Page 185-204

Strongly Regular Proper Mappings

Habeeb Kareem Abdullah Fadhila Kadhum Radhy Department of Mathematics College of Education for Girls University of Kufa

Abstract

 The main goal of this work is to create a special type of proper mappings namely, strongly regular proper mappings and we introduce the definition of a new type of compact and coercive mappings and give some properties and some equivalent statements of these concepts , as well as explain the relationship among them .

Introduction

 One of the very important concepts in topology is the concept of mapping . There are several types of mappings , in this work we study an important class of mappings , namely , strongly regular proper mappings .

Proper mapping was introduced by Bourbaki in [1] .

 Let A be a subset of topological space X . We denote to the closure and interior of A by \overline{A} and \overline{A} \degree respectively.

James Dugundji in [2] defined the regular open set as a subset A of a space X , such that $A = A$. Stephen Willard in [8] defined the regular open set similarly with Dugundji's definition.

This work consists of three sections .

 Section one includes the fundamental concepts in general topology , and the proves of some related results which are needed in the next section .

 Section two contains the definitions of strongly regular compact mapping and strongly regular coercive mapping . Also the relationship among these concepts is introduced and some of its related results are proved .

 Section three introduces the definition of strongly regular proper mapping and some of its related are proved .

1- Basic concepts

Definition 1.1 , [2] : A subset B of a space X is called **regular open (r- open)** set if $B = B$. The complement of a regular open set is defined to be a **regular closed (r- closed)** set .

Proposition 1.2, [2]: A subset B of a space X is r- closed if and only if $B = B$ $\overline{\circ}$.

 Its clearly that every r- open set is an open set and every r- closed set is closed set , but the converse is not true in general as the following example shows :

Example 1.3 : Let $X = \{a, b, c, d\}$ be a set and $T = \{\theta, X, \{a\}, \{a, b\}, \{a, c, d\}\}\$ be a topology on X. Notice that $\{a, b\}$ is an open set in X, but its not r- open set, and $\{b\}$ is a closed set in X, but its not r- closed set.

Corollary 1.4 : A subset B of a space X is clopen (open and closed) if and only if B is r- clopen (r- open and r- closed).

Proposition 1.5 : Let $A \subseteq Y \subseteq X$. Then :

(i) If A is an r- open set in Y and Y is an r- open set in X, then A is an r- open set in X .

(ii) If A is an r- closed set in Y and Y is an r- closed set in X, then A is an r- closed set in X .

Remark 1.6 : If A is an r- closed set in X and B is a clopen set in X, then $A \cap B$ is r- closed in B .

Definition 1.7 : Let A be a subset of a space X. A point $x \in A$ is called **r- interior** point of A if there exists an r- open set U in X such that $x \in U \subseteq A$.

 The set of all r- interior points of A is called **r- interior** set of A and its denoted by A *r* .

Proposition 1.8 : Let (X, T) be a space and $A \subseteq X$. Then :

(i) $A^{\circ r} \subseteq A^{\circ}$. (ii) $({A^{\circ}}^r)^{\circ} = {({A^{\circ}})}^{\circ r}$. (iii) A is r- open if and only if A *r* $= A$.

Definition 1.9 : Let A be a subset of a space X . A point x in X is said to be **rlimit** point of A if for each r- open set U contains x implies that $U \cap A \setminus \{x\} \neq \emptyset$.

 The set of all r- limit points of A is called **r- derived** set of A and its denoted by A '*r* .

Definition 1.10 : Let X be a space and $B \subseteq X$. The intersection of all r- closed sets containing B is called the **r**- **closure** of B and denotes by \overline{A} *r* .

Proposition 1.11 : Let X be a space and A, $B \subseteq X$. Then : (i) \overline{A} r is an r- closed set.

 $(ii) A \subseteq A$. *r*

(iii) A is r- closed if and only if $A = A$. *r r*

(iv) $x \in A$ if and only if $A \cap U \neq \theta$, for any r- open set U containing x.

Proposition 1.12: Let X and Y be two spaces, and $A \subseteq X$, $B \subseteq Y$. Then:

(i) A, B are r- open subsets of X and Y respectively if and only if $A \times B$ is r- open subset in $X \times Y$.

(ii) A, B are r- closed subsets of X and Y respectively if and only if $A \times B$ is rclosed subset in $X \times Y$.

(iii) A, B are clopen subsets of X and Y respectively if and only if $A \times B$ is clopen subset in $X \times Y$.

(iv) A, B are r- clopen subsets of X and Y respectively if and only if $A \times B$ is rclopen subset in $X \times Y$.

Definition 1.13 , [3] : Let X be a space and B be any subset of X . **A neighborhood of B** is any subset of X which containing an open set containing B.

The neighborhoods of a subset $\{x\}$, consisting of a single point are also called **neighborhood of a point x** .

 The collection of all neighborhoods of the subset B is denoted by **N(B)** . In particular the collection of all neighborhoods of x is denoted by **N(x)** .

Proposition 1.14, [1]: Let X be a set. If to each element x of X, there corresponds a collection $\beta(x)$ of subsets of X, satisfying the properties :

(i) Every subset of X which contains a set belongs to $\beta(x)$, itself belongs to $\beta(x)$.

(ii) Every finite intersection of sets of $\beta(x)$ belongs to $\beta(x)$.

(iii) The element x is in every set of $\beta(x)$.

(iv) If V belongs to $\beta(x)$, then there is a set W belonging to $\beta(x)$ such that for each $y \in W$, V belongs to $\beta(y)$.

Then there is a unique topological structure on X such that, for each $x \in X$, $\beta(x)$ is the collection of neighborhoods of x in this topology .

Definition 1.15 : Let X be a space and $B \subseteq X$. An **r- neighborhood of B** is any subset of X which contains an r- open set containing B . The r- neighborhoods of a subset {x} consisting of a single point are also called **r- neighborhoods** of the point x .

 Let us denote the collection of all r- neighborhoods of the subset B of X by **Nr(B)**. In particular, we denote the collection of all r- neighborhoods of x by $Nr(x)$.

Definition 1.16, [1]: Let $f: X \rightarrow Y$ be a mapping of spaces .Then: (i) f is called continuous mapping if $f^{-1}(A)$ is an open set in X for every open set A in Y .

(ii) f is called open mapping if $f(A)$ is an open set in Y for every open set A in X. (iii) f is called closed mapping if $f(A)$ is a closed set in Y for every closed set A in X .

Definition 1.17 : A mapping $f : X \to Y$ is called r- irresolute if $f^{-1}(A)$ is an r- open set in X for every r- open set A in Y .

Definition 1.18 : Let X and Y be spaces and $f: X \rightarrow Y$ be a mapping. Then : (i) ƒ is called **a strongly r- open (st- r- open)** mapping if the image of each ropen subset of X is an r- open set in Y .

(ii) ƒ is called **a strongly r- closed (st- r- closed)** mapping if the image of each rclosed subset of X is an r- closed set in Y .

Definition 1.19 : Let X and Y be spaces . Then the mapping $f: X \rightarrow Y$ is called **st- r- homeomorphism** if

(i) f is bijective.

(ii) f is continuous.

(iii) f is st- r- open (or st- r- closed).

Proposition 1.20 : A mapping $f: X \rightarrow Y$ is st- r- closed if and only if $f(A)$ *r* \subseteq $f(A)$, $\forall A \subseteq X$. *r*

Proof : \rightarrow) Let $f: X \rightarrow Y$ be a st- r- closed mapping and $A \subseteq X$. Since A *r* is an r- closed set in X , then $f(A)$ *r*) is an r- closed subset of Y, and since $A \subseteq A$ *r* , then $f(A) \subseteq f(A)$ *r*). Thus $f(A)$ *r* \subseteq $f(A')$ *r r* $=f(A)$ *r*), hence $f(A)$ *r* $\subseteq f(A)$ *r*) . \leftarrow) Let $f(A)$ *r* $\subseteq f(A)$ *r*), for all $A \subseteq X$. Let F be an r- closed subset of X, i.e, F = F *r* , thus by hypothesis $f(F)$ *r* $\subseteq f(F)$ *r* $= f(F)$. But $f(F) \subseteq f(F)$ *r* , then $f(F) = f(F)$ *r* . Hence $f(F)$ is an r- closed set in Y, thus $f: X \to Y$ is a st-r-closed mapping.

Proposition 1.21 : Let X and Y be spaces . If $f : X \rightarrow Y$ is a st- r- closed, continuous mapping. Then for each clopen subset T of Y, $f_T : f^{-1}(T) \to T$ is a str- closed mapping .

Proof : Let T be a clopen subset of Y. Since f is continuous, then $f^{-1}(T)$ is a clopen set in X. Let \overline{F} be an r- closed set in $f^{-1}(T)$, by Corollary (1.4), and

Proposition (1.5), F is r- closed in X. Since f is a st- r- closed mapping, then $f(F)$ is r- closed in Y, hence by Remark (1.6) , $T \cap f(F)$ is r- closed in T. But $f_T(F) = T \cap f(F)$, then $f_T(F)$ is an r- closed set in T. Therefore f_T is a st-r-closed mapping .

Proposition 1.22: Let X, Y and Z be spaces and $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be mappings . Then :

(i) If f and g are st- r- closed, then gof : $X \rightarrow Z$ is st- r- closed mapping.

(ii) If go f is a st- r- closed mapping and f is onto, r- irresolute, then g is st- rclosed .

(iii) If gof is a st- r- closed mapping and g is one to one, r- irresolute, then f is str- closed .

Proof :

(i) Let F be an r- closed subset of X, then $f(F)$ is an r- closed set in Y and then $g(f(F)) = (g \circ f)(F)$ is an r- closed set in Z. Hence $(g \circ f)$ is a st- r- closed mapping. (ii) Let F be an r- closed subset of Y, since f is r- irresolute, then $f⁻¹(F)$ is rclosed in X. Since gof is a st- r- closed mapping, then $(gof)(f^{-1}(F))$ is an rclosed set in Z. But f is onto, then $(gof)(f^{-1}(F)) = g(F)$, thus $g(F)$ is an r-closed set in Z. Hence g is st- r- closed.

(iii) Let F be an r- closed subset of X, then $(g \circ f)(F)$ is an r- closed set in Z. Since g is one to one, r- irresolute, then $g^{-1}((gof)(F) = f(F))$ is an r- closed set in Y. Hence f is a st- r- closed mapping.

Proposition 1.23 : Let X be a space. If A is an r- closed subset of X, then the inclusion mapping $i_A: A \rightarrow X$ is st- r- closed.

Proof : Let F be an r- closed set in A, since A is r- closed in X, then by Proposition (1.5), F is r- closed in X . But $i_A(F) = F$, then $i_A(F)$ is an r- closed set in X . Hence the inclusion mapping $i_A: A \rightarrow X$ is st-r-closed.

Proposition 1.24 : Let X and Y be spaces, $f: X \rightarrow Y$ be a st- r- closed mapping. If F is an r- closed subset of X, then the restriction mapping $f_F : F \to Y$ is st-rclosed .

Proof : Since F is an r- closed set in X, then by Proposition (1.23), the inclusion $mapping$ \rightarrow X is st- r- closed. Since f is st- r- closed mapping, then by Proposition (1.22), $foi_A : F \to Y$ is a st- r- closed mapping. But $foi_A = f_F$, then the restriction mapping \rightarrow Y is st- r- closed.

Proposition 1.25 : A bijective mapping $f: X \rightarrow Y$ is st- r- closed if and only if is st- r- open .

Proof : \rightarrow) Let $f: X \rightarrow Y$ be a bijective, st- r- closed mapping and U be an ropen subset of X , thus U ϵ is r- closed. Since f is st- r- closed then $f(U)$ č U is r- closed. Since f is st- r- closed then $f(U)$ is rclosed in Y, thus $(f(U^{c}))$ is r-open. Since f is bijective mapping, then $(f(U^{c}))$ = $f(U)$, hence $f(U)$ is r- open in Y, therefore f is a st- r- open mapping. \leftarrow) Let $f: X \rightarrow Y$ be a bijective, st- r- open mapping and F be an r- closed subset of X, thus F is r- open. Since f is st- r- open then $f(F)$ is r- open in Y, thus $(f(F^{c}))$ is r- closed. Since f is a bijective mapping, then $(f(F^{c})) = f(F)$, hence $f(F)$ is r- closed in Y. So f is st- r- closed mapping.

Theorem 1.26, [8]: Let X be a space and A be a subset of X, $x \in X$. Then $x \in \overline{A}$ if and only if there is a net in A which converges to x .

Lemma 1.27, [5]: If (χ_a) is a net in a space X and for each $d_o \in D$, $A_{do} = {\chi_a | d}$ $d \geq d_0$, then $x \in X$ is a cluster point of (χ_d) if and only if $x \in \overline{A_d}$, for all $d \in D$.

Definition 1.28 : Let $(\chi_a)_{d \in D}$ be a net in a space X, $x \in X$. Then $(\chi_a)_{d \in D}$ **rconverges** to x [written $\chi_d \longrightarrow x$], if $(\chi_d)_{d \in D}$ is eventually in every r- nbd of x. The point x is called **an r- limit point** of $(\chi_d)_{d \in D}$.

Definition 1. 29 : Let $(\chi_a)_{d \in D}$ be a net in a space X, $x \in X$. Then $(\chi_a)_{d \in D}$ is said to have x as **an r- cluster point** [written $χ_d$ \int_{0}^{r} x] if $(\chi_{d})_{d \in D}$ is frequently in every r- nbd of x .

Proposition 1.30 : Let (X, T) be a space and $A \subseteq X$, $x \in X$. Then $x \in A$ *r* if and only if there exists a net $(\chi_d)_{d \in D}$ in A and $\chi_d \propto x$. *r*

Proof : \rightarrow) Let $x \in A$, then $U \cap A \neq \theta$, for every r- open set U, $x \in U$. Notice that $(Nr(x), \subseteq)$ is a directed set, such that for all $U_1, U_2 \in Nr(x)$, $U_1 \ge U_2$ if and only if $U_1 \subseteq U_2$. Since for all $U \in \text{Nr}(x)$, $U \cap A \neq \emptyset$, then we can define a net χ : $Nr(x) \to X$ as follows : χ (U) = χ $_U \in U \cap A$, $U \in Nr(x)$. To prove that χ_U \int_{0}^{r} x. Let $B \in \text{Nr}(x)$, thus $B \cap U \in \text{Nr}(x)$. Since $B \cap U \subseteq U$, then $B \cap U \geq U$, $\chi(B \cap U) =$ $\chi_{\rm B\cap U} \in {\rm B} \cap {\rm U} \subseteq {\rm B}$. Hence $\chi_{\rm U}$ *r* x .

 \leftarrow) Let $(\chi_d)_{d \in D}$ be a net in A, such that χ_d \overline{x} \propto x, and let U be an r- open set, $x \in$ U . Since χ_d \int_{0}^{r} x, then $(\chi_d)_{d \in D}$ is frequently in U. Thus $U \cap A \neq \emptyset$, for all r- open set U, $x \in U$. Hence $x \in A$.

Proposition 1.31 : Let X be a space and $(\chi_d)_{d \in D}$ be a net in X, for each $d_o \in D$, such that $A_{d0} = \{\chi_d | d \geq d_0\}$, then a point x of X is r- cluster point of $(\chi_d)_{d \in D}$ if and only if $x \in A_{d0}$, for all $d_0 \in D$. *r*

Proof : \rightarrow) Let x be an r- cluster point of $(\chi_d)_{d \in D}$ and let N be an r- open set contain x, then $(\chi_d)_{d \in D}$ is frequently in N, thus $A_{d0} \cap N \neq \emptyset$, $\forall d_0 \in D$, then by Proposition (1.11) , \in A_{do} *r* . *r*

 \leftarrow) Let $x \in A_{do}$ $, \forall d_0 \in D$, and suppose that x is not r- cluster point of $(\chi_d)_{d \in D}$, then there exists r- nbd N of x, such that $A_{d0} \cap N = \emptyset$, $\forall d_0 \in D$, $\chi_{d \notin D}$, $d \geq d_0 d$ $\geq d_0$, then A_{d0} *r* . This is contradiction . Hence x is r- cluster point of $(\chi_d)_{d \in D}$.

2- Certain types of strongly regular proper mappings

Definition 2.1, [6] : A space X is called **Hausdorff** (T_2) if for any two distinct points x, y of X there exists disjoint open subsets U and V of X such that $x \in U$, $y \in V$.

Proposition 2.2 : Let (X,T) is a T_2 - space, then the set $\{x\}$ is an r- closed in X, for all $x \in X$.

Proof : To prove that $\{x\} = \{x\}$ *r* , let $y \in X$, such that $x \neq y$. Since X is a T_2 space, then , X_c is an r- T_c , so there is an r- open set U_r in X_c such that $y \in U$, $\underline{x}_r \notin$ $U \to \{x\} \subseteq U$. But U is an r- closed set, then $\{x\} \subseteq U$, therefore $y \notin \{x\}$, for all $y \in X$ and $y \neq x$. Then $\{x\} = \{x\}$, (i.e), $\{x\}$ is an r- closed set in X. *r r*

Definition 2.3, [7] : A space X is called **compact** if every open cover of X has a finite subcover .

Theorem 2.4 , [7] :

(i) A closed subset of compact space is compact .

(ii) In any space , the intersection of a compact set with a closed set is compact .

(iii) Every compact subset of T_2 - space is closed.

Theorem 2.5, [6] : A space X is compact if and only if every net in X has a cluster point in X .

Definition 2.6 : A space X is called **r**- **compact** if every r- open cover of X has a finite subcover .

Proposition 2.7 : Every compact space is r-compact space.

 The converse of Proposition (2.7) , is not true in general as the following example shows :

Example 2.8 : Let $T = \{A \subseteq R \mid Z \subseteq A\} \cup \{\emptyset\}$, be a topology on R. Notice that the topological space (R,T) is r-compact, but its not compact.

Theorem 2.9 : A space X is an r- compact if and only if every net in X has rcluster point in X .

Theorem 2.10 :

(i) An r- closed subset of compact space is r- compact .

(ii) Every r- compact subset of T_2 - space is r- closed.

(iii) In any space , the intersection of an r- compact set with an r- closed set is rcompact .

(iv) In a T_2 - space, the intersection of two r- compact sets is r- compact.

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X, $K \subseteq Y$. Then K is an r - compact set in Y if and only if K is an r - compact set in X.

Proof : \rightarrow) Let K be an r- compact set in Y. To prove that K is an r- compact set in X. Let $\{U_{\lambda}\}_{\lambda \in \Lambda}$ be an r- open cover in X of K, let $V_{\lambda} = U_{\lambda} \cap Y$, $\forall \lambda \in \Lambda$. Then V_{λ} is r- open in X, $\forall \lambda \in \Lambda$. But $V_\lambda \subseteq Y$, thus V_λ is r- open in Y, $\forall \lambda \in \Lambda$. Since K $\subseteq U$ $\bigcup_{\lambda \in \Lambda} V_{\lambda}$ $\check{\epsilon}$, then $\{V_\lambda\}_{\lambda \in \Lambda}$ is an r- open cover in Y of K, and by hypothesis this cover has finite subcover { V_{λ_1} , $V_{\lambda_2}, \ldots,$ V_{λ_n} of K, thus the cover $\{U_{\lambda}\}_{{\lambda \in \Lambda}}$ has a finite

subcover of K . Hence K is an r - compact set in X .

 \leftarrow) Let K be an r- compact set in X. To prove that K is an r- compact set in Y. Let ${U_{\lambda}}_{\lambda \in \Lambda}$ be an r- open cover in Y of K. Since Y is an r- open subspace of X, then by Proposition (1.5), ${U_{\lambda}}_{\lambda \in \Lambda}$ is an r- open cover in X of K. Then by hypothesis there exists $\{\lambda_1, \lambda_2, ..., \lambda_m\}$, such that $K \subseteq \overline{U}$ m $\bigcup_{\lambda=1}$ U_λ $=$, thus the cover

 ${U_{\lambda}}_{\lambda \in \Lambda}$ has a finite subcover of K. Hence K is an r- compact set in Y.

Definition 2.12 : Let X be a space and $W \subset X$. We say that W is **compactly r closed set** if W∩K is r- compact , for every r- compact set K in X .

Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed.

 The converse of Proposition (2.13), is not true in general as the following example shows :

Example 2.14 : Let $X = \{a, b, c\}$ be a space and $T = \{X, \emptyset, \{a, b\}\}\$ be a topology on X. Notice that the set $A = \{a, b\}$ is compactly r-closed, but its not r-closed set .

Theorem 2.15 : Let X be a T_2 - space .A subset A of X is compactly r- closed if and only if A is r- closed .

Remark 2.16 : Let X be a compact, T_2 -space and $A \subseteq X$. Then : (i) A is closed if and only if A is r- closed . (ii) A is compact if and only if A is r- compact .

Definition 2.17 [6]: Let X and Y be spaces . We say that the mapping $f: X \rightarrow Y$ is **a compact mapping** if the inverse image of each compact set in Y , is an compact set in X .

Definition 2.18 : Let X and Y be spaces . We say that the mapping $f: X \rightarrow Y$ is a **st- r- compact mapping** if the inverse image of each r- compact set in Y , is an rcompact set in X .

Examples 2.19 :

(i) The identity mapping is st- r- compact .

(ii)Any mapping from a finite topological space into any topological space is st- rcompact .

Proposition 2.20 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a st- r- compact, rirresolute, mapping. If T is an r- clopen subset of Y, then $f_T : f^{-1}(T) \to \overline{T}$ is a str- compact mapping .

Proof : Let K be an r- compact subset of T. Since T is an r- open set in Y, then by Proposition (2.11) , K is an r- compact set in Y. Since f is a st- r- compact mapping, then $f^{-1}(K)$ is r-compact in X.

Now, since T is an r- closed set in Y, and f is an r- irresolute mapping, then $f^{-1}(T)$ is an r- closed set in X, thus by Proposition (2.10), $f^{-1}(T) \cap f^{-1}(K)$ is an r-

compact set . But f_T^{-1} $f_T^{-1}(K) = f^{-1}(T) \cap f^{-1}(K)$, then f_T^{-1} $T^{1}(K)$ is an r- compact set in $f^{-1}(K)$ $¹(T)$. Therefore is a st- r- compact mapping.</sup>

Proposition 2.21 : Let X, Y and Z be spaces, and $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be mappings . Then :

(i) If f and g are st- r- compact mapping, then gof : $X \rightarrow Z$ is a st-r- compact mapping .

(ii) If go f is a st- r- compact mapping and f is r- irresolute, onto, then g is st- rcompact .

(iii) If go f is a st- r- compact mapping and g is r- irresolute, one to one, then f is st- r- compact .

Proof :

(i) Let K be an r- compact set in Z. Then $g^{-1}(K)$ is an r- compact set in Y, and then $f^{-1}(g^{-1}(K)) = (g \circ f)^{-1}(K)$ is an r- compact set in X. Hence $g \circ f : X \to Z$ is a st-rcompact mapping .

(ii) Let K be an r- compact set in Z. Then $(gof)^{-1}(K)$ is an r- compact set in X, and then $f((gof)^{-1})(K)$ is r- compact in Y. Now, since f is onto, then $f((gof)^{-1})$ $f(x) = g^{-1}(K)$, hence $g^{-1}(K)$ is an r- compact set in Y. Therefore g is a st-rcompact mapping .

(iii) Let K be an r- compact set in Y. Since g is an r- irresolute, then $g(K)$ is an rcompact set in Z, thus $(gof)^{-1}(g(K))$ is an r- compact set in X. Since g is one to one, then $(g(K)) = f^{-1}(K)$, hence $f^{-1}(K)$ is an r- compact set in X. Thus f is a st- r- compact mapping.

Proposition 2.22 : For any r- closed subset F of a space X, the inclusion mapping $i_F : F \to X$ is a st- r-compact mapping.

Proof : Let K be an r- compact set in X , then by Proposition (2.10) , F∩K is an rcompact set in F. But \vec{i}_F^{-1} F $\mathbf{r}_{\mathrm{F}}^{-1}(\mathrm{K}) = \mathrm{F} \cap \mathrm{K}$, then $\mathbf{i}_{\mathrm{F}}^{-1}$ F $_{\text{F}}^{-1}$ (K) is an r- compact set in F. Therefore the inclusion mapping $i_F : F \to X$ is st- r- compact.

Proposition 2.23 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a st- r- compact mapping . If F is an r- closed subset of X, then $f_F : F \rightarrow X$ is a st- r- compact mapping .

Proof : Since F is an r- closed subset of X, then by Proposition (2.22), the inclusion $i_F : F \to X$ is a st- r- compact mapping . But $f_F = f \circ i_F$, then by Proposition (2.21), f_F is a st- r- compact mapping.

Definition 2.24, [4] : Let X and Y be spaces, A mapping $f: X \rightarrow Y$ is called a **coercive** if for every compact set $J \subset Y$, there exists a compact set $K \subset X$ such that $f(X \setminus K) \subset Y \setminus J$.

Definition 2.25 : Let X and Y be spaces, the mapping $f: X \rightarrow Y$ is called **a st- rcoercive** if for every r- compact set $J \subseteq Y$, there exists an r- compact set $K \subseteq X$, such that $f(X \setminus K) \subset Y \setminus J$.

Examples 2.26 :

(i) The identity mapping on any space is st- r- coercive . (ii) If $f : (X,T) \to (Y,\tau)$ is a mapping, such that X is r- compact space, then f is st- r- coercive .

Proposition 2.27 : Every st- r- compact mapping is a st- r- coercive mapping.

Proof : Let J be an r- compact set in Y. Since f is a st- r- compact mapping, then $f^{-1}(J)$ is an r- compact set in X. But $f(X \setminus f^{-1}(J)) \subseteq Y \setminus J$. Hence $f : X \to Y$ is a str- coercive mapping .

Proposition 2.28 : Let X and Y be spaces, such that Y is a T_2 – space, and $f : X$ \rightarrow Y is an r- irresolute mapping. Then f is a st- r- coercive if and only if f is a str- compact .

Proof : \rightarrow) Let J be an r- compact set in Y . To prove that $f^{-1}(J)$ is an r- compact set in X. Since Y is a T₂ – space and f is an r- irresolute mapping, then $f^{-1}(J)$ is an r- closed set in X. Since f is a st- r- coercive mapping, then there exists an rcompact set K in X, such that K c) \subseteq J c , therefore $f^{-1}(J) \subseteq K$. Thus by Proposition (2.10), f^{-1} $f^{-1}(J)$ is an r- compact set in X. Hence $f: X \rightarrow Y$ is a st- r- compact mapping. \leftarrow) By Proposition (2.25).

Proposition 2.29 : Let X, Y and Z be spaces . If $f : X \to Y$, $g : Y \to Z$ are st-rcoercive mapping, then go $f: X \rightarrow Z$ is a st- r- coercive mapping.

Proof : Let J be an r- compact set in Z. Since $g: Y \rightarrow Z$ is a st- r- coercive mapping, then there exists an r- compact set K in Y, such that $g(Y \setminus K) \subset Z \setminus J$. Since $f: X \rightarrow Y$ is a st- r- coercive mapping, then there exists an r- compact set H in X, such that $f(X \setminus H) \subseteq Y \setminus K \Rightarrow g(f(X \setminus H) \subseteq g(Y \setminus K) \subseteq Z \setminus J \Rightarrow (g \circ f)(X \setminus H)$ $\subset Z \setminus J$.

Hence go f is a st-r-coercive mapping.

Proposition 2.30 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a st- r- coercive mapping . If F is an r- closed subset of X, then the restriction mapping $f_F : F \to Y$ is a st- r- coercive mapping .

Proof : Since F is an r- closed subset of X, then by Proposition (2.22), and Proposition (2.27), the inclusion mapping $i_F : F \to X$ is a st- r-coercive mapping. But $f_{\mathbb{F}} \equiv f \circ i_{\mathbb{F}}$, then by Proposition (2.21), $f_{\mathbb{F}}$ is a st- r- coercive mapping.

3- Strongly Regular Proper Mapping :

Definition 3.1, [1] : Let X and Y be spaces, and $f: X \rightarrow Y$ be a mapping. We say that f is **a proper mapping** if : (i) f is continuous. (ii) $f \times I_z$: $X \times Z \rightarrow Y \times Z$ is closed, for every space Z.

Definition 3.2 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a mapping. We say that ƒ is **a strongly regular proper (st-r- proper) mapping** if :

 (i) f is continuous.

(ii) $f \times I_Z$: $X \times Z \rightarrow Y \times Z$ is st- r- closed, for every space Z.

Example 3.3 : Let $X = \{a, b\}$, $Y = \{x, y\}$ be sets and $T = \{\emptyset, X, \{a\}, \{b\}\}\,$, $\tau =$ $\{0, Y, \{x\}, \{y\}\}\$ be topologies on X and Y respectively. The mapping $f: X \rightarrow Y$ which is defined by : $f(a) = f(b) = x$ is st- r- proper.

Remarks 3.4 :

(i) Every st- r- proper mapping is st- r- closed .

(ii) Every st- r- homeomorphism is st- r- proper .

 The converse of Remark (3.4.i) , is not true in general as the following example shows :

Example 3.5 : Let $f : (R, U) \rightarrow (R, U)$ be the mapping which is defined by $f(x) =$ 0, for every $x \square R$. Notice that f is a st- r- closed mapping but f is not st- rproper mapping, since for the usual space (R, U) the mapping $f\times I_z : R\times R \rightarrow$ $R \times R$, such that $(f \times I_R)(x,y) = (0,y)$, for every $(x,y) \square R$ is not st-r-closed mapping .

 The converse of Remarks (3.4.ii) , is not true in general as the following example shows :

Example 3.6 : Let $X = \{a, b, c\}$, $Y = \{x, y\}$ be sets and $T = \{\emptyset, X, \{a\}, \{a, b\}\}\$, τ $= \{ \emptyset, Y, \{x\} \}$ be topologies on X and Y respectively. Let $f : X \rightarrow Y$ be a mapping which is defined by : $f(a) = f(b) = x$, $f(c) = y$. Notice that f is a st-r-

proper mapping, but f is not one to one mapping, therefore f is not st-rhomeomorphism .

Proposition 3.7 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a st- r- proper mapping . If T is a clopen subset of Y, then $f_T : f^{-1}(T) \to T$ is a st- r- proper mapping .

Proof : Since $f : X \to Y$ is a continuous mapping, then f_T is a continuous mapping . To prove that $f_T \times I_Z : f^{-1}(T) \times Z \to T \times Z$ is a st- r- closed mapping, for every space Z. Notice that $f_T \times I_Z \equiv (f \times I_Z)_{T \times Z}$, where $f \times I_Z$ is a st- r- closed mapping, since T is a clopen subset of Y, then by Proposition (1.12) , T \times Z is a clopen subset of Y×Z, thus by Proposition (1.21), $(f\times I_Z)_{T\times Z} \equiv (f_T\times I_Z)$ is a st- rclosed mapping, hence $f_T: f^{-1}(T) \to T$ is a st- r- proper mapping.

Proposition 3.8 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a st- r- proper mapping . If Y is a T₂- space, then $f_{y}: f^{-1}(\{y\}) \rightarrow \{y\}$ is a st- r- proper mapping, for all $y \in Y$.

Proof : Since $f : X \to Y$ is a continuous mapping, then f_{y} is a continuous mapping . To prove that $f_{y} \times I_z : f^{-1}(\{y\}) \times Z \to \{y\} \times Z$ is a st- r- closed mapping, for every space Z . Let $^{-1}(\lbrace y \rbrace) \times Z$, then : $\overline{(f_{\lbrace y \rbrace} \times I_Z)(F)}$ *r* \subseteq $({y \ }_{Y} \times Z) \cap (f \times I_{Z})(F)$ *r* \subseteq {y} \int Z *r* $\bigcap (f\times \mathrm{I}_Z)(\mathrm{F})$ *r* .

Since Y is a T_2 - space, then by Proposition (2.2), {y} is an r- closed set, for all $y \in Y$, so $\{y\} \times Z$ is an r- closed in $Y \times Z$, then $\{y\} \times Z$ \hat{r} = {y} × Z . Since $f \times I_Z$: $X \times Z \to Y \times Z$ is a st- r- closed mapping and $F \subseteq f^{-1}(\{y\}) \times Z \subseteq X \times Z$, then by Proposition (1.20) , $(f\times I_Z)(F)$ *r* $\subseteq (f\times I_Z)(\begin{array}{c} 0 \\ F \end{array})$ \overline{f}). Thus $\overline{(f_{\{y\}} \times I_Z)(F)}$ *r* \subseteq $\{y\} \times Z \cap (f \times I_Z)$ ($\frac{1}{F}$ $\binom{r}{ }$.

Since $(f_{\{y\}} \times I_Z)(\overline{F})$ *r*(*f* \times **I**_Z)_{y} \times **Z**($\frac{1}{F}$ $\binom{r}{r}$ = ({y} × Z) $\cap (f \times I_Z)(\frac{1}{F})$ $\binom{r}{r}$, then $(f_{\{y\}} \times I_Z)(F)$ *r* $\subseteq (f_{\{y\}} \times I_Z)(\begin{array}{c} - \\ F \end{array})$ ^{*r*}), therefore by Proposition (1.20), $f_{y} \times I_z$ is a st-rclosed mapping. Hence $f_{y}: f^{-1}(\{y\}) \rightarrow \{y\}$ is a st- r- proper mapping.

Theorem 3.9 : Let $f: X \to P = \{w\}$ be a mapping on a space X. If f is a st- rproper mapping , then X is an r- compact space , where w is any point which does not belong to X .

Proof : To prove that X is an r- compact space . Let $(\Box_d)_{d \Box D}$ be a net in X, and let $X = X \cup \{w\}$. Consider : $\square(x) = \{U \square X\}$

 $\square(w) = \{M \cup \{w\} | M \square X \text{ and } (\square_d) \text{ is eventually in } M \}.$

Proposition (1.14), and therefore we can define a topology on X by: T '' $X \mid \Box x \Box U \Rightarrow U \Box \Box(x)$, such that the family $\bigcup \{ \Box(x) \}_{x \Box x}$ is the neighborhood 'system of the space (X, T) .

U {w}| M \Box X and (\Box _d) is event

that for each x \Box X, the fam

(1.14), and therefore we can de
 \Rightarrow U \Box \Box (x)}, such that the far

e space (X,T).

ppose w \Box X with respect to T

d then U is an \Box - op *r* '*r* '
⊥Let U □ T Now, suppose $w \Box X$ with respect to T - '- open set, then there exists an open set $V \square T$ such $\overline{\circ}$ \overline{V} , hence $w \square \overline{V}$, thus for all open set $U_1 \square T$, V that '1, $U_1 \cap V \neq \emptyset$. Since the set $U_1 = X \cup \{w\} \square T$ U₁, then $U_1 \cap V \neq \emptyset \rightarrow$ $\bigcup \{w\} \cap V \neq \emptyset \longrightarrow (X \cap V) \cup (\{w\} \cap V) \neq \emptyset$. Claim $X \cap V \neq \emptyset$, if $X \cap V = \emptyset$, then $\{w\} \cap V \neq \emptyset \rightarrow w \square V \square T$, thus $V = M_2 \cup \{w\}$, where $M_2 \square X$ and a net (\square_d) is eventually in M_2 . But $X \cap V = \emptyset$, then $X \cap (M_2 \cup \{w\}) = \emptyset$, hence $X \cap M_2 = \emptyset$, and this is a contradiction X . Now , let ∆ be the diagonal

set of X \times X in T, and let $F = \Delta$,

consider the commutative diagram :

'

'

Where h: $\{w\} \times X \rightarrow X$ is the homeomorphism and $Pr_2: X \times X \rightarrow X$ is the projection map . Since $f: X \to \{w\}$ is a st- r- proper mapping, then $f \times I_Z : X \times X$ $\rightarrow \{w\} \times X$ is a st-r-closed mapping. *r*

'

'

Claim $X \square Pr_2(F)$, if $x \square X \rightarrow (x,x) \square \triangle \square \triangle$ $=$ F \rightarrow x = Pr₂(x,x) \Box Pr₂(F) \rightarrow $\Pr_2(F)$. Since $w \square X \square \Pr_2(F) = \Pr_2(F)$, then $w \square \Pr_2(F)$. Therefore there $\frac{r}{r}$ $\frac{r}{r}$ Δ *r* . Let U be an r- open set in X contains x and V be any subset of X, such that a net (\square_d) is eventually in V. Thus

 ${\rm V}\bigcup \{w\}\ \Box\ \Box (w)$, ${\rm w}\ \Box\ {\rm V}\bigcup \{{\rm w}\}.$ Thus by Proposition (1.12) , ${\rm U}\times ({\rm V}\bigcup \{{\rm w}\})$ is an ropen set in X×^X containing (x,w), since (x,w) $\in \Delta$, then U×(V \cup {w}) $\cap \Delta \neq \emptyset$ \rightarrow U∩V \neq Ø. So for all r- open set U in X containing x and for all subset V of X, such that a net (\square_d) is eventually in V, U∩V $\neq \emptyset$.

Since (\Box_d) is eventually in A_{do} = V \Box X, then A_{do} \cap U ≠ Ø, for all $d_0 \Box$ D and all r- open set contains x. Thus $x \Box_{A_{d0}}$ *r* $d_0 \Box$ D, therefore Proposition (1.31),

 α $\frac{r}{x}$ x. Hence by Proposition (2.9), X is an r- compact space.

Theorem 3.10 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a continuous mapping. If Y is a T_2 - space, then the following statements are equivalent :

(i) f is a st- r- proper mapping.

(ii) f is a st- r- closed mapping and $f^{-1}(\{y\})$ is r-

(iii) If $(\Box_d)_{d \Box D}$ is a net in X and $y \Box Y$ is an r- cluster point of $f(\Box_d)$, then there is an r- cluster

point $x \square X$ of $(\square_d)_{d \square D}$, such that $f(x) = y$.

Proof :

(i→ii). Let $f : X \to Y$ be a st- r- proper mapping, then $f \times I_Z : X \times Z \to Y \times Z$ is a str- closed for every space Z. Let $Z = \{t\}$, then $X \times Z = X \times \{t\} \square X$ and $Y \times Z =$ $Y \times \{t\} \square Y$, and we can replace $f \times I_Z$ by f, thus f is a st- r- closed mapping. Now ${y} : f^{-1}({y}) \to {y}$ is a st-rproper . Thus by Theorem (3.9) , $f^{-1}({y})$ is an r-compact set.

d) do a net in X and $y \Box Y$ be an r- cluster point of a net $f(\Box_d)$ in Y. Assume that $f^{-1}(y) \neq \emptyset$, if $f^{-1}(y) = \emptyset$, then $y \square f(x) \rightarrow y \square (f(X))$, since X is an r- closed set in X and f is a st- r- closed mapping, then $f(X)$ is an r- closed set in Y. Thus $(f(X))$ is an r- open set in Y. Therefore $(f(\Box_d))$ is frequently in $(f(X))$. c

 $f(x)$, \Box d \Box \Box D , then $f(X) \cap (f(X)) \neq \emptyset$, and this is a contradiction . Thus $f^{-1}(y) \neq \emptyset$, therefore $\exists x \in X$, such that $f(x) = y$.

Now, suppose that the statement (iii), is not true, that means, for all $x \square f$ ¹(y) there exists an r- open set U_x in X contains x, such that (\square_d) is not frequently in U_x . Notice that $f^{-1}(y) =$ $x \in f^{-1}(y)$ $\{x\}$ $\bigcup \{x\}$. Therefore the family $\{U_X | x \sqsubset f^{-1}(y)\}$ is an r-

open cover for $f^{-1}(y)$. But $f^{-1}(y)$ is an r- compact set, thus there exists x_1, x_2, \ldots $, x_n \in f^{-1}(y)$, such that $f^{-1}(y) \Box Ux_1 \cup Ux_2 \dots \cup Ux_n$, then $f^{-1}(y)$ \bigcap [\cup $_{\rm U_{\rm w}}$.] n $\begin{bmatrix} \bigcup_{i=1}^{n} U_{x_i} \end{bmatrix}$, $x_n \in f^{-1}(y)$, such that $=$ $= \emptyset \rightarrow f^{-1}(y) \cap [\bigcap_{i=1}^{n}$ n $i=1$ U c $\frac{1}{-1}U_{x}$ $] = \emptyset$. But $(x_i)_{i \in \Lambda}$ is not frequently in $[]$ n $\bigcup_{i=1}^U U_{xi}$,

Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 3 No.1 Year 2011

but \overline{U} n $\bigcup_{i=1}^U U_{x_i}$ is an r- open set in X, then \bigcap n $i=1$ U c $\frac{1}{-1}U_{x}$ is an r- closed set in X . Thus $f(\tilde{\bigcap}$ n $i=1$ U c $\frac{1}{-1}$ U_{xi}) is an r- closed set in Y . Claim y \Box f($\overline{\bigcap}$ n $i=1$ U c $\frac{1}{-1}U_{x}$ \bigcap n $i=1$ U c \mathbf{u} ₌₁ \mathbf{u} _{xi} \bigcap n $i=1$ U c \mathbf{u} ₌₁ \mathbf{u} _{xi} , such that U n $\bigcup_{i=1}^U U_{xi}$ $f^{-1}(y)$, therefore $f^{-1}(y)$ is not a subset of U n $\bigcup_{i=1}^U U_{xi}$, and this is a contradiction . Hence there is an r- open set A in Y , such that $\bigcap f(\bigcap$ n $i=1$ U c $\frac{1}{-1}$ U_{xi} $= \mathcal{O} \rightarrow f^{-1}(A) \cap f^{-1}(f) \cap$ n $i=1$ U c \mathbf{u} = \mathbf{u} = \mathbf{u} $)) = \emptyset \rightarrow f^{-1}(A) \cap [\bigcap_{i=1}^{n}$ n $i=1$ U c $\frac{1}{2}$ U_{xi} $] =$ $\emptyset \rightarrow$ U n $\bigcup_{i=1}^U U_{xi}$ $_{\text{d}}$)) is frequently in A, then (\Box_{d}) is frequently in $f^{-1}(A)$, and then (\Box_d) is frequently in $\bigcup_{i=1}^n$ n $\bigcup_{i=1}^U U_{xi}$.This is contradiction , and this is complete the proof . (iii \rightarrow i). Let Z be any space . To prove that $f: X \rightarrow Y$ is a st- r- proper mapping, i.e, to prove that $f\times I_z : X \times Z \rightarrow Y \times Z$ is a st- r- closed mapping. Let F be an rclosed set in $X \times Z$. To prove that $(f \times I_Z)(F)$ is an r- closed set in $Y \times Z$. Let (y, z) $(f\times I_Z)(F)$ *r* , then by Proposition (1.30), there exists a net $\{(y_d, z_d)\}_{d \square D}$ in $(f\times I_Z)(F)$ such that $(y_d, z_d)_{\alpha}$ *r* (y, z) , where $(y_d, z_d) = ((f \times I_z)(x_d, y_d))$, and ${(x_d,$ y_d) $\big\{ d \cap p$ is a net in F. Thus ∞ *r* (y,z) , so $f(x_d)$ ∞ *r* y and $z_d \propto$ *r* $d \propto$ *r* x and $f(x) = y \rightarrow (x_d, z_d)$ ∞ *r* (x,z) and $\{(x_d, z_d)\}_{d\Box D}$ is a net in F, thus (x,y) \Box F ^r. Since F = $\frac{1}{F}$ \int ^r, then $Z(z)(x,y)$ \rightarrow (y,z) \Box $(f\times I_Z)(F)$, and then $(f\times I_Z)(F)$ *r* = $(f\times I_Z)(F)$, thus $(f\times I_Z)(F)$ is an r- closed set in Y $\times Z$. Hence $f\times I_Z : X\times Z \rightarrow Y\times Z$ is a st- r- closed mapping . Therefore $f : X \rightarrow Y$ is a st- r- proper mapping.

Proposition 3.11 : If X is an r- compact space, then the mapping $f: X \to P = \{w\}$ on a space X is st- r- proper, where w is any point which does not belongs to X .

Proof : Let X be an r- compact space. Since P is a single point, then f is a continuous mapping . To prove that $f: X \rightarrow P = \{w\}$ is a st- r- proper mapping : (i) Since $f^{-1}(P) = X$, then $f^{-1}(P)$ is an r- compact set.

(ii) Let F is an r- closed subset of X, then either : $f(F) = \emptyset$ or $f(F) = \{w\}$. Then f is st- r- closed mapping, hence by Theorem (3.10) , f is a st- r- proper mapping.

Proposition 3.12 : Let X, Y and Z be spaces . If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are str- proper maps, then $g \circ f : X \to Z$ is a st- r- proper mapping.

Proof : Since f and g are st- r- proper maps, then $f \times I_w$ and $g \times I_w$ are st-r- closed, for every space W, then by Proposition (1.22), $(g \times I_W) o(f \times I_W)$ is st- r- closed mapping . But $(g \times I_W) o(f \times I_W) = (g \circ f) \times I_W$, then $(g \circ f) \times I_W$ is st- r- closed, and since go f is continuous. Hence go f is an st- r- proper mapping.

Proposition 3.13 : Let X, Y and Z be spaces, and $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be continuous maps, such that $g \circ f : X \to Z$ is a st- r- proper mapping. If g is one to one, r - irresolute, then f is a st- r - proper mapping.

Proof : Let W be any space . To prove that $f \times I_W$: $X \times W \rightarrow Y \times W$ is a st- r- closed mapping . Since go f : $X \rightarrow Z$ is a st- r- proper, then $(g \circ f) \times I_w : X \times W \rightarrow Z \times W$ is a st- r- closed mapping, so we can write $(g \circ f) \times I_W = (g \times I_W) \circ (f \times I_W)$. Since $g \times I_W$ is one to one, r- irresolute mapping, then by Proposition (1.22), $f\times I_W$ is a st- rclosed . Hence $f: X \rightarrow Y$ is a st- r- proper mapping.

Proposition 3.14 : Let f_1 : $X_1 \rightarrow Y_1$ and f_2 : $X_2 \rightarrow Y_2$ be maps . Then $f_1 \times f_2$: $X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is a st- r- proper mapping if and only if f_1 and f_2 are st- rproper .

Proof : \rightarrow) To prove that f_2 is a st- r- proper . Since $f_1 \times f_2$ is continuous, then both f_1 and f_2 are continuous . To prove that $f_2 \times I_z : X_2 \times Z \to Y_2 \times Z$ is st- r- closed, for every space Z. Let F be an r- closed subset of $X_2 \times Z$, since X_1 is an r- closed set in X_1 , then by Proposition (1.12), $X_1 \times F$ is an r- closed set in $X_1 \times X_2 \times Z$. Since $f_1 \times f_2$ is st- r- proper, then $(f_1 \times f_2 \times I_Z)(X_1 \times F)$ is an r- closed set in $Y_1 \times Y_2 \times Z$. But $(f_1 \times f_2 \times I_Z)(X_1 \times F) = f_1(X_1) \times (f_2 \times I_Z)(F)$, thus $f_1(X_1) \times (f_2 \times I_Z)(F)$ is an r-closed set in $Y_1 \times Y_2 \times Z$, then by Proposition (1.12), $(f_2 \times I_Z)(F)$ is an r- closed set in $Y_2 \times Z$, then $f_2 \times I_Z : X_2 \times Z \to Y_2 \times Z$ is a st- r- closed mapping. Therefore $f_2 : X_2 \to Y_2$ is a str- proper mapping .

Similarly, we can prove that $f_1: X_1 \to Y_1$ is a st- r- proper mapping. \leftarrow) To prove that $f_1 \times f_2$: $X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is a st- r- proper. Since f_1 and f_2 are continuous, then $f_1 \times f_2$ is continuous mapping. Let Z be any space. Notice that : $f_1 \times f_2 \times I_Z = (Iy_1 \times f_2 \times I_Z) \cdot (f_1 \times Ix_2 \times I_Z)$, since f_1 and f_2 are st- r- proper maps, then $(Iy_1 \times f_2 \times I_z)$ and $(f_1 \times Ix_2 \times I_z) = f_1 \times Ix_2 \times Z$ are st- r- closed maps. Therefore by Proposition (1.22), the mapping $f_1 \times f_2 \times I_z$ is a st- r- closed. Hence $f_1 \times f_2$ is a st- rproper mapping .

Proposition 3.15 : Let X be an r- compact space, and Y any space, then the projection Pr₂ : $X \times Y \rightarrow Y$ is a st- r- proper mapping.

Proof : Consider the commutative diagram :

Where h : $\{p\} \times Y \to Y$ is the homeomorphism of $\{p\} \times Y$ onto Y and $Pr_2 : X \times Y$ \rightarrow Y is the projection of X×Y into Y. Since X an is r- compact space, then by Proposition (3.11), $f: X \to \{p\}$ is a st- r- proper and $I_v: Y \to Y$ is a st- rproper, then $f \times I_v$ is a st- r- proper. Therefore ho($f \times I_v$) is a st- r- proper mapping. But $Pr_2 = ho(f \times I_v)$, then Pr_2 is a st- r- proper mapping.

Proposition 3.16 : Let X and Y be spaces, and $f: X \rightarrow Y$ be a st- r- proper mapping . If F is a clopen subset of X, then the restriction map $f_{\text{F}} : F \to Y$ is a st- r- proper mapping .

Proof : To prove that $f_{\text{F}} \times I_Z : F \times Z \rightarrow Y \times Z$ is a st- r- closed mapping for every space Z. Since F is an clopen subset of X, then by Proposition (1.12) , F \times Z is a clopen subset of $X \times Z$. Since $f \times I_Z$ is a st- r- closed mapping, then by Proposition (1.21) , $(f\times I_Z)_{F\times Z}$ is a st- r- closed mapping. But $f|_F\times I_Z = (f\times I_Z)_{F\times Z}$, thus $f|_F\times I_Z$ is a st- r- closed mapping . Since $f|_F$ is continuous, hence $f|_F : F \to Y$ is a st- rproper mapping .

Proposition 3.17 : Let X and Y be spaces . If $f : X \rightarrow Y$ is a st- r- proper mapping , then f is a st- r - compact mapping.

Proof : Let A be an r- compact subset of Y . To prove that $f^{-1}(A)$ is an r- compact $_d$ _d $_d$ _D be a net in $f^{-1}(A)$, then $f(\overrightarrow{L}_d)$ is a net in A. Since A is an rr- cluster point of $f(\Box_d)$. Since f is st- r- proper, then by Theorem (3.10), there exists $x \square X$, such that x is an r- cluster point of (\square_d) , and $f(x) = y$. Thus every net in $f^{-1}(A)$ has r- cluster point in itself, then by Proposition (2.9), $f^{-1}(A)$ is an rcompact set in X. Therefore $f: X \rightarrow Y$ is a st- r- compact mapping.

 The converse of Proposition (3.17) , is not true in general as the following example shows :

Example 3.18 : Let $X = \{a, b, c, d\}$, $Y = \{x, y, z\}$ be sets and $T = \{\emptyset, X, \{a, b\},\}$ ${c, d}$, $\tau = {\emptyset, Y, {z}}$ be topologies on X and Y respectively. Let $f : X \to Y$ be a mapping which is defined by : $f(a) = f(b) = f(c) = v$, $f(d) = z$.

Notice that f is a st- r- compact mapping, but f is not st- r- proper mapping. Since $\{c,d\}$ is an r- closed set in X, but $f(\{c,d\}) = \{y,z\}$ which is not r- closed set in Y, then f is not st- r - closed mapping.

Theorem 3.19 : Let X and Y be spaces, such that Y is a T_2 - space, and $f: X \rightarrow Y$ Y is a continuous, r - irresolute mapping. Then f is a st-r- proper mapping if and only if f is a st- r- compact mapping.

Proof : \rightarrow) By Proposition (3.17).

 \leftarrow) To prove that f is a st- r- proper mapping :

(i) Let F be an r- closed subset of X. To prove that $f(F)$ is an r- closed set in Y, let K be an r- compact set in Y, then $f⁻¹(K)$ is an r- compact set in X, then by Theorem (2.10) . $F \cap f^{-1}(K)$ is r- compact in X. Since f is r- irresolute, then $f(F \cap f^{-1}(K))$ is r- compact set in Y. But $\hat{f}(F \cap f^{-1}(K)) = f(F) \cap K$, then $f(F) \cap K$ is r- compact, thus $f(F)$ is compactly r- closed set in Y. Since Y is T_2 - space, then by Theorem (2.15), $f(F)$ is r- closed set in Y. Hence f is a st- r- closed mapping .

(ii) Let $y \Box Y$, then $\{y\}$ is r- compact in Y. Since f is a st- r- compact mapping, then $\mathcal{L}^1({y})$ is r- compact in X. Therefore by (i), (ii) and using Theorem (3.10) , f is a st- r- proper mapping.

Theorem 3.20 : Let X and Y be spaces, such that Y is a T_2 -space and $f: X \rightarrow Y$ is a continuous , r- irresolute , mapping . Then the following statements are equivalent :

(i) f is a st- r- coercive mapping. (ii) f is a st- r- compact mapping.

(iii) f is a st- r- proper mapping.

Proof :

 $(i \rightarrow ii)$. By Proposition (2.28).

 $(ii \rightarrow iii)$. By Theorem (3.19).

 $(iii \rightarrow i)$. Let J be an r- compact set in Y. Since f is a st- r- proper, then by Proposition

 (3.17) , f is a st- r- compact mapping, then $f^{-1}(J)$ is an r- compact set in X. Thus $f(X \setminus f^{-1}(J)) \square Y \setminus J$. Hence $f : X \to Y$ is a st- r- coercive mapping.

References :

[1] Bourbaki , N. , Elements of Mathematics , "General Topology" , Chapter 1- 4 , Springer – Verlog, Berlin, Heidelberg, New – York, London, Paris, Tokyo, 2^{nd} Edition (1989) .

- [2] Dugundji , J. , "Topology" , Allyn and Bacon , Boston , (1966) .
- [3] Gemignani , M. C. , "Elementary Topology", Addision Wesley Inc. , Mass. , $2nd$ Edition (1972).
- [4] Habeeb K. and Alyaa Y., "f*- Coercive function". Appear.
- [5] J. Cao and I. L. Reilly, "Nearly compact spaces and δ^* Continuous Functions" , Bollettino U. M. I. (7) , 10 – A (1996) .
- [6] Sharma J. N. , "Topology" , published by Krishna Prakashan Mandir , Meerut (U. P.) , Printed at Manoj printers , Meerut , (1977) .
- [7] Taqdir H. , "Introduction to Topological Groups" , (1966) .
- [8] Willard , S. , "General topology" , Addison Wesley Inc. , Mass. , (1970) .

التطبيقات السديدة المنتظمة بقوة

الخالصة

 الهدف األساسي من هذا العمل هو تقديم نوع خاص و جديد لمتطبيق السديد هو التطبيق السديد المنتظم بقوة . كما قدمنا تعريف جديد للتطبيق المتراص و التطبيق الأضطراري . كما تضمن البحث بعض الخواص و العبارات المتكافئة و كذلك شرحنا العالقة بين هذه التعريفات .