z ds
0 0

t
(A +AA) =T-|im — 0 =T-|im 0
!;S(S)Z ds t40 A t40 A

A A
lim = gs(t)s(s)z ds — ©lim = £S(s)z ds = S(0

From Concluding Remark (3.3)(c), we obtain:
J;8(s)Zdse D(A + AA).

(d) One can show that £(t)Z € D(& + AA).

Let Z € D(Aa + A &),such that
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(& + A B)S(1)Z = 1-jjm SASWZ=SOZ_ i, S(t)[w}: s(t)(a + AA)Z
t40 A t40 A

implies that 5(t)Z € D(A + AA), and the right derivation exists in{L(H),t
}.Hence,

(A +AR)S()Z =s(t)(Aa + AL)Z
Now, one can show that the following left derivative for A > 0 exists.
{S(t)Z—S(t—A)Z
A

T=lim
tl0

—S(H)(A + AA)Z} (7)
By adding (& + AA&)s(t-A) to (7),we obtaini= T jm st -

10
A)[S@#_(A +AA)Z}+r- in(S(t - A)(A + AR)Z - s(t)(a + A8)Z]. (8)

Hence: - iimls(t - A){S@#_(A+AA)Z} F st — A)a + AL)Z —

S(t)(A+AR)Z] | < - 1im | 5t — A)| Iim||S(A)£—(A+AA)Z
t40 t40 A

L(H)

+1- |i¢m | s(t— A)(A + A A)Z — s(t)(A + AB)Z|| ) -
t30

Now, from Concluding Remark(3.3)(c) and the strongly continuous of
{8(t)}0, we get:

T1im SWZ=SU=A)Z _ g _ A)(a+AA)Z,
t40 A

forany Z € D(A + A&).
(e) For Z e D(a + A&), h € D(A; + AA;) and g € D((A; + AA)*), we get:

<(& + AB)Zh, gy = <t-pi SN =20 os — limi< S(HZh — zZh,
t40 t t40 t

g>|_| .

By using (2.6),we have that:
T lim 2 <S(1)Zh — Zh,g>4 = Jim L<S1()ZS2(Dh — Zh, g>+ 9)
t40 t tlo t

Adding (Si1(t)Zh + ZS,(t)h+Zh) to (9), we obtain ;
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= lim 1<S,(1)ZS,(Hh — Si(H)Zh — ZS,(h + Sy(t)Zh + ZS,(Hh — Zh +
t40 t
Zh - zh, goy = nﬂ;%«sl(t) — DZ(Sit) — Dh, g>y +
t

lim 1<ZS,(t)h-Zh, g>4
td0 t

+1im <S1(t)Zh-Zh, >4
t40
(10)
Since {Sy(t) }0 is a family of bounded operators, the relation (10) becomes:

1
= lim =<Z(Sa(t) — Dh, (Su(t) — D*g>y + 1im 1<Z(Sy(t) — Dh, g>y +
tdo t40 t
lim L<Zh, (S1(t) = 1)*g>4 = <jim Z(Sa(t) — Dh, 1im £ (S*1(t) —)g>H
t40 t tl0 t40 t
+ <|ti¢n3%Z(SZ(t) —Dh, g>y + <Zh, 'tifQ (S*() - D,g>y.  (11)

By using definition (2.3) of infinitesimal generator, (11) becomes:

<(& + AA)Zh, g>4 =<0, (Ar + AA)*g>H + <Z(A; + AAY)h, g>y+<Zh, (Ar
+ AA)*G>y . (12)

From definition(2.1) of unbounded adjoint operator of a Hilbert space, we
have that

<(&+ AA)Zh, g>y = <(A1 + AA)Zh + Z(A; + AAY)h, >
forall g € D(A; + AA;)*). Thus:
(A+AA)Zh = (A;+AA)Zh + Z(A,+AAL)h and (A+AA)Zh eH.

The following theorem presents some properties of the unbounded
perturbed operator A + AA, of problem formulation.

Theorem(3.6)

Let {S(t)}wo be a family of a Cy-composite perturbation semigroup
generated by unbounded linear operator A + AA satisfies:

W1 +W M1 [IAAA I[+M>s ||AAS )T
SOl < MiM, el W2)+MilldAlE Mo A5, )

W]_’WZZO and A A, AAye L(H)

Then the resolvent set p(& + AA) contains the ray (witw, +My||AA|| +
M,||AA,||, o)such that the resolvent operator of A+AA is estimated as:

, for My M>1,
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|R(A:A + AL)|| < M;M,
Rel—[(wy +wy) +M; [|AA [|+M, || AA, |[]

for ReA > (w; +w,) + M || AA ILchy +Ma [T AAG [l 1y

Proof
From remark(2.5)(v),

R()Z= | e™s()Zdt fori>0,Z eL(H) and
0

IR(A)Z]|L ) <

[ e™stzdt
0

<[ e™IS)Zle dt.
L(H) 0

From lemma (3.4)(b), we obtain:

o0 o0
[ e™IsWZlIydt=] e MetMrrw2I MMMl Z) o dt
0 0

A=MyIIAAIL (H) +M2lIAA L () +(W1+W2))

< —t
- j M;M,e ( 1Z]|. ¢ dt
0

MMy [| Z]l hy
A=[ My T AA [y +Ma [T AA, [y +(Wy +W5) |

for &> My | AA Il gy +Ma | AA, [y +(Wy +w5) |

Hence
IR(A)Z]|L )< MM || Z1l gy

ReA [ My [|AA [l +My I[AA, [l gy +(Wy + W) ]
(13)

Furthermore, for h €(0,x)

%mmz - %‘f e (St +h)Z - 5(t)Z) dt
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-1 [ e™(S(t+nzdt- %T eMS()Z dt = %ﬁ e M5HZ dt- [ e'S()Z
0 0 0

0
dt}
_ % ﬁ e NSz dt— [ e VsZ dt—] e'S(H)Z dt}
0

0 0

) Ah o
_ e"“h—l [ €Stz dt - eT [ersmzdt, (14)
0 0

ash T 0, the right hand side of (14) converges to AR(L)Z — Z in {L(H),<} .
Hence:

A+ AARMN)Z=AR(A)Z-Z.
Thus:

AR(A)Z—(A+AR)ARM)Z=Z

(M -(a+A8)RMZ=Z

RA) = (0 - (@ + Aa)t, for depa + Am)
(15)
and from the fact that

IR(L:A + AL)|| =||(A — (& + A&))Y||(see the definition of H_;) and hence
IR(A + AL)Z|| =[1Z]1y_, =l — (& + A&)) |
From (13) and if Ae ] with Aep(a + A&),we gets

IR(:4 + AB))| < MM,
Re _[(Wl +W,) + My [|AA [[+M; || AA, ||]

for Red > ((wy +w,) + My [| AA [l iy My [| AA, [l ra)-

Corollary(3.7)

Let the condition of theorem(3.6) be satisfied, then:
a-R(A:A + AA) (1) = s(R(L:A + AA).
b-R(A)(A + AR)Z = (A + AA)R(A)Z, for Z € D(A + A&).

Proof
a- By using the identity (Al — (& + A&))R(L:A + AA), we have that
(1) = S()(A — (A + AQ))R(LA + A4) .
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= (AS(t) — () (A + AL))R(A:A + AA) . (16)
By Lemma (3.5)(d), yields:
s(t) = (M — (& + AL))S(£)R(LA + AA) (a7)

By multiplying both sides of (17) by R(A:A + AA&), we get:
R(L:A + A £)5(1) = 5(t) R(L:A + AA).

b- Since R(\)(A + A&)Z = j e s(t)(A + AA)Z dt, for Lep(A + AA)
0

o— 8

e ™A+ AQ)S()Z dt = (A + aﬂjﬁ e MS(1)Z dtJ =(A+AL)RN)Z,
0

then (15) implies that:
R(LA + AL)(A + AL)Z = (A + AA)R(L:A + AA)Z.

Definition (3.8)
The continuous function Z(.)e D(& + A&) given by:
Z(t) =s(t) Zo forany Z, € L(H)andt >0

which is strong operator differentiable in L(H), is called a strong solution to the
linear perturbation initial value problem (3).

Concluding Remark(3.9)

The necessary and sufficient conditions for any Z € D(& +AA) is that
restriction Z to D(A, + AA;) belong to L(D(A; + AA,), D(A; + AA))), i.e,
D(a +aA) c L(H)N L(D(A; + AA,), D(A; + AA;)) and an extension of (& + AA)
Z € L(D(A; + AA;), H) to H belong to L(H).

We are now interested in the relation between the semigroup T(t)
generated by & and £(t) generated by & + AA. By condition (a),(b), T(t) and &(t)
are Co-semigroups generated by the linear operators & and & + A A respectively
and let Z(.) € D(a + AA). Then by remark (2.5)(ii) , we have T(t — s)s(S)Z is
differentiable, that implies the L(H)-value function, let:

H(s)=T (t — s)%(s)Z for O< s <t ;

and from lemma(2.2)(d),
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d d d

I H(S)Z=T (t-5s) EE.(s)z + oS T (t —S)5(s)Z,
=T (t-s)(&+AL)S(S)Z — AT (t—5) S(s)Z
=T (t — S)AAS(S)Z .

Integrating 9H(G) Z from 0 to t, yields:
ds

t t
[ SpgZds=[ T(t-s)Aas(s)Zds
o U 0

t
S()Z =T ()Z+ [ T (t-s)AAS()Z ds, for Z eD(a+A4). (18)
0

Since the operator on both sides of (18) are bounded,then (18) holds for every
ZelL(H).

Theorem(3.10)
Let T(t) be a C,-Composite semigroup of problem formulation satisfying:

| Tl < MMM W2)t,

Let AA be a bounded linear operator on a Banach space L(H). Then there exist a
unique family =(t), t > 0 of bounded operators on L(H) such that (18) is
continuous on [0, o), for every Z eL(H).

Proof

The main steps of the proof is as follows:
Set:

So(t) = T(t) (19)
and define s,(t) inductively by:

Spy(DZ = j T(t — S)A AS,(t)Z ds | (20)
0

forZ € L(H), and n>0.
We shall prove, by induction, that {S,(t)}wo IS continuous family.

Now, for n = 0, we have from condition(a) of problem formulation, that S(t)Z =
T(t)Z is continuous for t > 0 and Z € L(H).
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We assume that:
Ilm ”5”(02 — E‘n(t)zlnL(H) = 0,

N—
(21)
for Z, € L(H) and for all Ze L(H) .

Now:

|180+1(D)Z — Enea(t)Z4]| =

[ Tt-9)AAEHZ - 5i(t)Z) ds
0

L(H)

t
< j | T (t=S)[lLllAL [ty [[8n(D)Z— En(t)ZalLmy ds
0

From (21), we get:

Ilm ||Sn+1(t)Z - Sn+1(t)Zl||L(H) = 0

N—o0
Thus t —— €,,41(t)Z is continuous, for Z € L(H), t >0 and every n > 0.
From above, we have :

(wy+w>)
15 ©)ll gy < MiM2®

t
MIM3[IAA 't (22)
For n =0, we have:
[[8o(O)llLy = [I®llLgy< Mlee(W1+W2)t ,

Assume that (22) holds for any neN.Then by (20), we get:

t
[S0ea (2]l = [ T(t~s)AAS,(s)Z ds

0

L(H)
t

< I | T(t = S)llLqyllA & [yl SalS)llLiylI 2]y ds<
0
t
J- Mlee(WlJrWz)(t—S) ||Aﬂ||L(H)|\/|1|\/|ze(W1+W2)S
0

MIME AP S" 1 Z gy o
n!

n+lp an+1,(Wp+wWo)s
1 Mje

(n+1)!

_ (wi+wp)t M
= M;M,e | AA | Sn+1||z||L(H)

ds
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forn>0and Z € L(H) .

The integral equation (18) is a Volterra integral equation of the second kind
with continuous kernel of difference type k(s, t) = T(t — s)A A.This equation has
a solution may often appear as integral of the form :

t

s(t) = sot) + | Tt & 1)So(8) dt, (23)

0

where I'(t, &; 1) is called the resolvent bounded kernel of integral equation (23)
and K(t, &) and sq(t) in (18) are both continuous.

It is easy to construct the resolvent I'(t, &; 1) for (23) as Numann series:
F(ti ﬁ_u 1) = Z kn+1(t; E_,) y
n=0
where k.1(t, &), the iterated kernel, such that:
F(ti ﬁ_u 1) = Z kn+1(t; E_,) |
n=0

where Ky(t, y) = k(t, y). Thus:

5(t) = So(t) + Sy(t) + (D + ...,
where:

So(t) = T(t)

t

sa(t) = | K(t, &) Spa(8) dé

0
So:
s =), S (24)
n=0
By using (22), yields:
IOl =3 s, 1)
n=0 L(H)
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< Mlee(W1+W2)t i M?Mg ”AIA ”n t" .
n=0 n

The right part of inequality is convergent, the series (24) is uniformly
convergence in the uniform operator topology on bounded interval, and t ——

8(t)Z is continuous for every Z € L(H).Therefore, 5(t)Z €C([0, t], L(H))

To prove the uniqueness, let U(t), t > 0 be a uniformly bounded operator for
which

t—— U(t)Z is continuous for Z € L(H) and:

t
U()Z =T(t)Z + j T (t — S)A AU(H)Z ds (25)
0

for Z € L(H).
By subtracting (24) from (18), yields:

t
1 8(1)Z — U(O))Z|e < J MiM, e 2 IAA|LlIS(8) — UE)IILealZley
0

ds
Hence from Gronwall's inequality, we get:

| 5(t) — U(t))Z||¢s) = O, for t > 0 and thus 5(t) = U(t).

Corollary(3.11)
Let A be the infinitesimal generator of a Cy-composite semigroup T(t)

satisfying || T (©)||.ey < M:M,e1™W2)t | et A4 be a bounded operator and let
5(t) be the infinitesimal generator by A + AA. Then:

150) — TOll.gy < MaMel" 720" (gMuladle MasAIDE g )

Proof
On using (18) and conditions (b), (d), one gets:

t
IS(MZ = TOZllLey = TOZ + | T(t - 5)A AS(5)Z ds — T()Z]|ue
0
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t
< [T -s)ll 1A &llell S LpllZlley ds
0

By using conditions (b),(e) of problem formulation , we obtain:
t

ISOZ - TOZlly < [ MMM Y2 1A &)y MiM,
0

S(Wq+Wo +Mq||AA1||[+M>5[|AA
e( 1+Wo +My||[AAq||+Mo| ZH)HZ”L(H) ds

o(MulIAA[H+M3[[AA )t

t
= M7 Mge(WﬁWZ) A &L _
My [|AAL || +M, [ AA, ||

1 }nznm - (26)
My [[AAL || +M;, || AA, ||

From condition (f) of problem formulation and the fact that M; M,>1, we have
that
IAA Iy = [[AAL + APl [[AAL eyt [|-AAS] L)
< My[[AAL Iy + M2 [ AA][LH < (M|AA|L ) + M2 [[AA] k)
[l -
Hence (26), becomes:

15O T Olluey < MZ M e (MIMAIMAMADE 1) 7),

For My, M,>1, wy, W, >0 and A A, AA; L(H)

Concluding Remark(3.12)

The addition of a bounded linear operator A & such that D(&) c D(a&), to
an infinitesimal generator & of a Cy-semigroup does not destroy the analytic and
contraction properties, [6].

Theorem(3.13)

Let A be the infinitesimal generator of a compact composite semigroup
T(t) and, the resolvent operator for A satisfies

M;M,

RB(AA <
IR0l = o172

,forA > Wy + Wo. (27)
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Let A& be a bounded operator, then 4 + A & is the infinitesimal generator of a
compact composite perturbation Cy-semigroup S(t).

Proof
Assume that A > W1+W2+M1M2”Aﬂ”|_(|-|), for M{,M,>1, wy, w, > 0.

Thus

MM, [[AA] <1,
A —(wy+Ww5p)

AA M. M
| SARG:A) e < 1A Al RO sy < A ey MiMa 4 og)
A—(wg+WwW,)

Hence:

| SAR(AA) Ly < 1. (29)
From (29), we get (I - AARMR;A)) is invertible and bounded for
A > W+ Wt M1M2”Aﬂi |||_(|_(H)), set

R=R(L;4)(1 - AAR(;A)) ™ [from (I - A AR(LA)) "=R(LA) 3" [AAR (.2 A)]€) -
k=0

(30)

We have to show that R is a resolvent operator of A+AAa and for
A > W+ Wt MlMZHAﬂ ”L(L(H))- Note that

(M — (& + AR))R = (M — (& + AR))R(LA)[(1 - AAR(L;A))]
= (M — & - AD)[R(LA)[(1 - A AR(GA)]
= (I - AAR(LA)][I — AAR(LAN] =1
Let Z € D(a + AA) = D(a4)), then:

ROMI — (A + AR))Z = R(MLA) (M — (A + AR))Z + iR(x:A)[AAR(X:A)]k

(Al - (a + A A))Z.
(31)

=Z-RNA)AALZ + i Z

k=1

[AAR (. A)]*

~S[RO:A)AATE.
k=2 Hence:
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R(AM — (& + AR))= S RO A)[AAR (2 A)]¢
k=0

(32)
Moreover

IO — & — A8) Yl e = STR(L:A)[AAR(.:A)[

k=0 L(L(H))

ROGA)Y [AAR(1:A)]¢
k=0 L(L(H)

< . S A)K
- ||R (A A)”L(H) lZE)HAAR (. A)”L(L(H))

Since|| AAR(L;A)| ey < 1, we get:

IEOHAARO»:A)|||E(L(H» ) 1_||AAR(x1:A)||L(L(H» > [AAR ALy
together with
IROGA) oy < — MMz > (wy +Wy).
A—(Wg+Ww,)
We have:
I =2 = A &) Yy < MM, 1

A=Wy +Wy) 1-|AAR (r: A)||L(H)

= - . (33)
A= (W + W)= (A= (W; +Wy)) [AAR (L: A))|

From (28), one gets

A — (W + W) [[AAR(L &)Ly < [I[AR [|lLryMiM2
A=Wy +Wy) — (A — (Wy + Wy))[[AAR(LA)||L () >
A — (Wy + Wp) —[|AR || HyMiM; .

Thus:

! < 1 .
A=Wy +W,)— (b= (W + W) J[AAR (L A)| A= (wy +W,) —[|AA[M M,

(34)
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from condition (g)of problem formulation, the inequality (34)
becomes: 1 <
A= (Wy +Wy) — (A —(Wy +Wy)) [AAR (A A))||

1 .
(A= (wy +W3)) = (MM [[ AA [l MM | AAS [l my))

Now, for
A > (W +W3)) = (MiMy [| AA (I nyy TMiM2 [TAAS (I my + 1
we have:

1 < 1
(A = (wg +W3)) = (MM || AAY [l (i hy) +MiM2 [[AAS [l (L)

where (A —(wy +w,)) = (MM, [| AA [l ry) MMy (| AA, [l my)) # 0

also <1

i R(A:A)[AAR (L A)¢
k=0

L(L(H))
Hence (32) is convergent in L({L(H), t}).
Now, R(1:A) and AAR(A:A) are compact .

Hence R(A:A + AA) is compact, for A > (w; + wy) — (M;My||AA{]| +
M:iM||AA]]) + 1.
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