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Abstract  

     The main goal of this work is to create a special type of proper mappings 

namely, strongly regular proper mappings and we introduce the definition of a 

new type of compact and coercive mappings and give some properties and 

some equivalent statements of these concepts , as well as explain the 

relationship among them . 

  

Introduction  
         One of the very important concepts in topology is the concept of mapping . 

There are several types of mappings , in this work we study an important class of 

mappings ,   namely , strongly regular proper mappings . 

      Proper mapping was introduced by Bourbaki in [1] .  

      Let A be a subset of topological space X . We denote to the closure and 

interior of A by A  and A

 respectively . 

      James Dugundji in [2] defined the regular open set as a subset A of a space X 

, such that A = A

 . Stephen Willard in [8] defined the regular open set similarly 

with Dugundji
,
s definition .  

     This work consists of three sections . 

     Section one includes the fundamental concepts in general topology , and the 

proves of some related results which are needed in the next section . 

     Section two contains the definitions of strongly regular compact mapping and 

strongly regular coercive mapping . Also the relationship among these concepts is 

introduced and some of its related results are proved . 

        Section three introduces the definition of strongly regular proper mapping and 

some of its related are proved .    

 

 

 

1- Basic concepts 

Definition 1.1 , [2] : A subset B of a space X is called regular open (r- open) set 

if          B = B

. The complement of a regular open set is defined to be a regular 

closed (r- closed)  set . 

 

Proposition 1.2 , [2] : A subset B of a space X is r- closed if and only if B = B

 . 

Page 185-204 
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     Its clearly that every r- open set is an open set and every r- closed set is closed 

set , but the converse is not true in general as the following example shows : 

 

Example 1.3 : Let X = {a, b, c, d} be a set and T = {θ , X, {a}, {a, b}, {a, c, d}} 

be a topology on X . Notice that {a, b} is an open set in X , but its not r- open set , 

and {b} is a closed set in X , but its not r- closed set .  

 

Corollary 1.4 : A subset B of a space X is clopen (open and closed) if and only if 

B is           r- clopen (r- open and r- closed ) . 

 

Proposition 1.5 : Let A   Y   X . Then : 

(i) If A is an r- open set in Y and Y is an r- open set in X , then A is an r- open set 

in X . 

(ii) If A is an r- closed set in Y and Y is an r- closed set in X, then A is an r- closed 

set in X . 

 

Remark 1.6 : If A is an r- closed set in X and B is a clopen set in X , then A B is 

r- closed in B . 

 

Definition 1.7 : Let A be a subset of a space X . A point xA is called r- interior 

point of A if there exists an r- open set U in X such that  x  U   A . 

    The set of all r- interior points of A is called r- interior set of A and its denoted 

by A
r

 . 

 

Proposition 1.8 : Let (X , T) be a space and A   X . Then : 

(i) A
r

   A

.                 

(ii) )A(
r

= )A(


r

. 

(iii) A is r- open if and only if A
r

=  A  .  

 

Definition 1.9 : Let A be a subset of a space X . A point x in X is said to be r- 

limit point of A if for each r- open set U contains x implies that U A \ {x}   θ  .   

     The set of all r- limit points of A is called r- derived set of A and its denoted 

by A
'r

 . 

 

Definition 1.10 : Let X be a space and B   X . The intersection of all r- closed 

sets containing B is called the r- closure of B and denotes by A
r

 . 

 

Proposition 1.11 : Let X be a space and A , B   X . Then : 

(i) A
r

 is an r- closed set . 
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(ii) A   A
r

 . 

(iii) A is r- closed if and only if A
r

 = A . 

(iv) x  A
r

 if and only if A U   θ  , for any r- open set U containing x . 

 

Proposition 1.12: Let X and Y be two spaces , and A   X , B   Y . Then : 

(i) A , B are r- open subsets of X and Y respectively if and only if AB is r- open 

subset in XY .  

(ii) A , B are r- closed subsets of X and Y respectively if and only if AB is r- 

closed subset in  XY .    

(iii) A , B are clopen subsets of X and Y respectively if and only if AB is clopen 

subset in XY .    

(iv) A , B are r- clopen subsets of X and Y respectively if and only if AB is r- 

clopen subset in XY .    

 

Definition 1.13 , [3] : Let X be a space and B be any subset of X . A 

neighborhood of B is any subset of X which containing an open set containing B .  

     The neighborhoods of a subset {x} , consisting of a single point are also called 

neighborhood of a point x . 

     The collection of all neighborhoods of the subset B is denoted by N(B) . In 

particular the collection of all neighborhoods of x is denoted by N(x) . 

 

Proposition 1.14 , [1] : Let X be a set . If to each  element x of X , there 

corresponds a collection β(x)  of subsets of X , satisfying the properties :            

(i) Every subset of X which contains a set belongs to β(x)  , itself belongs to β(x)  . 

(ii) Every finite intersection of sets of β(x)  belongs to β(x)  . 

(iii) The element x is in every set of β(x)  . 

(iv) If V belongs to β(x)  , then there is a set W belonging to β(x)  such that for each 

y  W , V belongs to β(y)  . 

Then there is a unique topological structure on X such that , for each xX , β(x) is 

the collection of neighborhoods of x in this topology .    

 

Definition 1.15 : Let X be a space and B   X . An r- neighborhood of B is any 

subset of X which contains an r- open set containing B . The r- neighborhoods of a 

subset {x} consisting of a single point are also called r- neighborhoods of the 

point   x . 

     Let us denote the collection of all r- neighborhoods of the subset B of X by 

Nr(B) . In particular , we denote the collection of all r- neighborhoods of x by 

Nr(x) . 
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Definition 1.16 , [1] : Let ƒ : X   Y be a mapping of spaces .Then : 

(i) ƒ is called continuous mapping if ƒ
-1

(A) is an open set in X for every open set A 

in Y . 

(ii) ƒ is called open mapping if ƒ(A) is an open set in Y for every open set A in X . 

(iii) ƒ is called closed mapping if ƒ(A) is a closed set in Y for every closed set A in 

X . 

 

Definition 1.17 : A mapping ƒ : X   Y is called r- irresolute if ƒ
-1

(A) is an r- open 

set in X for every r- open set A in Y . 

 

Definition 1.18 : Let X and Y be spaces and ƒ : X   Y be a mapping . Then : 

(i) ƒ is called a strongly r- open (st- r- open) mapping if the image of each r- 

open subset of X is an r- open set in Y . 

(ii) ƒ is called a strongly r- closed (st- r- closed) mapping if the image of each r- 

closed subset of X is an r- closed set in Y . 

 

Definition 1.19 : Let X and Y be spaces . Then the mapping ƒ : X   Y is called 

st- r- homeomorphism if  

(i) ƒ is bijective . 

(ii) ƒ is continuous . 

(iii) ƒ is st- r- open (or st- r- closed) . 

 

Proposition 1.20 : A mapping  ƒ : X   Y is st- r- closed if and only if ƒ(A)
r
  

ƒ( A
r

) ,       A  X .  

 

Proof :   ) Let  ƒ : X   Y be a st- r- closed mapping and A   X . Since A
r

 is an 

r- closed set in   X , then ƒ( A
r

) is an r- closed subset of Y , and since A   A
r

, 

then          ƒ(A)   ƒ( A
r

) . Thus ƒ(A)
r

  )A(ƒ
r

r

= ƒ( A
r

) , hence ƒ(A)
r
  ƒ( A

r

) .                              

  ) Let ƒ(A)
r

  ƒ( A
r

) , for all A   X . Let F be an r- closed subset of X , i.e , F = 

F
r

 , thus by hypothesis ƒ(F)
r

  ƒ( F
r

) = ƒ(F) . But ƒ(F)   ƒ(F)
r

, then ƒ(F) = ƒ(F)
r

. 

Hence ƒ(F) is an r- closed set in Y , thus ƒ : X   Y is a st- r- closed mapping . 

 

Proposition 1.21 : Let X and Y be spaces . If ƒ : X   Y is a st- r- closed , 

continuous   mapping . Then for each clopen subset T of Y , ƒT : ƒ
-1

(T)   T is a st- 

r- closed mapping . 

 

Proof : Let T be a clopen subset of Y . Since ƒ is continuous , then ƒ
-1

(T) is a 

clopen set in X . Let F be an r- closed set in ƒ
-1

(T) , by Corollary (1.4) , and 



Journal of Al-Qadisiyah for Computer Science and Mathematics 
Vol. 3      No.1          Year 2011 

 581 

Proposition (1.5) , F is r- closed in X . Since ƒ is a  st- r- closed mapping , then 

ƒ(F) is r- closed in Y , hence by Remark   (1.6) , T ƒ(F) is r- closed in  T . But 

ƒT(F) = T ƒ(F) , then ƒT(F) is an r- closed set in T . Therefore ƒT is a st- r- closed 

mapping . 

 

Proposition 1.22: Let X , Y and Z be spaces and ƒ : X   Y , g : Y   Z be  

mappings .  Then : 

(i) If ƒ and g are st- r- closed , then goƒ :X   Z is st- r- closed mapping . 

(ii) If  goƒ is a st- r- closed mapping and ƒ is onto , r- irresolute , then g is st- r- 

closed . 

(iii) If  goƒ is a st- r- closed mapping and g is one to one , r- irresolute , then ƒ is st- 

r-   closed . 

 

Proof : 

(i) Let F be an r- closed subset of X , then ƒ(F) is an r- closed set in Y and then                 

g(ƒ(F)) = (goƒ)(F) is an r- closed set in Z . Hence (goƒ) is a st- r- closed mapping . 

(ii) Let F be an r- closed subset of Y , since ƒ is r- irresolute , then ƒ
-1

(F) is r- 

closed in X . Since  goƒ is a st- r- closed mapping , then (goƒ)( ƒ
-1

(F)) is an r- 

closed set in Z . But ƒ is onto , then (goƒ)( ƒ
-1

(F)) = g(F) , thus g(F) is an r- closed 

set in Z . Hence g is st- r- closed . 

(iii) Let F be an r- closed subset of X , then (goƒ)(F) is an r- closed set in Z . Since 

g is one to one , r- irresolute , then  g
-1

((goƒ)(F) = ƒ(F) is an r- closed set in Y . 

Hence ƒ is a st- r- closed mapping . 

 

Proposition 1.23 : Let X be a space . If A is an r- closed subset of X , then the 

inclusion mapping  iA : A   X is st- r- closed . 

 

Proof : Let F be an r- closed set in A , since A is r- closed in X , then by 

Proposition (1.5), F is r- closed in X . But iA(F) = F , then iA(F) is an r- closed set in  

X . Hence the inclusion mapping iA : A   X is st- r- closed . 

 

Proposition 1.24 : Let X and Y be spaces , ƒ : X   Y be a st- r- closed mapping . 

If F is an r- closed subset of X , then the restriction mapping ƒ|F : F   Y is st- r- 

closed . 

 

Proof : Since F is an r- closed set in X , then by Proposition (1.23) , the inclusion 

mapping          iA : F   X is st- r- closed . Since ƒ is st- r- closed mapping , then by 

Proposition (1.22) ,  ƒoiA : F   Y is a st- r- closed mapping . But ƒoiA = ƒ|F , then 

the restriction mapping           ƒ|F : F   Y is st- r- closed . 

 

Proposition 1.25 : A bijective mapping ƒ : X   Y is st- r- closed if and only if is 

st- r- open . 
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Proof :   ) Let ƒ : X   Y be a bijective , st- r- closed mapping and U  be an r- 

open subset of X  , thus U
c

 is r- closed . Since ƒ is st- r- closed then ƒ( U
c

) is r- 

closed in Y , thus ))U
c

(ƒ(
c

 is r- open . Since ƒ is bijective mapping , then ))U
c

(ƒ(
c

 = 

ƒ(U) , hence ƒ(U) is r- open in Y , therefore ƒ is a st- r- open mapping . 

  ) Let ƒ : X   Y be a bijective , st- r- open mapping and F be an r-  closed 

subset of X , thus F
c

is r- open . Since ƒ is st- r- open then ƒ( F
c

) is r- open in  Y , 

thus ))F
c

(ƒ(
c

 is r- closed . Since ƒ is a bijective mapping , then ))F
c

(ƒ(
c

= ƒ(F) , 

hence ƒ(F) is r- closed in Y . So ƒ is st- r- closed mapping . 

 

Theorem 1.26 , [8] : Let X be a space and A be a subset of X , x  X .Then x  A  

if and only if there is a net in A which converges to x . 

 

Lemma 1.27 , [5] : If (χ
d
) is a net in a space X and for each do  D , Ado = {χ

d
| d 

  do} , then x  X is a cluster point of (χ
d
) if and only if x 

d
A  , for all d  D . 

 

Definition 1.28 : Let (χ
d
)dD be a net in a space X , x  X . Then (χ

d
)dD r- 

converges to x [written χ
d

 r  x], if (χ
d
)dD is eventually in every r- nbd of x . 

The point x is called an r- limit point of  (χ
d
)dD.            

 

Definition 1. 29  : Let (χ
d
)dD be a net in a space X , x  X .Then (χ

d
)dD is said 

to have x as an r- cluster point [written χd 
r
  x] if (χ

d
)dD is frequently in every 

r- nbd of  x . 

 

Proposition 1.30 : Let (X , T) be a space and A   X , x  X .Then x  A
r

 if and 

only if there exists a net (χ
d
)dD in A and χ

d
 

r
  x . 

Proof : →) Let x  A
r

, then U A   θ  , for every r- open set U , x  U . Notice 

that    (Nr(x) ,  ) is a directed set , such that for all U1,U2  Nr(x) , U1   U2 if and 

only if U1  U2 . Since for all U  Nr(x) , U A   θ  , then we can define a netχ : 

Nr(x)   X as follows :  χ (U) = χ U  U A , U  Nr(x) . To prove that χU 
r
  x . 

Let B  Nr(x) , thus B U  Nr(x) . Since B U  U , then B U  U , χ(B∩U) = 

χB∩U  BU  B . Hence χU 
r
  x . 
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←)  Let (d)dD be a net in A , such that χd 
r
  x , and let U be an r- open set ,  x  

U . Since χd 
r
  x , then (d)dD is frequently in U . Thus U A  Ø , for all r- open 

set U , x  U . Hence x  A
r

 .         

 

Proposition 1.31 : Let X be a space and (d)dD be a net in X , for each do  D, 

such that  Ado = {χd | d ≥ do}, then a point x of X is r- cluster point of (d)dD if and 

only if  x 
doA

r
, for all do  D . 

Proof : →) Let x be an r- cluster point of (d)dD and let N be an r- open set 

contain x , then (d)dD is frequently in N , thus Ado N  Ø ,  do  D , then by 

Proposition (1.11) ,              x
doA

r
.  

) Let x 
doA

r
,  do  D , and suppose that x is not r- cluster point of   (d)dD , 

then there exists r- nbd N of x , such that Ado N = Ø ,  do  D , d   D , d ≥ do d 

≥ do , then        x  
doA

r
. This is contradiction . Hence x is r- cluster point of 

(d)dD . 

 

 

2- Certain types of strongly regular proper mappings 
Definition 2.1 , [6] : A space X is called Hausdorff (T2) if for any two distinct 

points  x , y of X there exists disjoint open subsets U and V of X such that x  U , 

y  V . 

 

Proposition 2.2 : Let (X,T) is a T2- space , then the set {x} is an r- closed in X , 

for all           x  X . 

 

Proof : To prove that {x} = }x{
r

, let y  X , such that x ≠ y . Since X is a T2- 

space, then , X is an r- T2 , so there is an r- open set U in X , such that y  U , x  

U → {x}  U
c

. But U
c

 is an r- closed set , then }x{
r

 U
c

 , therefore y  }x{
r

, 

for all y  X and y  x . Then     {x} = }x{
r

, (i.e) , }x{
r

is an r- closed set in X .     

 

Definition 2.3 , [7] : A space X is called compact if every open cover of X has a 

finite subcover . 

 

Theorem 2.4 , [7] : 

(i) A closed subset of compact space is compact . 

(ii) In any space , the intersection of a compact set with a closed set is compact . 
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(iii) Every compact subset of T2- space is closed . 

 

Theorem 2.5 , [6] : A space X is compact if and only if every net in X has a 

cluster point in X . 

 

Definition 2.6 : A space X is called r- compact if every r- open cover of X has a 

finite subcover . 

 

Proposition 2.7 : Every compact space is r- compact space . 

   The converse of Proposition (2.7) , is not true in general as the following 

example shows : 

 

Example 2.8 : Let T = {A  R | Z  A}  {Ø} , be a topology on R . Notice that 

the topological  space (R,T) is r- compact , but its not compact . 

Theorem 2.9 : A space X is an r- compact if and only if every net in X has r- 

cluster point in X . 

 

Theorem 2.10 : 
(i) An r- closed subset of compact space is r- compact . 

(ii) Every r- compact subset of T2- space is r- closed . 

(iii) In any space , the intersection of an r- compact set with an r- closed set is r- 

compact . 

(iv) In a T2- space , the intersection of two r- compact sets is r- compact . 

 

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X , K  Y . 

Then K is an r- compact set in Y if and only if K is an r- compact set in X . 

 

Proof : →) Let K be an r- compact set in Y . To prove that K is an r- compact set 

in X . Let {Uλ}λΛ be an r- open cover in X of K , let Vλ = Uλ∩Y , λΛ . Then Vλ  

is r- open in X , λΛ . But Vλ  Y , thus Vλ is r- open in Y, λΛ . Since K 

 
Λλ λ

V


 , then {Vλ}λΛ is an r- open cover in Y of K, and by hypothesis this cover 

has finite subcover {
1
λ

V ,
2
λ

V , . . . , 
nλ

V } of  K , thus the cover {U} has a finite 

subcover of K . Hence K is an r- compact set in X . 

←) Let K be an r- compact set in X . To prove that K is an r- compact set in Y. Let 

{U} be an r- open cover in Y of K . Since Y is an r- open subspace of  X , then 

by Proposition (1.5) , {U} is an r- open cover in X of K . Then by hypothesis 

there exists                     {1 , 2 , … , m} , such that  K  
m

1λ λ
U


, thus the cover 

{U} has a finite subcover of   K . Hence K is an r- compact set in Y . 
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Definition 2.12 : Let X be a space and W  X . We say that W is compactly r- 

closed set if W∩K is r- compact , for every r- compact set K in X . 

 

Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed . 

    The converse of Proposition (2.13), is not true in general as the following 

example shows : 

 

Example 2.14 : Let X = {a, b, c} be a space and T = {X, Ø, {a, b}} be a topology 

on X . Notice that the set A = {a, b} is compactly r- closed , but its not r- closed set 

. 

 

Theorem 2.15 : Let X be a T2 - space .A subset A of X is compactly r- closed if 

and only if A is r- closed . 

 

Remark 2.16 : Let X be a compact , T2 - space and A  X . Then : 

(i) A is closed  if and only if A is r- closed . 

(ii) A is compact if and only if A is r- compact . 

 

Definition 2.17 [6]: Let X and Y be spaces . We say that the mapping ƒ : X → Y is 

a compact mapping if the inverse image of each compact set in Y , is an compact 

set in  X . 

 

Definition 2.18 : Let X and Y be spaces . We say that the mapping ƒ : X → Y is a 

st- r- compact mapping if the inverse image of each r- compact set in Y , is an r- 

compact set in  X . 

 

Examples 2.19 : 
(i) The identity mapping is st- r- compact . 

(ii)Any mapping from a finite topological space into any topological space is st- r- 

compact . 

 

Proposition 2.20 : Let X and Y be spaces , and ƒ : X → Y be a st- r- compact , r- 

irresolute , mapping . If T is an r- clopen subset of Y , then ƒT : ƒ
-1

(T) → T is a st- 

r- compact mapping . 

 

Proof : Let K be an r- compact subset of T . Since T is an r- open set in Y, then by 

Proposition (2.11) , K is an r- compact set in Y . Since  ƒ is a st- r- compact 

mapping , then  ƒ
-1

(K) is r-compact in X . 

     Now , since T is an r- closed set in Y , and ƒ is an r- irresolute  mapping , then 

ƒ
-1

(T) is an r- closed set in X , thus by Proposition (2.10) , ƒ
-1

(T)∩ƒ
-1

(K) is an r- 
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compact set . But ƒ
-1

T
(K) = ƒ

-1
(T)∩ƒ

-1
(K) , then ƒ

-1

T
(K) is an r- compact set in  ƒ

-

1
(T) . Therefore is a st- r- compact mapping . 

 

Proposition 2.21 : Let X , Y and Z be spaces , and ƒ : X → Y , g :Y → Z  be  

mappings . Then : 

(i) If ƒ and g are st- r- compact mapping , then goƒ : X → Z is a st-r- compact 

mapping . 

(ii) If goƒ is a st- r- compact mapping and ƒ is r- irresolute , onto , then g is st- r- 

compact . 

(iii) If goƒ is a st- r- compact mapping and g is r- irresolute , one to one , then ƒ is 

st- r- compact . 

 

Proof : 

(i) Let K be an r- compact set in Z . Then g
-1

(K) is an r- compact set in Y , and then                 

ƒ
-1

(g
-1

(K)) = (goƒ)
-1

(K) is an r- compact set in X . Hence goƒ : X → Z is a st- r- 

compact mapping . 

(ii) Let K be an r- compact set in Z . Then (goƒ)
-1

(K) is an r- compact  set in X , 

and then ƒ((goƒ)
-1

)(K) is r- compact in Y . Now , since ƒ is onto , then     ƒ((goƒ)
-

1
)(K) = g

-1
(K) , hence g

-1
(K) is an r- compact set in Y . Therefore g is a st- r- 

compact mapping . 

(iii) Let K be an r- compact set in Y . Since g is an r- irresolute , then g(K) is an r- 

compact set in Z , thus (goƒ)
-1

(g(K)) is an r- compact set in X . Since g is one to 

one , then            (goƒ)
-1

(g(K)) = ƒ
-1

(K) , hence ƒ
-1

(K) is an r- compact set in X . 

Thus ƒ is a st- r- compact mapping .  

 

Proposition 2.22 :  For any r- closed subset F of a space X , the inclusion mapping                

iF : F → X  is a st- r-compact mapping . 

 

Proof : Let K be an r- compact set in X , then by Proposition (2.10) , F∩K is an r- 

compact set in  F . But i
1

F


(K) = F∩K , then i

1

F


(K) is an r- compact set in F . 

Therefore the inclusion mapping  iF : F → X is st- r- compact . 

 

Proposition 2.23 : Let X and Y be spaces , and ƒ : X → Y be a st- r- compact 

mapping . If F is an r- closed subset of X , then ƒ|F : F→ X  is a st- r- compact 

mapping . 

 

Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , the 

inclusion             iF : F → X is a st- r- compact mapping . But ƒ|F ≡ ƒoiF , then by 

Proposition (2.21) , ƒ|F is a st- r- compact mapping . 
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Definition 2.24 , [4] : Let X and Y be spaces , A mapping ƒ : X → Y is called a 

coercive if for every compact set  J  Y , there exists a compact set K  X such 

that ƒ(X \ K)  Y \ J . 

 

Definition 2.25 : Let X and Y be spaces , the mapping ƒ : X → Y is called a st- r- 

coercive if for every r- compact set J  Y , there exists an r- compact set   K  X ,  

such that                 ƒ(X \ K)   Y \ J .  

 

Examples 2.26 :     
(i) The identity mapping on any space is st- r- coercive . 

(ii) If ƒ : (X,T) → (Y, τ ) is a mapping , such that X is r- compact space , then ƒ is 

st- r- coercive . 

 

Proposition 2.27 : Every st- r- compact mapping is a st- r- coercive mapping . 

 

Proof : Let J be an r- compact set in Y . Since ƒ is a st- r- compact mapping , then    

ƒ
-1

(J) is an r- compact set in X . But ƒ(X \ ƒ
-1

(J))  Y \ J . Hence ƒ : X  → Y is a st- 

r- coercive mapping . 

 

Proposition 2.28 : Let X and Y be spaces , such that Y is a T2 – space , and ƒ : X 

→ Y is an r- irresolute mapping . Then ƒ is a st- r- coercive if and only if ƒ is a st- 

r-  compact . 

 

Proof : →) Let J be an r- compact set in Y . To prove that ƒ
-1

(J) is an r-  compact 

set in X . Since Y is a T2 – space and ƒ is an r- irresolute mapping , then ƒ
-1

(J) is an 

r- closed set in X . Since ƒ is a st- r- coercive mapping , then there exists an r- 

compact set K in X , such that                      ƒ(X \ K)  Y \ J . Then ƒ( K
c

)  J
c

, 

therefore   ƒ
-1

(J)  K . Thus by Proposition (2.10) ,           ƒ
-1

(J) is an r- compact set 

in X . Hence ƒ : X → Y is a st- r- compact mapping .  

←) By Proposition (2.25) . 

 

Proposition 2.29 : Let X , Y and Z be spaces . If ƒ : X → Y , g : Y → Z are st- r- 

coercive mapping , then goƒ : X → Z is a st- r-  coercive mapping . 

 

Proof : Let J be an r- compact set in Z . Since g : Y → Z is a st- r-  coercive   

mapping , then there exists an r- compact set K in Y, such that g(Y \ K)  Z \ J .  

Since ƒ : X → Y is a st- r- coercive mapping , then there exists an r- compact set H 

in X , such that ƒ(X \ H)  Y \ K  g(ƒ(X \ H)  g(Y \ K)  Z \ J  (goƒ)(X \ H) 

 Z \ J . 

      Hence goƒ is a st- r- coercive mapping . 
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Proposition 2.30 : Let X and Y be spaces , and ƒ : X → Y be a st- r- coercive  

mapping . If F is an r- closed subset of X , then the restriction mapping ƒ|F : F → Y 

is a st- r- coercive mapping . 

 

Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , and 

Proposition (2.27) , the inclusion mapping iF : F → X is a st- r-coercive mapping . 

But ƒ|F ≡ ƒoiF , then by Proposition (2.21) , ƒ|F is a st- r- coercive mapping . 

 

3- Strongly Regular Proper Mapping : 

 

Definition 3.1 , [1] : Let X and Y be spaces , and ƒ : X → Y be a mapping . We 

say that ƒ is a proper  mapping if : 

(i) ƒ is continuous . 

(ii) ƒ×IZ : X×Z → Y×Z is closed , for every space Z . 

 

Definition 3.2 : Let X and Y be spaces , and ƒ : X → Y be a mapping . We say that 

ƒ is a strongly regular proper (st-r- proper) mapping if : 

(i) ƒ is continuous . 

(ii) ƒ×IZ : X×Z → Y×Z is st- r- closed , for every space Z . 

 

Example 3.3 : Let X = {a, b} , Y = {x, y} be sets and T = {Ø, X, {a}, {b}} , τ  = 

{Ø, Y, {x}, {y}} be topologies on X and Y respectively . The mapping ƒ : X → Y 

which is defined by :              ƒ(a) = ƒ(b) = x is st- r- proper . 

 

Remarks 3.4 : 
(i) Every st- r- proper mapping is st- r- closed . 

(ii) Every st- r- homeomorphism is st- r- proper . 

       The converse of Remark (3.4.i) , is not true in general as the following 

example shows : 

 

Example 3.5 : Let ƒ : (R , U) → (R , U) be the mapping which is defined by ƒ(x) = 

- r- closed mapping but ƒ is not st- r- 

proper mapping , since for the usual space (R , U) the mapping  ƒ×IZ : R×R → 

R×R , such that (ƒ×IR)(x,y) = (0,y) , for every  (x - r- closed 

mapping .  

     The converse of Remarks (3.4.ii) , is not true in general as the following 

example shows : 

 

Example 3.6 : Let X = {a, b, c} , Y = {x, y} be sets and T = {Ø, X, {a}, {a, b}} , τ  

= {Ø, Y, {x}} be topologies on X and Y respectively . Let ƒ : X → Y be a 

mapping which is defined by : ƒ(a) = ƒ(b) = x , ƒ(c) = y . Notice that ƒ is a st- r- 
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proper mapping , but ƒ is not one to one mapping , therefore ƒ is not st- r- 

homeomorphism . 

 

Proposition 3.7 : Let X and Y be spaces , and ƒ : X → Y be a st- r- proper 

mapping . If T is a  clopen subset of Y , then   ƒT : ƒ
-1

(T) → T is a st- r- proper 

mapping . 

 

Proof : Since ƒ : X → Y is a continuous mapping , then ƒT is a continuous 

mapping . To prove that ƒT×IZ : ƒ
-1

(T)×Z → T×Z is a st- r- closed mapping , for 

every space Z . Notice that        ƒT ×IZ  ≡ (ƒ×IZ)T×Z , where ƒ×IZ  is a st- r- closed 

mapping , since T is a clopen subset of Y, then by Proposition (1.12) , T×Z is a 

clopen subset of Y×Z , thus by Proposition (1.21) ,       (ƒ×IZ)T×Z ≡ (ƒT×IZ) is a st- r- 

closed mapping , hence ƒT : ƒ
-1

(T) → T is a st- r- proper mapping . 

 

Proposition 3.8 : Let X and Y be spaces , and ƒ : X → Y be a st- r- proper 

mapping . If Y is a T2- space , then ƒ{y} : ƒ
-1

({y}) → {y} is a st- r- proper mapping , 

for all y  Y . 

 

Proof : Since ƒ : X → Y is a continuous mapping , then ƒ{y} is a continuous 

mapping . To prove that ƒ{y}×IZ : ƒ
-1

({y})×Z → {y}×Z is a st- r- closed mapping , 

for every space Z . Let             F  ƒ
-1

({y})×Z , then : )(F)I(ƒ Z{y}
r
 

)(F)ZIƒ()Z{y}(  
r
 Z{y}

r
 )(F)ZI(ƒ

r
 . 

      Since Y is a T2- space , then by Proposition (2.2) , {y} is an r- closed set , for 

all y  Y , so {y}×Z is an r- closed in Y×Z , then Z{y}
r

= {y}×Z . Since ƒ×IZ : 

X×Z → Y×Z  is a st- r- closed mapping and F  ƒ
-1

({y})×Z  X×Z , then by 

Proposition (1.20) ,                    )(F)ZI(ƒ
r
 (ƒ×IZ)( F

r
) . Thus )(F)I(ƒ Z{y}

r
 

{y}×Z∩(ƒ×IZ)( F
r

) . 

     Since (ƒ{y}×IZ)( F
r

) = (ƒ×IZ){y}×Z( F
r

) = ({y}×Z)∩(ƒ×IZ)( F
r

) , then                 

)(F)I(ƒ Z{y}
r
 (ƒ{y}×IZ)( F

r
) , therefore by Proposition (1.20) , ƒ{y}×IZ  is a st- r- 

closed mapping . Hence ƒ{y} : ƒ
-1

({y}) → {y} is a st- r- proper mapping . 

 

Theorem 3.9 : Let ƒ : X → P = {w} be a mapping on a space X . If ƒ is a st- r- 

proper  mapping , then X is an r- compact space , where w is any point which does 

not belong to X . 

 

Proof : To prove that X is an r- d)  be a net in X , and let                         

X
'
 = X X

'
 



Journal of Al-Qadisiyah for Computer Science and Mathematics 
Vol. 3      No.1          Year 2011 

 518 

  {w} d) is eventually in M} . 

     

Proposition (1.14) , and therefore we can define a topology on X
'
 by : T

'

X
'

   is the neighborhood 

system of the space ( X
'
 , T

'
) . 

     X
r

with respect to T
'

T
'r

- 

- T
'
 such 

V


V , hence w V , thus for all open set U1
T

'
 , 

1 ,               U1∩V ≠ Ø . Since the set U1 = X T
'
 

U1 , then U1∩V ≠ Ø →              (X {w})∩V ≠ Ø → (X∩V)   ({w}∩V) ≠ Ø . 

      T
'

, thus       V = M2 {w} , where M2 d) is eventually in M2 . But 

X∩V = Ø , then X∩(M2 {w}) = Ø , hence X∩M2 = Ø , and this is a  contradiction 

X
r

. Now , let ∆ be the diagonal 

set of X×X in T , and let          F = Δ ,  

 

 

consider the commutative diagram : 

 

     Where h : {w}× X
'
 → X

'
 is the homeomorphism and Pr2 : X× X

'
 → X

'
 is the 

projection map . Since ƒ : X → {w} is a st- r- proper mapping , then ƒ×IZ : X× X
'
 

→ {w}× X
'
 is a st- r- closed mapping . 

      2 
r

 = F → x = Pr2 2(F) →                 

2(F) . Since X
r

(F)pr2

r

 = Pr2 2(F) . Therefore there 


r

 . Let U be an r- open set in X 

d) is eventually in V .Thus 

X× X
'
 
 

ƒ×I X
'
  

{w}× X
'
 
 

X
'
 

      Pr2 h() 
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V  {w}. Thus by Proposition (1.12) , U×(V {w}) is an r- 

open set in X× X
'
 containing (x,w) , since (x,w)  

r

, then U×(V {w})∩∆ ≠ Ø 

→ U∩V ≠ Ø . So for all r- open set U in X containing x and for all subset V of X , 

d) is eventually in V ,   U∩V ≠ Ø . 

      d) is eventually in Ado do∩U ≠ Ø , for all do  and                 

all r- 
doA

r
 do  , therefore Proposition  (1.31) , 

d 
r

 x . Hence by Proposition (2.9) , X is an r- compact space .   

 

Theorem 3.10 : Let X and Y be spaces , and ƒ : X → Y be a continuous mapping . 

If Y is a T2- space , then the following statements are equivalent : 

(i) ƒ is a st- r- proper mapping . 

(ii) ƒ is a st- r- closed mapping and ƒ
-1

({y}) is r-  

d) is a net in X and - d) , then there is 

an r- cluster  

d)  , such that ƒ(x) = y .  

 

 

Proof : 

(i→ii). Let ƒ : X → Y be a st- r- proper mapping , then ƒ×IZ : X×Z → Y×Z is a st- 

r- closed for every space Z . Let Z = {t} , then  

Z by ƒ , thus ƒ is a st- r- closed mapping . Now 

{y} : ƒ
-1

({y}) → {y} is a st- r- 

proper . Thus by Theorem (3.9) ,  ƒ
-1

({y}) is an r- compact set . 

d) - d) in 

Y . Assume that ƒ
-1

(y) ≠ Ø , if ƒ
-1 (ƒ(X))

c

 , since X is 

an r- closed set in X and ƒ is a st- r- closed mapping , then ƒ(X) is an r- closed set 

in Y . Thus (ƒ(X))
c

 
is an r- d)) is frequently in (ƒ(X))

c

.  

d
(ƒ(X))

c
 
≠ Ø , and this is a contradiction 

. Thus       ƒ
-1

(y) ≠ Ø , therefore  x  X , such that ƒ(x) = y . 

      
-

1
(y) there exists an r- open set UX d) is not frequently 

in UX . Notice that  ƒ
-1

(y) = 
(y)ƒ

1x

{x}


. Therefore the family {UX 
-1

(y)} is an r-

open cover for ƒ
-1

(y) . But    ƒ
-1

(y) is an r- compact set , thus there exists  x1, x2, . . . 

, xn  ƒ
-1

(y) , such that                            ƒ
-1

1Ux2  . . . Uxn , then ƒ
-1

(y) 

 ]
n

1i
Uxi

[

c




= Ø → ƒ
-1

(y)   [ 
n

1i
U

c

xi
] = Ø . But (xi) is not frequently in 

n

1i
Uxi

 , 
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but 
n

1i
Uxi

 is an r- open set in X , then 
n

1i
U

c

xi
 is an r- closed set in X . Thus 

ƒ( 
n

1i
U

c

xi
) is an r- closed set in Y . 

     
n

1i
U

c

xi

n

1i
U

c

xi

n

1i
U

c

xi
 , such that             


n

1i
Uxi

 
-1

(y) , therefore ƒ
-1

(y) is not a subset of 


n

1i
Uxi

 , and this is a contradiction .  Hence there is an r- open set A in Y , such that 

 ƒ( 
n

1i
U

c

xi
) = Ø → ƒ

-1
(A) ƒ

-1
(ƒ( 

n

1i
U

c

xi
)) = Ø → ƒ

-1
(A) [ 

n

1i
U

c

xi
] = 

Ø  →                       ƒ
-1


n

1i
Uxi

 d)) is frequently in A , then ( d) is 

frequently in ƒ
-1

d) is  frequently in 
n

1i
Uxi

 .This is contradiction , 

and this is complete the proof .  

(iii → i). Let Z be any space . To prove that ƒ : X → Y is a st- r- proper mapping , 

i.e , to prove that ƒ×IZ : X×Z → Y×Z is a st- r- closed mapping . Let F be an r- 

closed set in X×Z . To prove that (ƒ×IZ)(F) is an r- closed set in Y×Z . Let  (y,z) 

 )(F)I(ƒ Z
r
, then by Proposition  (1.30) , there exists a net {(yd , zd)} in 

(ƒ×IZ)(F) such that (yd , zd) 
r

 (y,z) , where (yd , zd) = ((ƒ×IZ)(xd , yd)) , and {(xd , 

yd)}   is a net in F . Thus                                   (ƒ(xd) , IZ(zd)) 
r

 (y,z) , so ƒ(xd) 


r

 y  and  zd 
r

 d 
r

 x  and ƒ(x) = y → (xd , zd) 


r

 (x,z) and {(xd , zd)} F
r

. Since F = F
r

, then 

Z) Z)(F) , and then  )(F)I(ƒ Z
r

= 

(ƒ×IZ)(F) , thus (ƒ×IZ)(F) is an r- closed set in Y×Z . Hence ƒ×IZ : X×Z → Y×Z is a 

st- r- closed mapping . Therefore ƒ : X → Y is a st- r- proper mapping . 

 

Proposition 3.11 : If X is an r- compact space , then the mapping ƒ : X → P = {w} 

on a space X is st- r- proper , where w is any point which does not belongs to X . 

 

Proof : Let X be an r- compact space . Since P is a single point , then ƒ is a 

continuous  

mapping . To prove that ƒ : X → P = {w} is a st- r- proper mapping : 

(i) Since ƒ
-1

(P) = X , then ƒ
-1

(P) is an r- compact set . 
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(ii) Let F is an r- closed subset of X , then either : ƒ(F) = Ø or ƒ(F) = {w} . Then ƒ 

is st- r- closed mapping , hence by Theorem (3.10) , ƒ is a st- r- proper mapping . 

 

Proposition 3.12 : Let X , Y and Z be spaces . If ƒ : X → Y and g : Y → Z are st-

r- proper maps , then goƒ : X → Z is a st- r- proper mapping . 

Proof : Since ƒ and g are st- r- proper maps , then ƒ×IW  and g×IW are st-r- closed , 

for every space W , then by Proposition (1.22) , (g×IW)o(ƒ×IW) is st- r- closed 

mapping . But (g×IW)o(ƒ×IW) = (goƒ)×IW , then (goƒ)×IW  is st- r- closed , and 

since goƒ is continuous . Hence goƒ is an st- r- proper mapping . 

 

Proposition 3.13 : Let X , Y and Z be spaces , and ƒ : X → Y , g : Y → Z be 

continuous maps , such that  goƒ : X → Z is a st- r- proper mapping . If g is one to 

one , r- irresolute , then ƒ is a st- r- proper mapping . 

 

Proof : Let W be any space . To prove that ƒ×IW : X×W → Y×W is a st- r- closed 

mapping . Since  goƒ : X → Z is a st- r- proper , then (goƒ)×IW : X×W → Z×W is a 

st- r- closed mapping , so we can write (goƒ)×IW = (g×IW)o(ƒ×IW) . Since g×IW  is 

one to one , r- irresolute mapping , then by Proposition (1.22) , ƒ×IW  is a st- r- 

closed . Hence ƒ : X → Y is a st- r- proper mapping .        

 

Proposition 3.14 : Let ƒ1 : X1 → Y1 and ƒ2 : X2 → Y2 be maps . Then                                 

ƒ1×ƒ2 : X1×X2 → Y1×Y2 is a st- r- proper mapping if and only if  ƒ1 and ƒ2 are st- r- 

proper . 

 

Proof : →) To prove that ƒ2 is a st- r- proper . Since ƒ1×ƒ2 is continuous , then both 

ƒ1 and ƒ2 are continuous . To prove that ƒ2×IZ : X2×Z → Y2×Z is st- r- closed , for 

every space Z . Let F be an r- closed subset of X2×Z , since X1 is an r- closed set in 

X1 , then by Proposition (1.12) , X1×F is an r- closed set in X1×X2×Z . Since ƒ1×ƒ2 

is st- r- proper , then (ƒ1×ƒ2×IZ)(X1×F) is an r- closed set in Y1×Y2×Z .But 

(ƒ1×ƒ2×IZ)(X1×F) = ƒ1(X1)×(ƒ2×IZ)(F) , thus ƒ1(X1)×(ƒ2×IZ)(F) is an r- closed set in 

Y1×Y2×Z , then by Proposition (1.12) , (ƒ2×IZ)(F) is an r- closed set in Y2×Z , then 

ƒ2×IZ : X2×Z → Y2×Z is a st- r- closed mapping . Therefore   ƒ2 : X2 → Y2 is a st- 

r- proper mapping . 

     Similarly , we can prove that ƒ1 : X1 → Y1 is a st- r- proper mapping . 

←) To prove that ƒ1×ƒ2 : X1×X2 → Y1×Y2 is a st- r- proper . Since ƒ1 and ƒ2 are 

continuous , then ƒ1×ƒ2 is continuous mapping . Let Z be any space . Notice that :                                 

ƒ1×ƒ2×IZ = (Iy1×ƒ2×IZ)o(ƒ1×Ix2×IZ) , since ƒ1 and ƒ2 are st- r-  proper  maps , then 

(Iy1×ƒ2×IZ) and (ƒ1×Ix2×IZ) = ƒ1×Ix2×Z  are st- r- closed maps . Therefore by 

Proposition (1.22) , the mapping ƒ1×ƒ2×IZ is a st- r- closed . Hence ƒ1×ƒ2 is a st- r- 

proper mapping .     
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Proposition 3.15 : Let X be an r- compact space , and Y any space , then the 

projection     Pr2 : X×Y → Y is a st- r- proper mapping . 

 

Proof : Consider the commutative diagram : 

 
    Where h : {p}×Y → Y is the homeomorphism of {p}×Y onto Y and Pr2 : X×Y 

→ Y is the projection of X×Y into Y . Since X an is r- compact space , then by 

Proposition (3.11) ,            ƒ : X → {p} is a st- r- proper and Iy : Y → Y is a st- r- 

proper , then ƒ×Iy is a st- r- proper . Therefore  ho(ƒ×Iy) is a st- r- proper mapping . 

But Pr2 = ho(ƒ×Iy) , then Pr2  is a st- r- proper mapping . 

 

Proposition 3.16 : Let X and Y be spaces , and ƒ : X → Y be a st- r- proper 

mapping . If F is a clopen subset of X , then the restriction map ƒ│F : F → Y  is a 

st- r- proper  mapping . 

 

Proof : To prove that ƒ│F×IZ : F×Z → Y×Z is a st- r- closed mapping for every 

space   Z . Since F is an clopen subset of  X , then by Proposition (1.12) , F×Z is a 

clopen subset of  X×Z . Since ƒ×IZ is a st- r- closed mapping , then by Proposition 

(1.21) , (ƒ×IZ)F×Z  is a st- r- closed mapping . But ƒ│F×IZ = (ƒ×IZ)F×Z , thus ƒ│F×IZ  

is a st- r- closed mapping . Since ƒ│F is continuous , hence ƒ│F : F → Y is a st- r- 

proper mapping . 

 

Proposition 3.17 : Let X and Y be spaces . If ƒ : X → Y is a st- r- proper mapping 

, then ƒ is a st- r- compact mapping . 

 

Proof : Let A be an r- compact subset of Y . To prove that ƒ
-1

(A) is an r- compact 

d)  be a net in ƒ
-1

d) is a net in A . Since A is an r- 

r- d) . Since ƒ is st- r- proper , then by Theorem (3.10) , there 

- d) , and ƒ(x) = y . Thus every 

net in ƒ
-1

(A) has r- cluster point in itself , then by Proposition (2.9) , ƒ
-1

(A) is an r-  

compact set in X .Therefore ƒ : X → Y is a st- r- compact mapping . 

      The converse of Proposition (3.17) , is not true in general as the following 

example  shows : 

X×Y 

ƒ×IY 

{p}×Y 

Y 

      Pr2 h() 
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Example 3.18 : Let X = {a, b, c, d} , Y = {x, y, z} be sets and T = {Ø, X, {a, b}, 

{c, d}} ,  τ  = {Ø, Y, {z}} be topologies on X and Y respectively . Let ƒ : X → Y 

be a mapping which is defined by : ƒ(a) = ƒ(b) = ƒ(c) = y , ƒ(d) = z . 

       Notice that ƒ is a st- r- compact mapping , but ƒ is not st- r- proper mapping . 

Since {c,d} is an r- closed set in X , but ƒ({c,d}) = {y,z} which is not r- closed set 

in Y , then ƒ is not st- r- closed mapping . 

 

Theorem 3.19 : Let X and Y be spaces , such that Y is a T2 - space , and ƒ : X → 

Y is a continuous , r- irresolute mapping . Then ƒ is a st-r- proper mapping if and 

only if ƒ is a st- r- compact mapping . 

 

Proof : →) By Proposition (3.17) . 

←) To prove that ƒ is a st- r- proper mapping : 

(i) Let F be an r- closed subset of X . To prove that ƒ(F) is an r- closed set in Y , let 

K be an r- compact set in Y , then ƒ
-1

(K) is an r- compact set in X , then by 

Theorem (2.10) ,           F∩ƒ
-1

(K) is r- compact in X . Since ƒ is r- irresolute , then 

ƒ(F∩ƒ
-1

(K)) is r- compact set in   Y . But ƒ(F∩ƒ
-1

(K)) = ƒ(F)∩K , then ƒ(F)∩K is 

r- compact , thus ƒ(F) is compactly r- closed set in  Y . Since Y is T2- space , then 

by Theorem (2.15) , ƒ(F) is r- closed set in Y. Hence     ƒ is a st- r- closed mapping 

. 

 - compact in Y . Since ƒ is a st- r- compact mapping , 

then                 ƒ
-1

({y}) is r- compact in X . Therefore by (i) , (ii) and using  

Theorem (3.10) , ƒ is a st- r- proper mapping . 

 

Theorem 3.20 : Let X and Y be spaces , such that Y is a T2 - space and ƒ : X → Y 

is a continuous , r- irresolute , mapping . Then the following statements are    

equivalent : 

(i) ƒ is a st- r- coercive mapping . 

(ii) ƒ is a st- r- compact mapping . 

(iii) ƒ is a st- r- proper mapping . 

 

Proof : 

(i → ii). By Proposition (2.28) . 

(ii → iii). By Theorem (3.19) . 

(iii → i). Let J be an r- compact set in Y . Since ƒ is a st- r- proper , then by 

Proposition  

(3.17) , ƒ is a st- r- compact mapping , then ƒ
-1

(J) is an r- compact set in X . Thus  

ƒ(X \ ƒ
-1

\ J . Hence ƒ : X → Y is a st- r- coercive mapping . 
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 التطبيقات السديدة المنتظمة بقوة
 

 الخلاصة
لمتطبيق السديد هو التطبيق السديد المنتظم الهدف الأساسي من هذا العمل هو تقديم نوع خاص و جديد      

بقوة . كما قدمنا تعريف جديد لمتطبيق المتراص و التطبيق الأضطراري . كما تضمن البحث بعض الخواص 
 و العبارات المتكافئة و كذلك شرحنا العلاقة بين هذه التعريفات .  

  
 
 


