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Abstract
The main goal of this work is to create a general type of proper mappings
namely, regular proper mappings and we introduce the definition of a new type
of compact and coercive mappings and give some properties and some
equivalent statements of these concepts as well as explain the relationship
among them .

Introduction
One of the very important concepts in topology is the concept of mapping .
There are several types of mapping , in this work we study an important class of
mappings , namely , regular proper mapping .
Proper mapping was introduced by Bourbaki in [1] .
Let A be a subset of topological space X . We denote to the closure and

interior of Aby A and ,” respectively .
James Dugundji in [2] defined the regular open set as , a subset A of a space
X such that called regular open set if A = A . Stephen Willard in [8] defined the

regular open set similarly with Dugundji’s definition .

This work consists of three sections .

Section one includes the fundamental concepts in general topology , and the
proves of some related results which are needed in the next section .

Section two contains the definitions of regular compact mapping and regular
coercive mapping . So it will introduce the relationship among them and some
results about this subjects are proved .

Section three introduces the definition of regular proper mapping and some of
its related results are proved .

1- Basic concepts
Definitign 1.1, [2] : A subset B of a space X is called regular open (r- open) set

if B = B . The complement of regular open set is defined to be a regular closed
(r- closed) set.
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Proposition 1.2, [2] : A subset B of a space X is r- closed ifand only if B=B |

Its clearly that every r- open set is an open set and every r- closed set is closed set ,
but the converse is not true in general as the following example shows :

Example 1.3 : Let X ={a, b, c,d} beasetand T = {@, X, {a}, {a, b}, {a, c, d}}
be a topology on X . Notice that {a, b} is an open set in X , but its not r- open set
and {b} is a closed set in X, but its not r- closed set .

Corollary 1.4 :

(i) A subset B of a space X is clopen (open and closed) if and only if B is r- clopen
(r- open and r- closed ) .

(if) If A'is an r- closed set in X and B is a clopen set in X , then ANB is r- closed
setinB.

Proposition1.5: LetAc Y < X . Then:

(i) If Alisanr-opensetin Y and Y is an r- open set in X, then A is an r- open set
in X.

(i) If Alisan r- closed set in Y and Y is an r- closed set in X, then A is an r- closed
setin X.

Definition 1.6 : Let A be a subset of a space X . A point xeA is called r- interior
point of A if there exists an r- open set U in X such that x e Uc A.
The set of all r- interior points of A is called r- interior set of A and its denoted

by AOI’ .

Proposition 1.7 : Let (X, T) be aspace and A <X . Then:

o

A" <A™
.. o or
M »"hH=®n)
(iii) A is r- open if and only if A = A .

Definition 1.8 : Let A be a subset of a space X . A point x in X is said to be r-
limit point of A if for each r- open set U contains x implies that UNA\{x} =@ .

The set of all r- limit points of A is called r- derived set of A and its denoted by
T
A .

Definition 1.9 : Let X be a space and B < X . The intersection of all r- closed sets
containing B is called the r- closure of B and denotes by ;r :

Proposition 1.10 : Let X be aspaceand A, B < X . Then:
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(i) ;r is an r- closed set .
—r
(iAc A . i
(i) A'is r-rclosed ifandonlyif A = A,

(iv)x e A ifandonlyif ANU = 6 , for any r- open set U containing X .

Proposition 1.11: Let X and Y be two spaces,and A c X,B c Y . Then:

(i) A, B are r- open subset of X and Y respectively if and only if AxB is r- open in
XxY .

(i) A, B are r- closed subsets of X and Y respectively if and only if AxB is r-
closed in XxY .

(iii) A, B are clopen subsets of X and Y respectively if and only if AxB is clopen
in XxY .

(iv) A, B are r- clopen subsets of X and Y respectively if and only if AxB is r-
clopen in XxY .

Definition 1.12 , [3] : Let X be a space and B be any subset of X . A
neighborhood of B is any subset of X which containing an open set containing B .
The neighborhoods of a subset {x} , consisting of a single point are also called
neighborhood of a point x .
The collection of all neighborhoods of the subset B is denoted by N(B) . In
particular the collection of all neighborhoods of x is denoted by N(x) .

Proposition 1.13 , [1] : Let X be a set . If to each element x of X , there
corresponds a collection B(x) of subsets of X, such that the properties :

(i) Every subset of X which contains a set belongs to B(x), itself belongs to B(x).
(if) Every finite intersection of sets of B(x) belongs to B(x).

(iii) The element x is in every set of B(x).

(iv) If V belongs to B(x), then there is a set W belonging to B(x)such that for each
y e W, V belongs toB(y).

Then there is a unique topological structure on X such that , for each x X ,
B(x) is the collection of neighborhoods of x in this topology .

Definition 1.14 : Let X be a space and B < X . An r- neighborhood of B is any
subset of X which contains an r- open set containing B . The r- neighborhoods of a
subset {x} consisting of a single point are also called r- neighborhoods of the
point X.

Let us denote the collection of all r- neighborhoods of the subset B of X by
Nr(B) . In particular , we denote the collection of all r- neighborhoods of x by
Nr(x) .
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Definition 1.15, [1] : Let f : X — Y be a mapping of spaces .Then :

(i) f is called continuous mapping if f™(A) is an open set in X for every open set A
iny .

(i1) f 1s called open mapping if f(A) is an open set in Y for every open set A in X .
(iii) f is called closed mapping if f(A) is a closed set in Y for every closed set A in
X.

Definition 1.16 : A mapping f : X — Y is called r- irresolute if f*(A) is an r- open
setin X for every r- openset Ain Y .

Definition 1.17 , [1] : Let X and Y be spaces . Then the mapping f : X — Y is
called homeomorphism if
(1) f 1s bijective .
(11) f 1s continuous .
(111) f 1s open (or closed) .
Also, X'is called homeomorphic to the space Y (written XzY).

Definition 1.18

(1) A mapping f : X — Y is called an r- open mapping if the image of each open
subset of X isanr-opensetinyY .

(i) A mapping f : X — Y is called an r- closed mapping if the image of each
closed subset of X is an r- closed setinY .

Remark 1.19 : Every r- open (r- closed) mapping is open (closed) mapping .
The converse of Remark (1.19) , is not true in general as the following
examples show :

Example 1.20 : Let X ={a, b, c}, Y ={X,y,z}and let T = {0, X, {a}, {a, b}}
, 7= {0.,Y, {x}} be topologies on X and Y respectively . Let f : X — Y be a
mapping which is defined by : f(a) = f(b) = x, f(c) =y . Notice that f is an open
mapping , but f is not r- open .

Example 1.21 : Let X ={a, b, c,d},Y ={x,y,z}and let T = {6, X, {a}, {b, c},
{a,b,c}}, 1=40,Y, {x}, {x, z}} are topologies on X and Y respectively . Let f :
X — Y be a mapping which is defined by : f(a)= f(c)=z , f(b)=x , f(d)=y.
Notice that f is closed mapping , but f is not r- closed mapping .

—r
Proposition 1.22 : A mapping f: X — Y isr-closed if and only if /(A) = f(A),

VAS X .
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Proof : —) Let f:X — Y be an r- closed mapping and A < X . Since A is a
closed set in X, then f(A) is an r- closed subset of Y , and since A = A then f(A)

_ - r —r _ - r _
< f(A).Thus fA) £y = f(A) hence g < f(A).
« ) Let TA;Q f(A),forall A< X. LetF be aclosed subset of X ,i.e, F=F,

thus by hypothesis ;) = f(F). But f(F)  f) » then f(F) = s . Hence f(F) is
anr- closed setin Y , thus f : X — Y is an r- closed mapping .

Proposition 1.23 : Let X and Y be spaces , f : X — Y be an r- closed mapping of
Xinto Y . Then fgp : 'y} - {y}isr- closed mapping , for each yeY .

Proof : Let F be a closed subset of f({y}) . Then there is a closed subset F; of X ,

such that F=Finf'({y}) . Since fr3(F) = f(F1) 0 {y} , then either fg3(F) = 0
or fe(F) = {y} , thus fgy(F) is r- closed in {y} . Therefore fy, is an r- closed

mapping .

Proposition 1.24 : Let X and Y be spaces, f : X — Y be an r- closed mapping of
X into Y . Then for each clopen subset T of Y , fr: f(T) — T is an r- closed

mapping .

Proof : Let F be a closed subset of £(T) . Then there is a closed subset F; of X ,
such that F=F,nf(T).Since fr(F) = f(F) OT, and f(F,) is r- closed in
Y and T is clopen in Y then by Corollary (1.4), f(F) 0T is r- closed in T . Thus ft
is an r- closed mapping .

Corollary 1.25 : Let f : X — Y be an r- closed mapping of a space X into a
discrete space Y. Then for any subset T of Y, f1: f(T) - T is an r- closed

mapping .

Proposition 1.26 : Let X, Y and Z be spaces , f : X — Y be a closed mapping and
g:Y — Zbeanr- closed mapping , then gof : X — Z is an r- closed mapping .

Proof : Let F be a closed subset of X , then f(F) is closed set in Y . But g is an r-
closed mapping , then g(f(F)) = (gof)(F) is an r- closed set in Z . Then gof : X —
Y is an r- closed mapping .

Corollary 1.27 : Let X, Y and Zbe spaces . If f : X - Y ,and g:Y — Zarer-
closed mapping , then gof : X — Zis an r- closed mapping .

Proof : Since f is an r- closed mapping , then f is a closed mapping , thus by
Proposition (1.26) , gof is an r- closed mapping .
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Proposition 1.28 : Let f: X — Y be an r- closed mapping . If F is a closed subset
of X, then the restriction mapping f : F — Y is an r- closed mapping .

Proof : Since F is a closed set in X, then the inclusion mapping ir: F - X is a
closed . Since f is an r- closed , then by Proposition (1.26) , foir: F — Y isanr-
closed mapping . But foir = f|F , thus the restriction mapping fr : F— Y is an
closed mapping .

Proposition 1.29 : A bijective mapping f : X — Y is r- closed if and only if is r-
open .

Proof : — ) Let f : X — Y be a bijective , r- closed mapping and U be an open
subset of X , thus U is closed .Since f is - closed then f(U ) is r- closed in 'Y,

thus (f(U )) IS r- open.
C

Since f is bijective mapping , then (f W) = f(U), hence f(U)isr-openinY .
Therefore f is an r- open mapping .
<) Let f : X — Y be abijective , r- open maPplng and F be a closed subsetpf X,
thus F is open . Since f is r- open then f(F ) is r- open in Y , thus(f(F N s r-
c
closed . Since f is a bijective mapping , then (f(F N = f(F), hence f(F) is an 1-

closed in Y . Therefore f is an r- closed mapping .

Definition 1.30 : Let X and Y be spaces .Then the mapping f : X — Y is called r-
homeomorphism if :

(1) f 1s bijective .

(11) f 1s continuous .

(iii) f is r- open (r- closed) .

Remark 1.31 : Every r- homeomorphism mapping is homeomorphism .
The converse of Remark (1.31) , is not true in general as the following example
shows :

Example 1.32 : Let X ={a, b, c} beasetand T = {0, X, {a}, {c}, {a, b}, {a, c}}

be a topology on X . Let f : X — X be the identity mapping . Notice that f is
homeomorphism , but its not r- homeomorphism .

Theorem 1.33, [9] : Let X be a space and A be a subset of X, x e X .Thenx ¢ A
if and only if there is a net in A which converges to x .
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Lemma 1.34, [5] : If (Xd) isanetin aspace X and foreachd, e D, Ago={%d | d
> do}, then x e X is a cluster point of (Xd) if and only if X e A_d ,foralld e D.

Definition 1.35 : Let (Xd)4ep be a net in a space X , x € X . Then (Xd)gep I-
converges to x [written yq —— x], if (Xd)qep is eventually in every r- nbd of x .
The point x is called an r- limit point of (Xd)qep.

Definition 1. 36 : Let (Xd)g4ep be anetinaspace X, x € X.Then (Xd)qep is said

r
to have x as an r- cluster point [written Xd oc X] if (Xd)4ep is frequently in every
r- nbd of x.

Proposition 1.37 : Let (X, T) beaspaceand A c X, X ¢ X.Then X ¢ ;r if and
only if

.
there exists a net (Xd )gep in A and Xd oc X .

Proof : —) Letx e ;r, then UNA = o , for every r- open set U, x e U . Notice

that (Nr(x) , <) is a directed set , such that for all U; , U, € Nr(x) , U; > U,if
and only if U; < U, . Since forall U e Nr(x), UNA = 6 , then we can
define a net y : Nr(x) — X as follows : ¥ (U) = xu € UNA, U e Nr(x) . To

.
prove that yy oc X . Let B € Nr(x), thus BNU e Nr(x) . Since BNU < U, then
r
BNU>U, y(BNU)=Xew e BNU = B. Hence 3y o X.
r
«) Let(Xd)qep beanetinA,suchthat y4 oc x, and let U be an r- open set, X

;

e U. Since yq4 oc X, then (yq)gep IS frequently in U . Thus UNA = o , for all r-
—r

opensetU, XeU.Hencexe o .

Proposition 1.38 : Let X be a space and (Xd)4ep be a net in X, for each d, € D,
such that Ag = {4 | d > do}, then a point x of X is r- cluster point of (Xd )qep if

—r
and only if X €Ay ,foralld, e D .
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Proof : —) Let x be an r- cluster point of (Xd)4ecp and let N be an r- open set

contain x , then (Xd )qep is frequently in N, thus AjcNN = 6,V d, € D, then by

Proposition (1.10) , X e Agr.

—r
<) Letx e Ado Vv d, € D, and suppose that X is not r- cluster point of (Xd)4ep,
then there exists r- nbd N of x , such that A,N\N=0 ,Vd, e D,%Xd ¢ D,d > d,

—r
d > d,, then Xe Ay - This is contradiction . Hence x is r- cluster
point of (Xd)q .

2- Regular compact and regular coercive mappings

Definition 2.1 , [6] : A space X is called Hausdorff (T,) if for any two distinct
points X,y of X there exists disjoint open subsets U and V of X such that x € U,
yeV.

Theorem 2.2, [6] : Each singletion subset of a Hausdorff space is closed .

Definition 2.3, [7] : A space X is called compact if every open cover of X has a
finite subcover .

Theorem 2.4 , [6] : A space X is compact if and only if every net in X has a
cluster point in X .

Theorem 2.5, [7] :

(i) A closed subset of compact space is compact .

(if) In any space , the intersection of a compact set with a closed set is compact .
(iii) Every compact subset of T,- space is closed .

Definition 2.6 : A space X is called r- compact if every r- open cover of X has a
finite subcover .

Proposition 2.7 : Every compact space is r- compact space .
The converse of Proposition (2.7) , is not true in general as the following
example shows :

Example 2.8 : Let T={A c R|Z < A}U{e}, be a topology on R . Notice that
the topological space (R,T) is r- compact , but its not compact .

Theorem 2.9 :

(i) An r- closed subset of compact space is r- compact .
(i1) Every r- compact subset of T,- space is r- closed .
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(iii) In any space , the intersection of an r- compact set with an r- closed set is r-
compact .
(iv) In a T,- space , the intersection of two r- compact sets is r- compact .

Theorem 2.10 : A space X is an r- compact if and only if every net in X has r-
cluster point in X ..

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X , K c Y.
Then Kis an r- compact set in Y if and only if K is an r- compact set in X .

Proof : —) Let K be an r- compact set in Y . To prove that K is an r- compact set

in X.Let{Ur}rc A beanr-opencoverin Xof K, letVAa =UrLNY ,Vica .

Then Vi isr-openin X, ViecA . But Vo < Y, thus Vi isr-openin Y,

Viea .Since K c xUAV , then {Vi}ir c A isanr-open coverinY of K, and
S

by hypothesis this cover has finite subcover {V}‘1 VAR
2

cover {Ux}x < A has a finite subcover of K . Hence K is an r- compact set in X .
«) Let K be an r- compact set in X . To prove that K is an r- compact set in Y. Let
{Uir}rc A beanr-opencoverinY of K. Since Y is an r- open subspace of X,
then by Proposition (1.5) , {Ur}r c A is an r- open cover in X of K . Then by
hypothesis there exists {i1, Ao, ..., Am}, such that K g;ﬂluX , thus the cover
{Ux}xr e A has afinite subcover of K. Hence K is an r- compact setin Y .

..V, }of K, thusthe
n

Definition 2.12 : Let X be a space and W < X . We say that W is compactly r-
closed set if WNK is r- compact , for every r- compact set K in X..

Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed .
The converse of Proposition (2.13), is not true in general as the following
example shows .

Example 2.14 : Let X ={a, b, c} beaspace and T = {X, 0, {a, b}} be a topology
on X . Notice that the set A = {a, b} is compactly r- closed , but its not r- closed set

Theorem 2.15 : Let X be a T, - space .A subset A of X is compactly r- closed if
and only if A'is r- closed .

Remark 2.16: Let X be a compact, T, - space and A c X . Then :

(i) Alisclosed if and only if A is r- closed .
(if) A is compact if and only if A is r- compact .
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Definition 2.17 , [6] : Let X and Y be space . A mapping f : X — Y is called
compact mapping if the inverse image of each compact set in Y , is a compact set
in X.

Definition 2.18 : Let X and Y be space . We say that the mapping f : X — Y isan
r- compact mapping if the inverse image of each r- compact set in Y , is a
compact setin X.

Example 2.19 : Let (X,T) and (Y, t) be topological spaces , such that X is finite
set , then the mapping f:X — Y isr- compact.

Remark 2.20 : Every r- compact mapping is compact mapping .
The converse of Remark (2.20) , is not true in general as the following example
shows :

Example 2.21 : Let T = {A < R | Z < A}U{0} be a topology on R , and
f:(R,T) - (R,T) be a mapping which is defined as f(x) =x, V X € R . Notice
that f is a compact mapping , but its not r- compact .

Proposition 2.22 : Let X and Y be spaces , and f : X — Y be an r- compact ,
continuous , mapping . If T is a clopen subset of Y , then f1: f(T) - Tisan r-
compact mapping .

Proof : Let K be an r- compact subset of T . Since T is clopen set in Y then by
Corollary (1.4) , T is an r- open , and then by Proposition (2.11) , K is an r-
compact set in Y . Since f is an r- compact mapping , then f™(K) is compact in X .

Now , since T is a closed set in Y , and f is a continuous mapping , then f™(T)
is a closed set in X , thus by Theorem (2.5), f(T)Nf*(K) is a compact set

.Butf-Tl(K) =f{MN FHK) , then f:l_l(K) is a compact set in f(T) . Therefore fr
IS an r- compact mapping .

Proposition 2.23 : Let X, Y and Z be spaces . If f : X - Y ,g:Y — Z are
continuous mapping . Then :

(1) If f is a compact mapping and g is an r- compact mapping , then gof : X — Z is
anr-

compact mapping .

(i1) If f and g are r- compact mappings, then gof is an r- compact mapping .
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Proof :

(i) Let K be an r- compact set in Z , then g™/(K) is a compact set in Y , and then f
Y9 (K)) = (gof)'(K) is a compact set in X . Hence gof : X —Z is r- compact
mapping .

(if) By Remark (2.18) , and (i) .

Proposition 2.24 , [2] : For any closed subset of a space X , the inclusion mapping
Ir : F — X is a compact mapping .

Proposition 2.25 : Let X and Y be spaces . If f : X — Y is an r- compact mapping
and F is a closed subset of X , then fir : F — X is an r- compact mapping .

Proof : Since F is a closed subset of X , then by Proposition (2.24) , the inclusion
ir : F —> X'is a compact mapping . But f = foig, then by Proposition (2.23) , f
IS an r- compact mapping .

Definition 2.26 , [4] : Let X and Y be spaces . A mapping f : X — Y is called
coercive if for every compact set J c Y, there exists a compact set K < X such
that f(X\K) c Y\J.

Definition 2.27 : Let X and Y be spaces . We say that the mapping f: X — Y isr-
coercive if for every r- compact set JcY, there exists a compact set K< X such
that fX\K) c Y\J.

Examples 2.28 :

@) If f: (X,T) - (Y, T) is a mapping , such that X is compact space , then f is r-
coercive .

(if) Every identity mapping on regular space is r- coercive .

Proposition 2.29 : Every r- coercive mapping is a coercive mapping .

Proof : Let f : X — Y be an r- coercive mapping , and J be a compact set in Y, so
its r- compact , since f is r- coercive , then there exists a compact set K in
X, such that f(X\K) < Y\J.Hence f is a coercive mapping .

The converse of Proposition (2.29) is not true in general as the Example (2.19) .

Proposition 2.30 : Let X and Y be spaces such that Y is a compact , T, - space .
Then a mapping f : X — Y is r- coercive if and only if its a coercive mapping .

Proof : —) By Proposition (2.29) .

<) Let Jis an r- compact set in Y . Since Y is a compact , T, - space , then by
Proposition (2.16) , J is a compact set in Y , since f is a coercive mapping , then
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there exists a compact set K in X , such that /(X \ K) < Y \ J . Hence f is r-
coercive .

Proposition 2.31 : Every r- compact mapping is an r- coercive .

Proof : Let f: X — Y be an r- compact mapping . To prove that f is an r- coercive
. Let J be an r- compact set in Y . Since f is an r- compact mapping , then f™(J) is
a compact set in X . Thus f(X \ f*(J)) < Y \J.Hence f: X — Y is an r- coercive
mapping .

The converse of Proposition (2.31) , is not true in general as the following
example shows .

Example 2.32 : Let Y = {X, y} be a set and T is the discrete topology on Y . Then

a mapping f:([0,1],U) — (Y,T) which is defined by :
x Vte (0,1
0= [y Vte {01}

IS a coercive mapping , but its not compact mapping .

Proposition 2.33 : Let X and Y be spaces , such that Y isa T, — space , and f : X
— Y is a continuous mapping . Then f is an r- coercive if and only if f is an r-
compact .

Proof : —) Let J be an r- compact set in Y . To prove that f(J) is a compact set in
X .Since YisaT,—space, and J is an r- compact set in Y , so it’s a closed set ,
then f7(J) is a closed set in X . Since f is an r- coercive mapping , then there exists
a compact set K in X, such that fX\K) < Y\J. Then f( Kc)g JC , therefore
%) < K, and thus f'(J) is a compact set in X . Hence f is an r- compact

mapping .
<) By Proposition (2.31) .

Proposition 2.34 : Let X , Y and Z be spaces and f : XY, g : Y—>Z be
mappings . Then :
(1) If £ is coercive and g is r- coercive , then gof : X — Z is an r- coercive mapping

(1) If f and g are r- coercive , then gof : X — Z is an r- coercive mapping .
Proof :
(i) Let J be an r- compact setin Z . Since g : Y — Z is r-coercive mapping , then

there exists a compact set Kin Y ,suchthat g(Y\K) c Z\J.Sincef: X —> Y is
a coercive mapping , then there exists a compact set H in X , such that f(X \ H)
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cY\K-> g(f(X\H) c g(Y\K) c Z\J > (gof)(X\
H)<=Z\J .Hence gof is an r- coercive mapping .
(if) By Proposition (2.29) , and (i) .

Proposition 2.35 : Let X and Y be spaces , and f : X — Y be an r- coercive
mapping . If F is a closed subset of X , then the restriction mapping fr : F — Y is
an r- coercive mapping .

Proof: Since F is a closed subset of X , then by Proposition (2.24) , and
Proposition (2.31) , the inclusion mapping ir : F — X is a coercive mapping . But
fiF = foir , then by Proposition

(2.34), fE is an r- coercive mapping .

Theorem 2.36 : Let X and Y be spaces , such that Y is a compact , T, - space ,
then for a continuous mapping f : X — Y, the following statements are equivalent

(1) f is r- coercive .
(11) f is r- compact .
(i11) f is compact .
(1v) f is coercive .

Proof :

(1 — 11). By Proposition (2.33) .

(i1 — 1i1). By Remark (2.20) .

(iii — iv). Let J be a compact set in Y . Since f is compact mapping , then f7(J) is
compact set in X . Thus f(X \ f'(J)) Y \J. Hence f is a coercive mapping .

(iv — 1). By Proposition (2.30) .

3- Regular Proper Mapping :

Definition 3.1, [1] : Let X and Y be spaces , and f : X — Y be a mapping . We
say that f is a proper mapping if :

(1) f 1s continuous .

(1) f x Iz: X xZ - Y x Zis closed , for every space Z .

Definition 3.2 : Let X and Y be spaces, and f : X — Y be a mapping . We say
that f is a regular proper (r- proper) mapping if :

(1) f 1s continuous .

(1) fx1z: XxZ - Y x Zisr-closed , for every space Z .

Example 3.3 : Let X ={a, b, ¢}, Y = {x, y} be spaces and T = {X, 0, {a}, {b},
{c}, {a, b}, {a, c}, {b, c}}, = = {Y, o, {x}, {y}} are topologies on X and Y
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respectively . The mapping f: X — Y which is defined as f(a) = f(b) =x

, f(¢c) =y is an r- proper mapping .
The following example shows that not every mapping is r- proper .

Example 3.4 : Let f: (R, U) — (R, U) be the mapping which is defined by f(x) =
0, for every x € R . Notice that f is not r- proper mapping , since for the usual
space (R , U) the mapping fxIr : RxR —RxR, such that (fxIg)(x,y) = (0,y) , for
every (x,y) € R isnot r- closed mapping .

Remarks 3.5 :
(i) Every r- proper mapping is r- closed .
(if) Every r- proper mapping is proper .
(iii) Every r- homeomorphism is r- proper .
The converse of Remark (3.5.i) , is not true in general as the Example (3.4) .
Also the converse of Remark (3.5.1i) , is not true as the following example shows :

Example 3.6 :

Let T be a cofinite topology on N , and let f : N — N be a mapping which is
defined by : f(x) =x , V X eN . Notice that f is a proper mapping , but f is not r-
proper mapping , since f is not r- closed mapping .

The converse of Remark (3.5.iii) , is not true in general as the following
example shows :

Example 3.7 : Let X ={a, b} , Y = {x, y} be setsand T = {0 ,X,{a}{b}} .7 =
{0,Y . {x}, {y}} be topologies on X and Y respectively . Let f: X — Y be a
mapping which is defined by : f(a) = f(b) = x . Notice that f is an r- proper
mapping , but f is not r- homeomorphism , since f is not onto .

Proposition 3.8 : Let X and Y be spaces , and f : X — Y be an r- proper mapping
.If T is a clopen subset of Y , then f7: f(T) — T is an r- proper mapping .

Proof : Since f : X — Y is a continuous mapping , then f is a continuous
mapping . To prove that frxl; : f(T) xZ — TxZ is an r- closed mapping , for
every space Z . Notice that frxlz =(fxlz)txz . Since T is a clopen subset of
Y, then by Proposition (1.11) , T« Z is a clopen subset of YxZ , thus by Proposition
(1.24), (fx12)1xz = (frx12) is an r- closed mapping , hence fr: f(T) - Tisanr-
proper mapping .

Theorem 3.9 : Let f : X — P = {w} be a mapping on a space X . If f is an r-

proper mapping , then X is a compact space , where w is any point which does not
belong to X .
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Proof : Since f is r- proper mapping , then by Remark (3.5.ii)) , f is proper
mapping . Thus by [1.Lemma (2.1) P.101] , X is compact space .

Theorem 3.10 : Let X and Y be spaces , and f : X — Y be a continuous mapping .
Then the following statements are equivalent :

(1) f is an r- proper mapping .

(ii) f is an r- closed mapping and f*({y}) is compact for each y ¢ Y .

(iii) If (Xa)gepisanetin X and y € Y is an r- cluster point of f(Xa) , then there is

a cluster point x e X of (Xa)gep , such that f(x) =y .

Proof :

(i—ii). Let f : X — Y be an r- proper mapping , then fxlz : XxZ — YxZisan r-
closed for every space Z . Let Z = {t}, then XxZ = Xx{t} = X and YxZ = Y x{t}
=~ Y, and we can replace fxlz by f, thus fis r- closed . Now, lety € Y . Since f
IS an r- proper , then by Remarks (3.5) , f is proper mapping , so by [1, Theorem
(3.1.5) 1, 1 ({y}) is compact foreachy ¢ Y .

(ii — iii). Let (X¢)qepbe anetin X and y e Y be an r- cluster point of a ne(;[ f(xd)

in Y . Assume that f(y) = 0 ,if f(y)= 0 ,theny ¢ f(X) > y ¢ (/X)) | since
X is a closed set in X and f is an r- closed mapping , then f(X) is an r- closed set
in Y . Thus (/X)) is an r- open set in Y. Therefore (f(%4)) is frequently in

C
(/X)) |
C
But f(y )e f(X), v d e D, then f(X)N /X)) = ¢ ,and thisisa contradiction

. Thus fiy) = 0.
Now , suppose that the statement (iii) , is not true , that means , for all x ¢ f

L(y) there exists an open set Uy in X contains x , such that (Xd) Is not frequently in

Ux . Notice that fH{y)=  UD@. Therefore the family {Ux|x € f*(y)} is an
1
xef y)

open cover for f(y) . But f(y) is a compact set , then there exists Xy, X, . . .
C

n
,Xn € f(y), such that f(y) [ Ux; JUX; ... JUX,, then f(y) N[U Uy =0
i=1
- f{y) N [F] U>C<i] = 0 . But (Xj)ioais not frequently in Ux; ,vVi=1,...,n. Thus
i=1
. . N n . ) n ¢ .
(Xd) is not frequently in iL:JlUXi , but iL:JlUXi IS an open set in X , then irz]luxi IS a

n
closed set in X . Thus f( N U(;(i) Isan r- closed setin Y .
=1
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Claimy ¢ f(i(Z]lUii) ify e f( iéluii) , then there exists x e iéluii , such that
fx) =y, thus X ¢ iCJlUXi , but x e f(y) , therefore f™(y) is not a subset of
iCJ Uy » and this is a contradiction . Hence there is an r- open set A in Y, such
that y < A and ANA(Aus) = 0 — FAONSENUED =0 > AN
[ﬁlu;] = 05 /(A) c iLZJlUXi - But (f(X)) is frequently in A , then (y,) is

n
frequently in f*(A) , and then (Xd) is frequently in |J Uyi * This is contradiction ,
i=1

and this is complete the proof .

(iii — 1). Let Z be any space . To prove that f : X — Y is an r- proper mapping , i.e
, to prove that fxlz : XxZ — YxZ is an r- closed mapping . Let F be a closed set
iIn XxZ . To prove that (fxIz)(F) is an r- closed set in YxZ . Let (y,2)

e(fx|z)(|:)r, then by Proposition (1.38) , there exists a net {(yq , Zg)}qep In

(fx12)(F) such that (yq, zq4) orc (y,z) , then (Ya, 2a) = (fx12)(Xq,
r r
Ya)) , where {(X4, Ya)}sep is anetin F . Thus (f(xq) , 12(24)) oc (v,2), S0 f(Xa) oc Y

r
and zyg o z . Then by (ii1) , [0 x € X, such that X4 «c X and f(x) =y, Since (Xq,
zq) oc (x,z) and {(Xq, Zg) }arpis a netin F, thus (x,y) e F .
Since F = F , then (x,y) O F — (y,2) = (fxI2)(X,y)) = (v,z) O (fxI2)(F) , and
then (fx|z)(|:)r= (fx12)(F) , thus (fxIz)(F) is an r- closed set in YxZ . Hence

fxlz : XxZ — YxZ is an r- closed mapping , hence f : X — Y is an r- proper
mapping .

Corollary 3.11 : If X is a compact space , then the mapping f : X — P ={w} ona
space X is r- proper , where w is any point which does not belongs to X .

Proof : Let X be a compact space . Since P is a single point , then f is a continuous
mapping . To prove that f : X — P = {w} is an r- proper mapping :

(i) Since f(P) =X, then f™(P) is a compact set .

(i1) Let F is a closed subset of X , then either : f(F) =0 or f(F) = {w} . So f(F) is
r- closed in P, then f is r- closed mapping . Thus by Theorem (3.10) , f is an r-
proper mapping .

Proposition 3.12 : Let X and Y be spaces . If f : X — Y is an r- proper mapping ,
then  fgy: 7 ({y}) — {y}is an r- proper mapping , forally e Y .
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Proof : Since f : X — Y is an r- proper mapping , then f({y}) is compact for
eachy € Y . Since {y} is a single point , then by Corollary (3.11) , fq3: 1{yD
— {y} isanr- proper mapping .

Proposition 3.13 : Let X and Y be spaces , such that X is a compact , T,- space
and f:X = Y be a homeomorphism mapping , then f*:Y — Xisanr-
proper mapping .

Proof : Since f is an open mapping , then f™ is continuous mapping . To prove
that £ is r- proper :

(i) Let F be a closed subset of Y , since f is continuous , then f™(F) is closed in X ,
since X is compact , T,- space , then by Remark (2.16) , f™(F) is r- closed in X .
Hence £ is an r- closed mapping .

(if) Let xe X, then {x} is compact set in . Since f is continuous , then f({x}) = (f"
HY({x}) is compact set in Y , therefore by Theorem (3.10) , f™ is r- proper

mapping .

Proposition 3.14 : Let X and Y be spaces , and f : X — Y be a continuous , one to
one, mapping, then the following statements are equivalent :

(1) f is r- proper mapping .

(i1) f is r- closed mapping .

(iii) f is r- homeomorphism of X onto an r- closed subset of Y .

Proof :

(1 — 11). By Remark (3.5) .

(it — 1iii). Let f : X —Y Dbe an r- closed mapping . Since X is a closed set in X,
then f(X) 1s an r- closed set in Y . Since f is continuous and one to one , then f is
an r- homeomorphism of X onto r- closed subset f(X) of Y .

(iii — 1). Let f be an r- homeomorphism of X onto an r- closed subset U of Y .
Now , let Z be any space , and W be a basic open set in XxZ , then W = W;xW, ,
where Wy is an open set in X and W, is an open set in Z . Since (fxIz)(WixW,) =
f(W1) xW, ,and f : X — U is an r- homeomorphism , then f:X — U isan r-
open mapping and then f(W;) is an r- open set in U, thus f(W)xW, is r- open in
UxZ , so fxlz isan r- open mapping . Since fxlz: XxZ—-UxZ
is bijective , then by Proposition (1.29) , the mapping fx 1z is r- closed . Now , let F
be a closed subset of XxZ , then (fxI2)(F) is an r- closed set in UxZ , since UxZ
is an r- closed set in Y xZ , then by Proposition (1.5) , (fx12)(F) is r- closed in Y xZ
. Hence fxlz : XxZ—>YxZ is an r- closed mapping , thus f : XY is an r- proper

mapping .

Proposition 3.15 : Let X, Y and Z be spaces . If f : X — Y isproperandg:Y —
Z is an r- proper mapping , then gof : X — Y is an r- proper mapping .
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Proof : To prove that gof : X — Z is an r- proper mapping :

(1) Since f :X — Y is a proper mapping , then f is closed . Similarly , since g : Y
— Z is an r- proper mapping , then g is r- closed . Thus by Proposition (1.26) , gof
: X — Zis an r- closed mapping .

(i) Let z € Z , then g({z}) is a compact set in Y , and then f(g7({z}) = (gof)
({z}) is a compact set in X . Therefore by (i) , (ii) and since gof is continuous then
by using Theorem (3.10) , gof is an r- proper mapping .

Proposition 3.16 : Let X, Y and Z be spaces,and f: X — Yandg:Y — Zarer-
proper maps , then gof : X — Z is an r- proper mapping .

Proof : Since f and g are r- proper maps , then fxIly and gxly are r- closed , for
every space W , then by Corollary (1.27) , (gxlw)o(fxly) is r- closed mapping .
But (gxlw)o(fxlw) = (gof)xlw , then (gof)xlw 1is r- closed , and since gof is
continuous . Hence gof is an r- proper mapping .

Proposition 3.17 : Let X, Y and Z be spaces ,and f : X - Yandg:Y — Zhe
continuous maps , such that gof : X — Z is an r- proper mapping . If f is onto ,
then g is an r- proper mapping .

Proof :

(i) Let F be a closed subset of Y , since f is continuous , then f™(F) is closed in X .
Since gof is an r- proper mapping , then gof(f*(F)) is r- closed in Z . But f is onto
, then gof(f*(F)) = g(F) . Hence g(F) is an r- closed set in Z . Thus g is
r- closed mapping .

(ii) Let z I Z , since gof is r- proper mapping , then by Theorem (3.10) , the set
(g0/)'({z}) = (g™ ({z})) is compact . Now , since f is continuous , then f(f™ (g
'({z}))) is compact set , but f is onto , then f(f(g'({z}))) = g ({z}) is compact
for every z [1 Z . So by Theorem (3.10) , the mapping gof is r- proper .

Proposition 3.18 : Let X, Y and Z be spaces ,and f : X - Y ,g:Y — Zbe
continuous maps , such that gof : X — Zis an r- proper mapping . If g is one to
one, r- irresolute mapping then f is an r- proper mapping .

Proof :

(1) Let F be a closed subset of X . Then (gof)(F) is an r- closed set in Z . Since g :
Y — Zisone to one, r- irresolute , mapping , then g*(g(f(F))) = f(F) is r- closed
in Y . Hence the mapping f : X — Y isr- closed .

(if) Lety € Y, then g(y) [ Z . Now , since gof : X — Z is r- proper and g is one
to one , then the set (gof) (2({y}) = f(g7(e({y}))) = f ({y}) is compact , for
everyy € Y . Therefore by Theorem (3.10) , the mapping f : X — Y is r- proper .
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Proposition 3.19 : Let X , Y and Z be spaces , f : X — Y be a continuous
mapping and g:Y — Zbean r-irresolute mapping , such that gof : X — Y is
an r- proper mapping . If Y isa T, - space , then f is r- proper .

Proof : Consider the commutative diagram :

U}
X > XxY
(gof)xly
/
Y > 7ZxY
K

O(x) = (x, f(x)) and K(y) = (g(y), y) . Since X 1s T, - space , then the graph of [] is
closed in XxY [1, Proposition .5.P.99] , and since [] is one to one , then by [1,
Proposition .2.P.98] , [I is a proper mapping . We have (gof)xIz is r- proper , then
by Proposition (3.15) , ((gof)*Iz)olJ is r- proper . But ((gof)*xIz)o] = Kof , so
that Kof is r- proper . Since g is an r- irresolute mapping , then K is r- irresolute .
Therefore by Proposition (3.18) , f is an r- proper mapping .

Corollary 3.20 : Every continuous mapping of a compact space X into a T,- space
Y isr- proper.

Proof : Let f : X — Y be a continuous mapping .To prove that f is r- proper . Let
g:Y — P beamapping (where P is a singleton set) , since X is a compact space ,
then gof : X — P is r- proper . Since Y is a T,- space , then by Proposition (3.19),
f is r- proper mapping

Proposition 3.21 : Let X ,Y and Z be spaces . If f : X — Y is an r- proper
mapping and h:Y — Z is homeomorphism mapping , then hof : X — Zis an
r- proper mapping .

Proof :

(1) Let F be a closed subset of X , then f(F) is an r- closed set in Y , since h is
homeomorphism , then hof(F) is an r- closed set in Z . Hence the mapping hof : X
— Zisr-closed .

(i) Let z € Z , then h™({z}) is a compact set in Y (since every homeomorphism
mapping is proper) . So (f (h™)({z}) = (hof)*({z}) is a compact set in X .
Therefore by Theorem (3.10) , and since hof is continuous , the mapping hof : X
— Zis an r- proper .
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Proposition 3.22 : Let f; : X;—»Y; and f, : X,—>Y, be maps . Then
fixf2 i XixXo = Yix Yz is an r- proper mapping if and only if f; and f, are r-
proper .

Proof : —) To prove that f,is an r- proper . Since f1x f IS continuous , then both
f1 and f, are continuous . To prove that foxlz : XoxZ — YoxZ is r- closed , for
every space Z . Let F be a closed subset of X,xZ , since X, is a closed set in X, ,
then X;xF is a closed set in X;xX,xZ . Since fixf, IS r- proper , then
(flegx IZ)(X1>< F) is an r- closed set in YixYoxZ . But (lefZX |Z)(X1><F) = fl(Xl)
« (fax12)(F) , thus (fox17)(F) is an r- closed set in Y,xZ , then foxl; : XoxZ —
Y,xZ is an r- closed mapping . Therefore f, : X, — Y, is an r- proper mapping .
Similarly , we can prove that f; : X; — Y3 IS an r- proper mapping .
«) To prove that fixf, : XixXo — Yi1x Y3 IS r- proper . Since f; and f, are
continuous , then f;« f, IS a continuous mapping . Let Z be any space . Notice that :
flelez :(Iylelez)O(f]_XIszlz) ) since fl and f2 are r- proper maps , then
(ly1x f2x12)
and (f1XIXo%X1z) = f1XIX,xz are r- closed maps . Therefore by Corollary (1.27) , the
mapping fi1x fox 1z 1S an r- closed . Hence f1x f is an r- proper mapping .

Proposition 3.23 : Let f : X — Y be an r- proper mapping , then fxlz: XxZ —
Y < Z is an r- proper mapping , for every space Z .

Proof : Since f is r- proper , then fx Iy is an r- closed mapping , for every space W
. Notice that fxlzxlw = fxlzw , but fxlzw IS an r- closed mapping , then
fxlzxlwisr-closed , for every space W . Hence f«Izis r- proper .

Proposition 3.24 : Let X be a compact space and Y be any topological space , then
the projection mapping Pr, : XxY — Y is r- proper .

Proof : Consider the commutative diagram :

fxly
XxY » {p}xY

P, h(z)

Y

Where h: {p}«xY — Y is the homeomorphism of {p}«Y onto Y and Pr, : XxY —
Y is the projection of XY into Y . Since X is a compact space , then by Corollary
(3.11), f: X — {p}isr-properand ly:Y — Y is a proper mapping ,
then f«ly is an r- proper mapping . Hence ho(fxly) is an r- proper mapping , but
Pr,=ho(fxly) , then Pr,is an r- proper mapping .

180



Journal of Al-Qadisiyah for Computer Science and Mathematics
Vol.3 No.1 Year 2011

Proposition 3.25 : Let f1 : X; — Yiand f, : X, — Y, be continuous maps , such
that f1x f,is a compact mapping and f5 (f1) IS r- closed mapping , then f, (f1) is an
r- proper .

Proof : Lety, [1[1Y, . Take any compact set K in Y; . Then Kx{y,} is compact in
Yix Yz . So that (f1x f2) (Kx{y2}) is compact in X1xX; . But (f1x f2) (Kx{y,}) =

FK) xf2 ({y2}) o then  f°(K) and f;"({yz}) are compact in X; and X
respectively . Since f is an r- closed mapping , then by Theorem (3.10) , f, is an r-
proper .

Proposition 3.26 : Let X and Y be spaces , and f : X — Y be an r- proper
mapping . If F is a clopen subset of X , then the restriction map f|¢: F — Y isan
r- proper mapping .

Proof : To prove that f|pxlz : FxZ — YxZ is an r- closed mapping for every
space Z . Since F is a clopen subset of X , then FxZ is a clopen subset of X« Z .
Since fxlzisan r- closed mapping , then by Proposition (1.24) , (f x12)exz IS an r-
closed mapping . But flexlz = (fxlz)exz , thus fpxlz is an r- closed
mapping . Hence f | : F — Y isan r- proper .

Proposition 3.27 : Let X and Y be spaces . If f : X — Y is an r- proper mapping ,
then f is an r- compact .

Proof : Let A be an r- compact subset of Y . To prove that f™(A) is a compact set
in X, let (3 )aeo be a net in f(A) , then f(7 ) is anetin A . Since A is an r-

compact set in Y, then by Proposition (2.10) , there exists y e[JA , such that y is
an r- cluster point of f(Xd) . Since f is r- proper , then by Theorem (3.10) , there

exists X e X, such that x is a cluster point of (Xd) ,such that f(x)=y.Thenx e f

'(A) . Thus every net in f(A) has cluster point in itself , then by Proposition (2.4)
, f'(A) is a compact set in X . Therefore f : X — Y is an r- compact mapping .

The converse of Proposition (3.27), is not true in general as the following
example shows :

Example 3.28 : Let X ={a, b, c,d},Y ={X,y, z} besetsand T = {0, X, {a, b},
{d}, {a, b, d}},t ={0, Y, {z}} be topologies on X and Y respectively . Let
f : X —> Y be a mapping which is defined by : f(a) = f(b) = f(c) =y, f(d)=z.

Notice that f is an r- compact mapping , but f is not r- proper mapping . Since
{c,d} is aclosed setin X , and f({c, d}) = {y, z} isnot r- closed set in Y , then f is
not r- closed mapping . Hence f is not r- proper mapping .
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Theorem 3.29 : Let X and Y be spaces , such that Y isa To-space . If f : X —» Y
is a continuous mapping , then f is an r- proper mapping if and only if f is an r-
compact mapping .

Proof : —) By Proposition (3.27) .

<) To prove that f is an r- proper mapping :

(1) Let F be a closed subset of X . To prove that f(F) is an r- closed set in Y, let K
be an r- compact set in Y , then f*(K) is a compact set in X , then by Theorem
(2.5) , FNfYK) is compact in X . Since f is continuous , then f(FN f*(K)) is
compact set in Y , and then its r- compact . But f(FNf*(K)) = f(F)NK , then
f(F)N K is r- compact , thus f(F) is compactly r- closed set in Y . Since Y is a T,-
space , then by Theorem (2.15) , f(F) is an r- closed set in Y. Hence f is an r-
closed mapping .

(ii) Lety € Y, then {y} is r- compact in Y . Since f is an r- compact mapping ,
then f*({y}) is compact in X , therefore by Theorem (3.10) , f is an r- proper
mapping .

Theorem 3.30 : Let f : X — P ={w} be a mapping on a space X , where w is any
point which does not belong to X, then the following statements are equivalent :
(1) f is an r- compact mapping .

(i) f is an r- proper mapping .

(i11) f 1s a proper mapping .

(iv) X is a compact space .

Proof :

(1 — ii). By Theorem (3.29) .

(i1 — ii1). By Remark (3.5) .

(iii — iv). See [1] .

(iv — i). Since f!(P) = X and X is a compact space , then f is an r- compact
mapping .

Theorem 3.31 : Let X and Y be spaces , such that Y is a compact , T,- space and f
: X = Y be a continuous mapping , then the following statements are equivalent :
(1) f 1s a proper mapping .

(11) f 1s a compact mapping .

(iii) f is an r- compact mapping .

(iv) f is an r- proper mapping .

Proof :

(1 —1ii). See [1].

(ii — iii). Let H be an r- compact set in Y . To prove that f*(H) is compact in X .
Since Y is a compact , T,- space , then by Proposition (2.15) , H is a compact set in
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Y , then by (i1) , f*(H) is a compact set in X . Hence f is an r- compact
mapping .

(i1t — 1v). Theorem (3.29) .

(iv — 1). By Remark (3.5) .

Proposition 3.32 : Let X and Y be spaces, such that Y isa T,- space and f : X —
Y be a continuous mapping . Then the following statements are equivalent :

(1) f is an r- coercive mapping .

(ii) f is an r- compact mapping .

(ii1) f is an r- proper mapping .

Proof :

(1 — 11). By Proposition (2.33) .

(11 — 111). By Proposition (3.29) .

(iii — 1). Let J be an r- compact set in Y . Since f is r- proper , then by Proposition
(3.29), f is an r- compact mapping , then f7(J) is a compact set in X . Since f(X \
1) < Y\J.Hence f: X — Y is an r- coercive mapping .
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