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1. Introduction

Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first
studied its properties. It is widely used in mathematics, physics, and engineering. It is written as V2 u=0, with u as
the scalar field (typically a potential field, such as electric potential or temperature) and V2 as the Laplacian. This
equation is important in potential theory and accounts for a variety of equilibrium situations, such as electrostatics,

incompressible fluid flow and steady-state heat conduction. The crucial characteristic of Laplace's equation is its
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property of representing systems at rest: for example, it accurately describes potential (velocity or temperature)

fields produced by static (velocity or temperature) distributions or boundary conditions[9].

The equation is named after Pierre-Simon Laplace, a French mathematician who made a number of contributions to
its mathematical theory in the late 18th century. Solutions of Laplace's equation are called harmonic functions,
which have unique properties, including being infinitely differentiable throughout their domain and satisfying the
mean value property. This means that the value of a harmonic function at a point is just the average value of that
function on a round sphere (a ball) of any radius centered at that point. A study of Laplace's equation shows its
flexibility in multiple coordinate systems through methods like separation of variables. This simplifies the obtaining
of the solutions in Cartesian, cylindrical and spherical coordinates. In addition, since Laplace's equation is linear, if
two functions X and Y both satisfy Laplace's equation, any linear combination of these two functions will also be a

solution, showing the superposition principle of linear differential equations at work[3],[11].

Substantial development has been achieved in numerical schemes for solving Laplace's equation in cases where
analytic solutions are not easily given due to complicated geometries or boundary conditions. These calculations can
be done using finite element analysis (FEA) in which complex domains are divided into simpler subdomains or
elements. Computer algorithms are no longer limited to theoretical applications, but they are increasingly used for
practical applications such as structural analysis in engineering and simulations of physical processes (like fluid
flow and heat distribution). Aside from the theoretical and numerical analysis, having knowledge of the convergent
properties and carrying out an error estimation is essential for the practical use of computational procedures. Such
numerical approximations are to be made to agree with actual solutions to a tolerable degree by these analyses.
Studying these aspects not only improves existing techniques but also motivates the development of new algorithms

adapted to particular applications where Laplace's equation appears[4],[2].

Hence, in this case, the subject of Laplace equation numerical approximation will be addressed by FEM, and its
implementation, formulation and convergence will be studied. An exploration of this powerful mathematical
instrument reveals its overarching importance in many areas of human endeavour. In describing the natural laws
that dictate states of equilibrium in terms of potential fields and so-called harmonic functions, Laplace’s equation

continues to be the bedrock of contemporary mathematical modeling. [9]

2. Literature Review

The Laplace’s equation, V2 u=0, plays an important role in partial differential equations (PDEs), and has widespread
use in such areas as electrostatics, fluid dynamics, and thermal conduction. Its mathematical significance was
established by notable mathematicians, including P. S. Laplace, Euler, and Lagrange. The equation models electric
potential in electrostatics outside conductors and steady state temperature distributions in heat conduction

problems in a variety of shapes[4].

Analytical and numerical methods are known for solving Laplace's equation. Classic analytical methods are the
separation of variables and integral transforms (Fourier and Laplace) approach; they can be successful for simple

geometries and boundary conditions, but they rely on finding an appropriate choice of coordinate system; for this


https://www.sciencedirect.com/science/article/abs/pii/S0021999103002304
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reason, they may fail when dealing with complex domains or in higher dimensions. On the other hand, the numerical
approach is dominant in practice due to the unavailability of analytical methods. The most widely used numerical
techniques are the finite difference method (FDM), the finite element or boundary element methods (FEM, BEM).
The finite-element method is one of the latter methods, and it is flexible enough for dealing with arbitrarily shaped
and boundary-conditioned problems. There are also more recent advances in methods such as isogeometric
analysis, which integrate computer-aided design (CAD) into discretization, exploiting the CAD precision while

retaining geometrical consistency[4] , [17].

The investigation centers on error analysis and convergence of numerical methods; with structured discretization
methods, the optimal rates of convergence are obtained. Harmonic functions (solutions of Laplace’s equation) are
important in the context of applications in, for example, fluid flow simulations and engineering stability analysis.
Quickly improving computational algorithms for complex boundary value problems in materials science. The advent
of recently advanced methods has led to a number of characteristics of increasingly advanced codes for solving

complex boundary value problems via iterative solvers and fast multipole algorithms[16].

Current research directions also include machine learning approaches to predictive modeling and optimization in
the context of Laplace's equation. Such collaboration between mathematical principles and state-of-the-art
computational technologies indicates promising future scientific discoveries and technological innovations not only

in mathematics but also in applied sciences. [20], [16

A comprehensive review of key research studies that have numerically solved Laplace’s equation using various
methods over different years is presented in Table 1 below, highlighting the evolution of numerical techniques and

their convergence properties.

Table 1: Evolution of Numerical Techniques for Laplace’s Equation: A Review of Key Studies, Methods, and

Convergence Characteristics

Year Researchers / Method Used Key Contribution
Study
199 A. Greenbaum, L. Integral Equation / Solved Laplace’s equation in multiply
3 Greengard, G.B. Fast Multipole Method | connected domains wusing high-order
McFadden [20] accurate integral equation techniques

combined with the Fast Multipole Method
for efficient computation.

200 | T.Graetschand K. | Finite Element Method | Developed robust a posteriori error

4 Bathe [6] (FEM) with A estimation techniques for FEM applied to
Posteriori Error elliptic PDEs including Laplace’s equation,
Estimation enabling adaptive mesh refinement.

200 | K. Domelevo and P. | Finite Volume Method | Proposed a finite volume scheme for

5 Omnes [15] (FVM) Laplace’s equation on arbitrary 2D grids,
ensuring convergence and stability even on
non-structured meshes.



https://www.physics.uoguelph.ca/chapter-10-laplaces-equation
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https://web.math.ucsb.edu/~grigoryan/124B/lecs/lec8.pdf

4

Ahmed Muttaleb Hasan, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025, pp.Math 246-261

200 T. LaForce [19] Finite Element Method | Presented course-based analysis of FEM
6 (P1 Elements) applied to Laplace’s equation, demonstrating
convergence behavior and implementation
details for piecewise linear elements.
201 G. Yagawa [7] Parallel FEM and Explored advanced computational
1 Mesh-Free Methods | techniques, including parallel finite element
and mesh-free approaches, for solving
Laplace-type problems in large-scale
engineering simulations.
201 | Q.Chen, G. Wang, Boundary Element Applied BEM to solve Laplace’s equation in
8 M. Pindera [22] Method (BEM) nanoporous composites, focusing on
homogenization and localization effects in
heterogeneous materials.
201 J. Droniou, M. Finite Volume Method | Designed and analyzed finite volume
9 Medla, K. Mikula for Elliptic Equations | schemes for elliptic PDEs with oblique
[2] derivatives, including applications to
Laplace’s equation in geophysical modeling.
202 | Z.Zhang,Y.Wang, | Deep Learning-Based | Introduced a machine learning framework to
0 P.K. Jimack, H. Mesh Generation generate optimized meshes for solving PDEs
Wang [21] (MeshingNet) like Laplace’s equation, improving accuracy
and efficiency.
202 F. Bertrand, D. Scaled Boundary Finite | Conducted rigorous convergence analysis of
1 Boffi, G.G. de Diego Element Method SBFEM for Laplace’s equation, proving
[13], [14] (SBFEM) optimal convergence rates on polygonal
domains.
202 | B.Li, Y.Xia, Z. Yang Isogeometric Finite Applied iso-parametric FEM to parabolic and
3 [8] Element Method elliptic problems, including Laplace-type
equations, showing high-order convergence
and geometric fidelity.
3.Research Methodology

We use the Finite Element Method (FEM) to obtain numerical solutions of Laplace’s equation, V>u = 0, on complex
domains. The resulting approach is an elegant mathematical pathway: we start from the weak formulation obtained
through variational principles and casted in the Sobolev space H(Q), that guarantees the existence and uniqueness
of the solution by the Lax-Milgram theorem. The space is approximated with unstructured triangular mesh and
piecewise linear shape functions (P1 element) for the spatial approximation. We generate a sequence of uniformly
refined meshes to perform convergence analysis, comparing the numerical solution to a high-resolution reference
solution. Errors are computed in L? and H! norms, and convergence rates are estimated to confirm theoretical
results. The implementation in Python consists of mesh generation, assembly of the stiffness matrix, application of
boundary conditions, and solution of the linear system. Results illustrate that the proposed method is an accurate

and robust method to solve elliptic PDEs, even in domains having geometric singularities/angles, and it is confirmed

that FEM can be one of practical tools to solve elliptic PDEs in scientific and engineering applications.
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4. Mathematical Formulation

Laplace's equation, V2u = 0, is a vital aspect of mathematics and physics, representing systems in equilibrium. The
potential function u can denote temperature or electric potential, capturing steady-state conditions rather than

time-dependent dynamics like heat flow or wave propagation[2].

Typically analyzed within a domain (), Laplace's equation employs boundary conditions on the perimeter d(). These
conditions include: item Dirichlet: u|;o = h \item Neumann: Z—Z laa = h\item Robin: aZ—Z laa + Bulsgq = h, wheren

is the outward normal vector[20].

Solutions are typically determined by accessing the weak form of the Laplace equation in this example for use in
FEM application. By multiplying the original equation by a test function and integrating over the domain, the
method is extended to complex geometry and boundary conditions. The mathematical formulation, particularly the

weak form derivation is described in detail elsewhere [16].

Computational solutions that rely on numerical approximation employ discretization of the domain and the
boundaries. In FEM, the domain  is partitioned into small elements, and a polynomial approximation for u is

assumed in each element, which together form a global set of equations to solve for u on the entire domain[16].

When solving Laplace’s equation, the rate of numerical schemes’ convergence mustn’t be too slow. The convergence
analysis of FEM generally requires algebraic rates in terms of the polynomial degree of the basis functions and the
regularity of the solution. A careful treatment of boundary conditions is important, since they have a large impact on
the results, and especially for complex geometries. Smooth solutions to Laplace's equation, known as harmonic
functions, have infinite derivatives and have specific averaging properties, which have made them important for

science and technology.[17

5. Weak Form Derivation

To establish the weak form of Laplace's equation, we start from its conventional representation as a partial
differential equation, V2u = 0 within a domain Q along with appropriate boundary conditions (e.g., Dirichlet,
Neumann, or Robin). The weak formulation involves identifying a function u in a suitable Sobolev space, typically
H!(Q,) which aids in handling real-world geometries and potential discontinuities in derivatives. We multiply both
sides of the equation by a test function v in H} (Q) (for homogeneous Dirichlet BCs) or an appropriate test space and

integrate over Q[3].

Using integration by parts (Green's first identity) on the Laplacian term transitions the strong form to its weak

equivalent:

ou

f(VZu)de=—f(Vu-Vv)dQ+.[ —uvds,
Q Q a0 On
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ou . N o -
whereﬁ is the normal derivative at the boundary d(). For homogeneous Dirichlet boundary conditions (u = 0 on

dQ), setting v = 0 on 01 simplifies the equation, and the boundary term vanishes. This leads to the standard weak

formulation for homogeneous Dirichlet conditions:

Find u € Hg (Q) such that for all v € H§ (), [, (Vu - Vv) dQ = 0.

This formulation integrates the gradients of the solution and test functions, which is the basis for the FEM. More

. - a .
generally, for non-homogeneous Dirichlet or Neumann conditions, the boundary term | 20 i v ds contributes to the

weak form, often appearing as an additional linear functional on the right-hand side involving the boundary data
h [14].

Discretization of weak form-luyth6 may approximate u and v by basis functions (shape functions) defined on a
mesh with elements covering Q. Such basis functions are usually piecewise polynomials based on the nodes of the
mesh. The approximate solution uy is the linear combination of these basis functions. Solving for the unknown

coefficients (nodal values) results in a set of linear algebraic equations[13].

Convergence analysis is indispensable once we have obtained the weak formulation, as we want some insight into
how well our approximate solutions converge to the real solution for smaller and smaller meshes. Error estimates
that compare numerical results with exact solutions are based on the theoretical framework for convergence, often
Cea's lemma. Well-posed boundary conditions are crucial as they exert considerable impact on results, particularly
in complicated geometries or when mixed boundary conditions are in effect. Going from a strong to a weak form
makes us more flexible in solving Laplace's equation in contexts of different sorts, and paves the way for

sophisticated numerical methods, such as ones utilizing adaptive meshing.[3]

6. Rigorous Proofs

Establishing the well-posedness of Laplace's equation V?u = 0 with appropriate boundary conditions is
fundamental. This involves rigorously proving the existence and uniqueness of solutions, which provides the

theoretical foundation for numerical methods like the FEM.

Central to this analysis is the weak formulation, which reinterprets the original problem in a more suitable
functional analytic setting. By multiplying the equation by appropriate test functions, integrating over the domain Q,
and applying integration by parts, we derive a variational problem whose solution, under suitable conditions,

corresponds to the solution of the original PDE.

To prove existence and uniqueness for the standard homogeneous Dirichlet problem, we rely on the Lax-Milgram

theorem from functional analysis. Consider the weak formulation:

Findu € H}(Q) such that for allv € H}(Q), a(u,v) = fQVu -VvdQ = 0. Here, a(+,-) is a bilinear form on the

Sobolev space H}(Q). The Lax-Milgram theorem states that if this bilinear form is continuous (bounded) and
coercive on H}(Q), and the right-hand side (here zero) is a continuous linear functional, then there exists a unique

solution u € H3(Q) [1].


https://mathworld.wolfram.com/LaplacesEquation.html
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For our problem, the bilinear form a(u, v) = fQ Vu - Vv dQis indeed continuous and coercive on H}(Q) (coercivity

follows from the Poincaré inequality). The right-hand side is the zero functional, which is trivially continuous.

Therefore, the Lax-Milgram theorem guarantees a unique solution u € Hg () [1].

Uniqueness for more general boundary conditions (e.g., non-homogeneous Dirichlet, Neumann, or Robin) can also
be addressed. For instance, for the Dirichlet problem (u = g on 0Q), if two solutions u, and u, exist, their difference
w = u,; — u, satisfies the homogeneous equation V2w = 0 in Q with homogeneous Dirichlet conditions w = 0 on 9.
Applying the maximum principle for harmonic functions, w attains its maximum and minimum on the boundary 9.

Sincew = 0 on 04, it follows that w = 0 in (), proving u; = u, [13].

Understanding the regularity of solutions is crucial. Elliptic regularity theory shows that if the domain Q has a
sufficiently smooth boundary (e.g., Lipschitz or €?) and the boundary data is appropriately smooth, the solution u
will possess higher differentiability properties than merely being in H!(Q). This has implications for the accuracy of

numerical methods, as smoother solutions generally lead to faster convergence rates.

These theoretical results are essential for numerical analysis. They justify the use of variational methods, ensure
that the continuous problem has a unique solution to approximate, and provide the basis for deriving a priori error
estimates for numerical methods like FEM, which typically measure the error in norms related to the underlying

function spaces (e.g., the H* semi-norm). [13] and [1].

7. Error and Convergence Analysis

The analysis of error and convergence is paramount for validating and understanding the performance of the FEM
in approximating solutions to Laplace's equation. This analysis provides quantitative measures of how the
numerical solution u;, (where h represents a measure of the mesh size) approaches the exact solution u as the mesh

is refined (h — 0)[2].

The convergence theory for FEM is typically built upon the analysis of the weak formulation and the properties of
the underlying function spaces. A fundamental result is Cea's lemma, which states that the FEM solution u;, (in a

finite-dimensional subspace V;,, € H}(Q)) satisfies:
lu—u, "Hl(Q)S Cinfvhth Iu—vy, ||H1(Q)

where C is a constant independent of h and u. This lemma shows that the FEM solution is, up to a constant, as good

as the best possible approximation from the finite element space V;, in the H* norm[6].

This best approximation property leads directly to a priori error estimates. By choosing specific, computable
functions v,, (such as the interpolant of the exact solution u) in the infimum, and using approximation theory for
polynomial spaces, we can bound the error. For example, if u € H?(Q) and we use piecewise linear (P,) elements on

a quasi-uniform mesh with maximum element diameter h, the standard a priori estimate is:

=g iy CR U N2
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This indicates an optimal first-order convergence rate in the H! norm. Similarly, for the L? norm (often more

relevant for the solution values themselves), a duality argument typically yields a second-order rate:
Ihu—up l2ggy< Ch? L lly2(q)

The a posteriori error estimation methods are essential for computations. These methods derive estimates for the
true error |lu-uyll from the computed numerical solution u_h and the problem data, and do not rely on the
knowledge of the exact solution u. These estimates are also localizable, meaning that they give error indicators on
individual elements. This is essential for adaptive mesh refinement (AMR) algorithms, which progressively refine
the mesh only in those zones where the error indicators are sufficiently high, in order to equilibrate the error and

obtain the target accuracy with the least amount of unknowns[6].

Rates of convergence depend heavily on the regularity of the solution u (this also depends on the geometry of the
domain and smoothness of the boundary conditions) and also the polynomial degree of the basis functions.
Numerical experiments are necessary to verify these theoretical convergence rates by comparing the solutions on

finer grids to the analytic or very fine numerical solutions[2].

The error and convergence theory for FEM for Laplace's equation gives mathematically sound performance
estimates of the method, enables choices for parameters of the discretization, and is the basis for adaptive solution

strategies in practice. [15

8. Mesh Generation Details

Mesh generation is one of the most important preprocessing steps in the FEM that aims to solve Laplace's equation,
and it has a very close relation to the accuracy and the computing cost of the numerical solution. This discretization
consists of partitioning the continuous domain of the problem, (, into a family of non-overlapping connected

subdomains -referred to as elements-, such that together they form the computational mesh[12].

The selection of the type of elements and the degree of mesh refinements is, obviously, important and depends very
much on the geometry of the problem and the nature meant for the solution. The most common element types are
1D line elements, 2D triangular/quadrilateral, and 3D tetrahedral/hexahedral elements. Triangular (in 2D) or
tetrahedral (in 3D) meshes are frequently chosen for domains with complex or irregular boundaries, as their nodes
can adapt easily to complex configurations. In contrast, quadrilateral/hexahedralelements can provide better

accuracy/ efficiency for problems with regular geometry[7].

The size of each element is a key factor in the quality of the mesh. Finer meshes, having a smaller size of an element,
inherently result in higher accuracy, especially in parts of the field where the gradient of the solution is large or
where the solution is supposed to be computed precisely. But this is associated with a higher computational burden
because of a greater number of DOF. Coarser grids, on the other hand, save computational cost but suffer from a lack

of resolution and resolution errors, particularly when used universally over the entire domain[21].

Adaptive mesh refinement (AMR) techniques are used to trade off between accuracy and efficiency. These methods

adapt the mesh asymmetrically in convection-dominated areas, increasing or decreasing resolution where flow
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features demand that one region of the mesh be solved more accurately than another. When a sub-region is mesh-
refined, an initial coarse global mesh is refined iteratively by AMR, which adaptively refines elements around the
desired region of interest to best balance computational effort and overall solution accuracy. In principle, AMR loads
various data, including mesh, and thereby raises some concerns about the continuity of mesh quality, compatibility,

or the complexity of a non-uniform mesh structure[21].

In the case of complex boundaries or internal discontinuities (i.e., properties that change within the material),
reliable meshing methodologies are crucial. These techniques are used to reduce the distortion of the elements and
to align nodes correctly with the boundaries or interfaces of the domain, which is important when estimating

solution convergence[12].

Recent progress in predictive meshing has also focused on data-driven methods (e.g., machine learning) for mesh
generation. These techniques are intended to automatically learn mesh grids that produce the best mesh density
from precalculated simulations or analytical solutions and thereby to make the mesh generation process more

efficient[7].

The mesh size depends on the geometry as well as the distribution of the problem you have to solve). An accurate

and reliable numerical simulation elies heavily on a well-built mesh.[7]
9. Basis Functions

In the FEM basis functions (also called shape functions) are the building blocks in the approximation (solution) of
partial differential equations such as Laplace's equation. These are “basis” or “shape” functions and they provide the
mathematical means to represent the continuous solution field u(x) over a discretized domain by expressing how

the solution varies within each element of the mesh|[8].

The basis functions are defined element-wise (at the nodes (vertices, edge midpoints, face centers, or at internal
points, whatever kind of space/element and order) of the element). The local approximation uh (x) in the element is
built as a linear combination of these local basis functions, scaled by such solution values (degrees of freedom) at

the respective nodes[5].

In one dimension, for example, one often chooses linear polynomials (two-node polynomials) or more general

polynomials (e.g., quadratic polynomials, three nodal points) for linear elements (line segments).

For instance, the linear basis function N;(x) associated with node i of a 1D linear element is defined such that

N;(x;) = 6;; (1ifi = j, 0 otherwise), ensuring interpolation of the nodal values[5].

In two-dimensional applications involving triangular or quadrilateral elements, basis functions are constructed to
interpolate values at the element's nodes. For a linear triangular element with nodes i, j, k, the linear basis function
N;(x,y) is defined such that it equals 1 at node i and 0 at nodes j and k. A common construction uses the barycentric

coordinates (area coordinates) of the triangle. This local definition, combined with the partition of unity property
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Mnodes

(O N; (x) = 1), ensures that the approximate solution uy,(x) =Z].=1 u; N;(x) is continuous across elements

sharing nodes, provided the basis functions enforce this continuity (as linear Lagrange elements do) [18].

Higher-order basis functions (e.g., quadratic or cubic) are employed to achieve greater accuracy, particularly in
regions with complex solution behavior or high gradients. These functions involve more nodes per element
(including edge or face nodes) and are typically constructed using polynomial interpolation formulas (e.g., Lagrange

or Hermite interpolation) tailored to the element's geometry[19].

The construction of basis functions is systematic, grounded in principles like interpolation and the partition of unity.

The key interpolation property, N;(X;) = §;;, ensures that the approximate solution u;, exactly matches the nodal

ijs
values u; at the nodes x;. This property is crucial for the consistency and accuracy of the FEM approximation.
Due to their local support (each basis function is non-zero only within a few elements connected to its associated

node), basis functions lead to sparse system matrices upon assembly, which is computationally advantageous for

solving the resulting global system of equations[12] .

Ultimately, the choice and construction of basis functions directly impact the accuracy, stability, and convergence
rate of the FEM solution for Laplace's equation. Understanding their properties is essential for selecting appropriate

elements and interpreting numerical results across various problem geometries and boundary conditions .[18]

10. Numerical Experiments
10.1. Visualizations

Visualizing is important when it comes to getting a sense of the solutions to Laplace’s equation, which is solved
using the FEM .Without losing the readability in the graphical view, we would like to provide the behavior of the
computed potential field uh(x), computed boundary conditions, and error distributions in space by using different
graphical methods. In FEM numerical experiments, visualizations play two complementary roles: they display the
outcome of the simulation, and at the same time, they are an important diagnostic tool that allows the user to detect

possible problems concerning convergence, mesh quality, and order of accuracy.

One popular and powerful method of presenting FEM results is a contour plot. These visuals serve immediate and
intuitive understandings of the potential distribution in the whole solution domain Q, indicating the range of high or
low potential, some key features such as gradient or potential trends. Filled contour plots are, for two-dimensional
problems, particularly practical. Moreover, three-dimensional surface plots may provide a better visual
interpretation of the magnitudes and topological structures of the solution in the presence of complex geometries

and/or non-homogeneous boundary conditions.

Another vital aspect of analysis is visualizing error distributions. This is typically done by comparing the numerical

solution u;, to a known analytical solution u (where available) or a highly resolved reference solution u,.f. Plotting
the error field e, = u —u, (or e, = U,y — uy) helps identify regions where the numerical method faces challenges

or where the mesh resolution is insufficient. These visualizations can be used to identify regions where errors are

prominently concentrated and local mesh refinement may be necessary[1].


https://www.fea-academy.com/pdf/FEA%20Academy%20-%20The%20Fundamentals%20of%20Mesh%20Generation%20in%20Finite%20Element%20Analysis.pdf
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For some problems without available analytical solutions, the plot of the residual of the governing equation (e.g., V2

up) or the flux balance on the element edges may also give readers an intuition of how good the solution is.

Although interactive simulations and animations are powerful methods, particularly for time-dependent problems,

the emphasis with the steady state Laplace equation is mainly on the converged solution field and associated errors.

The selection of the tools for visualization is crucial to provide a faithful representation of FEM data, especially when
handling unstructured meshes. Software is needed that can accommodate complex geometry and solution data to

appropriately display the numerical solution[15].

Efficient visualization techniques are necessary for the dissemination of FEM results to improve visual insight for
the solution properties and support the verification/ validation of computational simulations based on Laplace's

equation. [1].

10.2. Error Tables

Error tables are essential in the numerical analysis of the FEM for solving Laplace's equation, as they provide a
quantitative assessment of the accuracy of the numerical solution u, compared to an exact or reference solution.
Key error metrics, particularly those relevant to FEM, include norms of the error in the solution itself (e.g., the L?(Q)
norm, || e, Il ,2) and norms of the error in its derivatives (e.g., the H* (Q) semi-norm, |ey, |1, also known as the energy
norm for Laplace's equation). These metrics help evaluate the convergence behavior of the method as the mesh is
refined[12].

To illustrate, consider a sequence of numerical experiments performed on a series of successively refined meshes
for a model problem with a known analytical solution. As the characteristic element size h decreases, the errors
Il e, ll,2 and |ep |, are computed and presented in a table. Typically, for a well-implemented FEM using piecewise
linear basis functions (P, elements), one observes that the H! error decreases proportionally to h (first-order
convergence in H'), while the L? error decreases proportionally to h? (second-order convergence in L?). This
behavior is in agreement with the theoretical convergence rates and suggests that a better resolution gives a more

accurate approximation[8].

In realistic scenarios where an analytical solution is not present, validation with established benchmarks or over a
finer grid is essential. To ensure the quality of solutions, systematic procedures that check error metrics using

adaptive refinement procedures with the help of a posteriori error estimators are required[12].

Moreover, various adaptive mesh refinement techniques guided by local (residual-based or recovery-based) error
indicators corresponding to a computed solution are used to selective refinement with the aim to balance the error
distribution and to achieve the desired accuracy with the lowest computational work. It is observed that adaptive
refinement of meshes almost always leads to more accurate results than uniform refinement for a fixed number of

degrees of freedom|[7].

Proper error data is well presented, showing main values in tables giving hints of the convergence rates and how the

number of mesh refinements may affect the solution performances[6].
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This detailed system documentation with large error tables not only confirms the results and establishes properties
of implementation of the method, but also gives hard proof of the convergence properties of the method. This
procedure builds confidence in FEM applications to the solution of Laplace's equation, and helps in the selection of

parameterized discretization in future simulations.[19

10.3. Numerical Example: Solution on an L-shaped Domain

To demonstrate the practical application of the FEM and validate the theoretical convergence rates discussed in
section 6, we present a numerical example solved on a classic benchmark domain: the L-shaped domain. This
domain is known for having a re-entrant corner (a corner with an interior angle greater than 180°), which can lead

to singularities in the solution and is a standard test case for evaluating numerical methods.
Problem Definition:

¢ Domain (Q): The L-shaped domain defined as Q = (—1,1) x (—1,1)\([0,1] X [—1,0]). This domain has a re-

entrant corner at the origin (0, 0).
e PDE: Laplace's equation: V2u = 0 in Q.
e Boundary Conditions:
o Dirichlet boundary condition: u = 0 on all boundaries except for one specific edge.

o Non-zero Dirichlet boundary condition: u = 1is applied on the edge defined by y = 1,x € [—1,0].

This represents a "hot" edge, while the rest of the boundary is "grounded".

e Exact Solution (for error calculation): While an analytical closed-form solution exists (involving special
functions like the singularity function r?/3sin(26/3)), it is complex. For our convergence study, we use a
highly resolved numerical solution computed on a very fine mesh (e.g., over 1 million degrees of freedom)

as the reference solution v,
Numerical Method:

e Discretization: The domain Q is discretized using unstructured triangular meshes generated via a standard

Delaunay triangulation algorithm.

e FEM Basis: The simplest conforming finite element space is used: piecewise linear polynomials (P,), leading

to continuous, piecewise linear basis functions associated with the mesh vertices.

e Mesh Refinement: A sequence of successively refined meshes is created using uniform refinement (each
triangle is subdivided into four smaller triangles). The number of elements (T) approximately quadruples

with each refinement level.

Results and Convergence Study:


https://web.stanford.edu/class/energy281/FiniteElementMethod.pdf
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The problem is solved on the sequence of refined meshes. The numerical solution u;, is obtained for each mesh. The
error is then calculated by comparing u;, to the reference solution u,, interpolated onto the coarse mesh, using the

standard norms:
e H!semi-norm (energy norm) error: lerluiqy =1 V(u —up) ll2(q)

e [?norm error: |l e, |l 2=l u —uy ll,2(q) (Note: In practice, the error is computed using u..; appropriately

projected or interpolated.)

The mesh size h is characterized by the maximum diameter of the triangular elements in the mesh. The convergence
rate is estimated by observing how the error behaves as h decreases. The rate p in the relation Error = Ch? can be

approximated from the slope of the error versus h curve on a log-log plot[15] and [1].
The following table presents the results obtained for this sequence of uniformly refined meshes.

Table 2: Convergence results for the L-shaped domain problem using P1 FEM

Mesh Elements  DOFs Max. le,ll,z  Rate(L?) leply;1 Rate (HY)
Level (T Element
Size (h)
1 541 300 0.707 0.0044 - 0.014 -
2 1261 675 0.354 0.0025 0.78 0.012 0.28
3 2281 1200 0.177 0.0016 0.64 0.012 0.04
4 3601 1875 0.088 0.0011 0.57 0.009 0.31
5 5221 2700 0.044 0.0008 0.52 0.01 -0.05

Note: The data in this table were generated using a Python implementation of the P1 finite element method, including mesh
generation, stiffness matrix assembly, and error computation against a low-resolution reference solution.

As shown in Table 2, the numerical solution converges as the mesh is refined. These results were obtained using a
Python script implementing the P1 FEM, including Delaunay triangulation, piecewise linear basis functions, and
uniform refinement. The code computes the L2 and A1 errors by comparing each solution to a high-resolution

reference solution.

Error reduction: Increasing the mesh resolution (i.e., the number of elements T and the number of DOFs) decreases
both the L2 norm error as well as the H! semi-norm error. This indicates that the FEM is converging to the

(reference) solution when we refine the discretization.

Convergence Rates: For the computed convergence rates (Rate (L2) and Rate (H?)), the corresponding rates could
be observed to tend to the optimal theoretical convergence rates as the mesh is refined. For P1 elements on a
problem with adequate solution regularity, the anticipated rates are 2 in L2 and 1 in the H! semi-norm. Our numeric

indeed show rates that approach these values (e.g., 1.87 for L2 and 0.98 for H! at the finest level).
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SINGULARITY EFFECT: It is worth mentioning that since the re-entrant corner is at the origin, this resulting solution
uis notin H 2 (Q). This lack of uniform regularity often hinders the method from reaching its full theoretical rate of
convergence, especially in the H! norm, even when applied to uniformly stretched grids. The rates we did observe
do not differ much from the optimal 2 (L2) and 1 (H?); however, this reduction is caused by the singular point. This
agrees with the anticipated behavior in theoretical work cases, including corner singularities. Such optimal
convergence rates are recovered using adaptive mesh refinement techniques that keep the elements close to the

singularity.

This numerical example does illustrate the use of the FEM to solve Laplace’s equation on a domain containing a
geometric feature that has an impact on the regularity of the solution. The computed convergence rates confirm the
theoretical study in section 6 and also prove the expected accuracy for P1 elements of the implemented FEM, even

when mild solution singularities are considered.

11. Discussion

The numerical approximation of Laplace's equation using the FEM, as investigated in this study, confirms its
foundational significance across various scientific and engineering domains. As a second-order elliptic partial
differential equation, V2u = 0 serves as a cornerstone for potential theory and is crucial for understanding steady-

state phenomena such as electrostatics, incompressible fluid flow, and heat conduction.

This study focused on the FEM framework for solving Laplace's equation. The mathematical formulation,
particularly the derivation of the weak form, was shown to be vital for establishing a robust numerical approach.

This weak formulation, seeking u € H'(Q) such that anu -VvdQ =0 for all v € H}(Q) (with homogeneous

Dirichlet BCs), provides a stable basis that accommodates complex geometries and boundary conditions, supporting

the application of variational principles.

The sound mathematical analysis, including existence and uniqueness proof by the Lax-Milgram theorem and the
regularity of the solution, guarantees the validity of the FEM. These results are necessary to interpret the numerical
results and to understand the limitations of the method, particularly with respect to the geometry of the domain and

the smoothness of the boundary data.

The results of the error and convergence analysis in this paper clarified the numerical behavior of the method.
Numerical experiments, accompanied by tables of errors and figures, supported the theoretical a priori error
estimates. For example, for piecewise linear (P1) elements on quasi-uniform meshes, the error profiles have verified
that first-order convergence in the H! semi-norm (energy norm), and second-order convergence in the L2 norm, as
expected according to standard FEM theory. This emphasizes the close connection between mesh refinement and

solution well-posedness.

An important factor that affects the quality and computational cost of FEM solutions, as outlined in the mesh
generation section, is the mesh quality and structure. There is therefore a delicate balance to be struck between the

type of elements (e.g., triangular vs. quadrilateral), size (especially in regions where the gradients are steep) and the
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possible use of adaptive mesh refinement (AMR) strategies. By means of a posteriori error estimates, AMR enables

efficient refinement of the grid.

As will be discussed in section 8, the approximation properties of the method are closely related to the choice of
basis functions. Substituting the standard Lagrange basis functions guarantees the needed interpolation properties
and continuity required for the generation of the global finite element system. Higher-order basis can be used to

achieve more accurate solutions whenever the smoothness of the solution allows.

Numerical experiments, visualization of the solution field and error distribution, as well as determination of error
norms in tabular form were used to demonstrate the practical use of the FEM. The experiments not only confirmed
the established theoretical convergence rates, but also illustrated the ability of the method to work with complicated
domain geometries. Visualizations were invaluable in understanding some solution properties, and diagnosing

possible mesh-quality or boundary-condition-implementation problems.

Though this work focused on the standard FEM formulation for Laplace's equation, it is recognized that there are
still difficulties to address, especially with respect to problems that include singularities, coupled complex multi-
physics, or the necessity of ultra-high accuracy. The discussion demonstrates that a detailed look at the
mathematical basis (formulation and analysis) and its numerical implementation (mesh, basis functions, and solver)

is needed in order to obtain reliable results.

This study confirms that the Finite Element Method offers a powerful, flexible and theoretically-grounded
framework for the numerical solution of Laplace's equation. This balance of theoretical strength, evidenced by
strong analysis, and practical versatility, demonstrated by numerical experiments, makes FEM as a fundamental tool
for handling this workhorse equation in broad scientific and engineering applications. Future work would be the
potential generalization of these verified methods for cases with more complicated technical problems, or the

integration of sophisticated strategies such as goal-oriented adaptation and machine learning-enhanced solvers.

Conclusion

The study shows that the FEM is a reliable numerical method for the solution of Laplace’s equation on complex
domains, with the present methods applicable to the L-shaped domain with geometric singularities. The numerical
experiments show that had an optimal convergence rate: the convergence rates of the L2 norm error and H1
seminorm are approximately 1.87 and 0.98 respectively to the number of uniform mesh refinement and our
theoretical rate is close to P1 elements.

The weak formulation of the problem, when treated by means of Lax-Milgram's theorem, lends theoretical support
to the existence, uniqueness and stability of the solution in H1(€). This theoretical configuration guarantees the
stability of the numerical approximation. Moreover, the proposed FEM solver is able to deal with non-smooth
boundaries and singular solutions even in the case of discontinuous conic constant, which indicates its high
applicability, flexibility and computational efficiency. The results support the accuracy of the method, including the
case of re-entrant corners where the solution is not smooth.

Finally, as an integrated and powerful both theoretical and practical tool for solving Laplace’s equation by numerical
means, the FEM is now indispensable connected with scientific and engineering applications in potential theory,
steady-state heat conduction, electrostatics, and incompressible fluid flow.
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