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Abstract
The main goal of this work is to create a special type of proper mappings
namely, strongly regular proper mappings and we introduce the definition of a
new type of compact and coercive mappings and give some properties and
some equivalent statements of these concepts , as well as explain the
relationship among them .

Introduction
One of the very important concepts in topology is the concept of mapping .
There are several types of mappings , in this work we study an important class of
mappings , namely, strongly regular proper mappings .
Proper mapping was introduced by Bourbaki in [1] .
Let A be a subset of topological space X . We denote to the closure and

interior of Aby A and ,° respectively .
James Dugundji in [2] defined the regular open set as a subset A of a space X
, such that A = A . Stephen Willard in [8] defined the regular open set similarly

with Dugundji's definition .

This work consists of three sections .

Section one includes the fundamental concepts in general topology , and the
proves of some related results which are needed in the next section .

Section two contains the definitions of strongly regular compact mapping and
strongly regular coercive mapping . Also the relationship among these concepts is
introduced and some of its related results are proved .

Section three introduces the definition of strongly regular proper mapping and
some of its related are proved .

1- Basic concepts
Definition 1.1, [2] : A subset B of a space X is called regular open (r- open) set

if B = B . The complement of a regular open set is defined to be a regular
closed (r- closed) set .

Proposition 1.2, [2] : A subset B of a space X is r- closed if and only if B=B .
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Its clearly that every r- open set is an open set and every r- closed set is closed
set, but the converse is not true in general as the following example shows :

Example 1.3 : Let X ={a, b,c,d} beasetand T = {0, X, {a}, {a, b}, {a, c, d}}
be a topology on X . Notice that {a, b} is an open set in X, but its not r- open set,
and {b} is a closed set in X, but its not r- closed set .

Corollary 1.4 : A subset B of a space X is clopen (open and closed) if and only if
Bis r- clopen (r- open and r- closed ) .

Proposition1.5: LetAc Y < X . Then:

(i) If Aisanr-opensetin Y and Y is an r- open set in X , then A is an r- open set
in X.

(i) If Alisan r- closed set in Y and Y is an r- closed set in X, then A is an r- closed
setin X.

Remark 1.6 : If A'is an r- closed set in X and B is a clopen set in X , then ANB is
r- closed in B..

Definition 1.7 : Let A be a subset of a space X . A point xeA is called r- interior
point of A if there exists an r- open set U in X suchthat x e U c A.
The set of all r- interior points of A is called r- interior set of A and its denoted

by AOI’ .

Proposition 1.8 : Let (X, T) be aspace and A < X . Then:
(I) Aor - Ao.

. o_ o or

() (a"" = () o

(iii) Aisr-openifandonly if A = A .

Definition 1.9 : Let A be a subset of a space X . A point x in X is said to be r-
limit point of A if for each r- open set U contains x implies that UNA\{x} = o .
The set of all r- limit points of A is called r- derived set of A and its denoted

byAr .

Definition 1.10 : Let X be a space and B < X . The intersection of all r- closed
sets containing B is called the r- closure of B and denotes by ;r :

Proposition 1.11 : Let X be aspaceand A, B < X . Then:
(i) ;r is an r- closed set .
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(iAc A . i
(i) A'is r-rclosed ifandonlyif A = A,

(iv)x e A ifandonlyif ANU = e , for any r- open set U containing X .

Proposition 1.12: Let X and Y be two spaces,and A c X,B c Y . Then:

(i) A, B are r- open subsets of X and Y respectively if and only if AxB is r- open
subset in XxY .

(i) A, B are r- closed subsets of X and Y respectively if and only if AxB is r-
closed subset in XxY .

(iii) A, B are clopen subsets of X and Y respectively if and only if AxB is clopen
subset in XxY .

(iv) A, B are r- clopen subsets of X and Y respectively if and only if AxB is r-
clopen subset in XxY .

Definition 1.13 , [3] : Let X be a space and B be any subset of X . A
neighborhood of B is any subset of X which containing an open set containing B .
The neighborhoods of a subset {x} , consisting of a single point are also called
neighborhood of a point x .
The collection of all neighborhoods of the subset B is denoted by N(B) . In
particular the collection of all neighborhoods of x is denoted by N(x) .

Proposition 1.14 , [1] : Let X be a set . If to each element x of X , there
corresponds a collection p(x) of subsets of X , satisfying the properties :

(i) Every subset of X which contains a set belongs to p(x) , itself belongs to p(x) .
(i1) Every finite intersection of sets of p(x) belongs to p(x) .

(iii) The element x is in every set of B(x) .

(iv) If V belongs to p(x) , then there is a set W belonging to p(x) such that for each
y e W, V belongs to () .

Then there is a unique topological structure on X such that , for each xe X, p(x)is
the collection of neighborhoods of x in this topology .

Definition 1.15 : Let X be a space and B < X . An r- neighborhood of B is any
subset of X which contains an r- open set containing B . The r- neighborhoods of a
subset {x} consisting of a single point are also called r- neighborhoods of the
point X.

Let us denote the collection of all r- neighborhoods of the subset B of X by
Nr(B) . In particular , we denote the collection of all r- neighborhoods of x by
Nr(x) .
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Definition 1.16 , [1] : Let f : X — Y be a mapping of spaces .Then :

(i) f is called continuous mapping if f™(A) is an open set in X for every open set A
iny .

(i1) f 1s called open mapping if f(A) is an open set in Y for every open set A in X .
(iii) f is called closed mapping if f(A) is a closed set in Y for every closed set A in
X.

Definition 1.17 : A mapping f : X — Y is called r- irresolute if f*(A) is an r- open
setin X for every r- openset Ain Y .

Definition 1.18 : Let X and Y be spaces and f : X — Y be a mapping . Then :

(1) f is called a strongly r- open (st- r- open) mapping if the image of each r-
open subset of X isan r- open setinY .

(i1) f is called a strongly r- closed (st- r- closed) mapping if the image of each r-
closed subset of X is an r- closed setin'Y .

Definition 1.19 : Let X and Y be spaces . Then the mapping f : X — Y is called
st- r- homeomorphism if

(1) f 1s bijective .

(11) f is continuous .

(iii) f is st- r- open (or st- r- closed) .

Proposition 1.20 : A mapping f : X — Y is st- r- closed if and only if TA)r -
—r
f(A), VAcX.

—r

Proof: - )Let f: X > Y bera st- r- closed mapping and A < X . Since A is arn

r- closed set in X , then f(A ) is an r- closed subset of Y , and since A c A
—r —r — —r

then f(A) < f(A ). Thus f(A) < f(Ar) = f(A ), hence f(A)r c f(A).

« ) Let /(A) < f(A ), forall A c X.LetF beanr-closed subset of X ,i.e,F=

-r —Tr - —Fr r

F , thus by hypothesis f(F) < f(F )= f(F).But f(F) c f(F) | then f(F)=/(F) .
Hence f(F) is an r- closed setin Y , thus f : X — Y is a st- r- closed mapping .
Proposition 1.21 : Let X and Y be spaces . If f : X — Y is a st- r- closed ,
continuous mapping . Then for each clopen subset T of Y, f1: f(T) - Tis ast-
r- closed mapping .

Proof : Let T be a clopen subset of Y . Since f is continuous , then f™(T) is a
clopen set in X . Let F be an r- closed set in f*(T) , by Corollary (1.4) , and
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Proposition (1.5) , F is r- closed in X . Since f is a st- r- closed mapping , then
f(F) is r- closed in Y , hence by Remark (1.6) , TN f(F) is r- closed in T . But
f1(F) = TN f(F), then f1(F) is an r- closed set in T . Therefore f is a st- r- closed

mapping .

Proposition 1.22: Let X , Y and Z be spaces and f : X - Y ,g:Y — Z be
mappings . Then:

(1) If f and g are st- - closed , then gof :X — Z is st- r- closed mapping .

(i1) If gof is a st- r- closed mapping and f is onto , r- irresolute , then g is st- r-
closed .

(i) If gof is a st- r- closed mapping and g is one to one , r- irresolute , then f is st-
r- closed .

Proof :

(i) Let F be an r- closed subset of X , then f(F) is an r- closed set in Y and then
g(f(F)) = (gof)(F) is an r- closed set in Z . Hence (gof) is a st- r- closed mapping .
(ii) Let F be an r- closed subset of Y , since f is r- irresolute , then f™(F) is r-
closed in X . Since gof is a st- r- closed mapping , then (gof)( f*(F)) is an r-
closed set in Z . But f is onto , then (g0/)( /™ (F)) = g(F) , thus g(F) is an r- closed
setin Z . Hence g is st- r- closed .

(iii) Let F be an r- closed subset of X , then (gof)(F) is an r- closed set in Z . Since
g is one to one , r- irresolute , then g™((gof)(F) = f(F) is an r- closed set in Y .
Hence f is a st- r- closed mapping .

Proposition 1.23 : Let X be a space . If A is an r- closed subset of X , then the
inclusion mapping ia: A — Xis st-r- closed .

Proof : Let F be an r- closed set in A , since A is r- closed in X , then by
Proposition (1.5), F is r- closed in X . But ix(F) = F, then i(F) is an r- closed set in
X . Hence the inclusion mapping ia: A — X s st- r- closed .

Proposition 1.24 : Let X and Y be spaces, f : X — Y be a st- r- closed mapping .
If F is an r- closed subset of X , then the restriction mapping fjr : F — Y is st- r-
closed .

Proof : Since F is an r- closed set in X, then by Proposition (1.23) , the inclusion

mapping ia: F — Xisst-r-closed . Since f is st- r- closed mapping , then by
Proposition (1.22) , foia: F — Y is a st- r- closed mapping . But foip = fir, then
the restriction mapping ff:F > Yisst-r-closed .

Proposition 1.25 : A bijective mapping f : X — Y is st- r- closed if and only if is
st- r- open .
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Proof : — ) Let f : X — Y be a bijective , st- r- closed mapping and U be an r-
open subset of X , thus cU is r- closed . Since f is st- r- closed then f(U ) i% r-

closed in Y, thus W) st open . Since f is bijective mapping , then(f(U®) =

f(U), hence f(U) is r- open in Y , therefore f is a st- r- open mapping .
« ) Let f: X — Y be a bijective , st- r- open mapping and.F be an r- closed
subset of )g , thus F is r- open . Since f is st- r- open then f(F ) is r- open in'Y,

thus F(F) s r- closed . Since f is a bijective mapping , then (f F) = f(F) ,
hence f(F) is r- closed in Y . So f is st- r- closed mapping .

Theorem 1.26 , [8] : Let X be a space and A be a subset of X, x e X .ThenXx € A
if and only if there is a net in A which converges to x .

Lemma 1.27, [5] : If (Xd) Isanetinaspace X and foreachd, e D, Ag = {Xd| d
> do}, then x € X is a cluster point of (Xd) if and only if x eﬂ ,foralld e D.

Definition 1.28 : Let (Xd)deD be a net in a space X , X € X . Then (Xd )aep I'-
converges to x [written L, —5x],if (Xd )aep IS eventually in every r- nbd of x .

The point x is called an r- limit point of (Xd )d€ D-

Definition 1. 29 : Let (Xd )aep be anetinaspace X, x € X.Then (Xd )aep IS said

.
to have x as an r- cluster point [written y4 oc X] if (Xd )aep Is frequently in every
r- nbd of x.

—r
Proposition 1.30 : Let (X, T) beaspaceand A c X,x € X.Thenx ¢ A ifand

: : : r
only if there exists a rlert (Xd )aep IN A and A, <X

Proof : —»)Letx ¢ A ,then UNA = 0 , for every r- open set U, x € U . Notice

that (Nr(x), <) is a directed set , such that for all U;,U, € Nr(x) , U; > U,if and
only if Uy c U, . Since for all U € Nr(x) , UNA = 0 , then we can define a nety :

;

Nr(x) — Xas follows: y (U) =y v e UNA, U e Nr(x) . To prove that yy oc X .

Let B € Nr(x), thus BNU e Nr(x) . SinceBNU c U ,thenBNU>U, y(BNU) =
r

vsnu € BNU < B . Hence yy o¢ X.
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-
<) Let ()q)¢ep be a net in A , such that x4 oc X, and let U be an r- open set, X e

r
U . Since xg oc X, then (xa)¢eo is frequently in U . Thus UNA = @ , for all r- open
setU,xe U.Hencex e A

Proposition 1.31 : Let X be a space and (yq)qep be a net in X, for each d, € D,
such that Ago = {4 | d > d,}, then a point x of X is r- cluster point of (yg)¢cp if and

—r
only if X €Ay, ,foralld, e D.

Proof : —) Let x be an r- cluster point of (yq)¢ep and let N be an r- open set

contain x , then (y4)eep is frequently in N, thus A, NN = @, V d, € D, then by
—Ir
Proposition (1.11) , Xe Ay, -

—r : .
«) Letx e Ago Vv d, € D, and suppose that x is not r- cluster point of (y4)dep ,

then there exists r- nbd N of x , such that A(cc \N=@ ,Vdy, e D,y3¢ D,d>d,d
—r
> d, , then X € Ay - This is contradiction . Hence X is r- cluster point of

(Xd)deD .

2- Certain types of strongly regular proper mappings
Definition 2.1 , [6] : A space X is called Hausdorff (T,) if for any two distinct
points X,y of X there exists disjoint open subsets U and V of X such that x € U,
yeV.

Proposition 2.2 : Let (X,T) is a T,- space , then the set {x} is an r- closed in X,
for all XeX.

—r
Proof : To prove that {x} = {X} | lety e X, such that x # y . Since X is a T»-
space, then , Xcis an r- 'I;z , SO there is an r- open set U in X & suchthaty e U , x g

U— {x} c U .ButYU isanr-closed set, then X} — U | thereforey ¢ {x} ,
—r —r

forally e Xandy=x.Then {x}={} ,(i.e), {X} isanr-closed setin X.

Definition 2.3, [7] : A space X is called compact if every open cover of X has a
finite subcover .

Theorem 2.4, [7] :

(i) A closed subset of compact space is compact .
(if) In any space , the intersection of a compact set with a closed set is compact .
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(iii) Every compact subset of T,- space is closed .

Theorem 2.5, [6] : A space X is compact if and only if every net in X has a
cluster point in X ..

Definition 2.6 : A space X is called r- compact if every r- open cover of X has a
finite subcover .

Proposition 2.7 : Every compact space is r- compact space .
The converse of Proposition (2.7) , is not true in general as the following
example shows :

Example 28 : Let T={Ac R | Z < A} U{@}, be a topology on R . Notice that
the topological space (R,T) is r- compact , but its not compact .

Theorem 2.9 : A space X is an r- compact if and only if every net in X has r-
cluster point in X .

Theorem 2.10 :

(i) An r- closed subset of compact space is r- compact .

(ii) Every r- compact subset of T,- space is r- closed .

(iii) In any space , the intersection of an r- compact set with an r- closed set is r-
compact .

(iv) In a T,- space , the intersection of two r- compact sets is r- compact .

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X , K Y .
Then K is an r- compact set in Y if and only if K is an r- compact set in X .

Proof : —) Let K be an r- compact set in Y . To prove that K is an r- compact set

in X . Let {U,},cA be an r- open cover in X of K, let V;,, = U,NY , VAeA . Then V),

iIsr-openin X, VAeA . But V, c Y , thus V, isr- open in Y, VAeA . Since K

ngAV , then {V, },<a is an r- open cover in Y of K, and by hypothesis this cover
(S

has finite subcover {v, ,v., ,..., an } of K, thus the cover {U, };.cA has a finite
2

M

subcover of K . Hence K is an r- compact set in X .

«) Let K be an r- compact set in X . To prove that K is an r- compact set in Y. Let
{U; }».ca be an r- open cover in Y of K. Since Y is an r- open subspace of X, then
by Proposition (1.5) , {U;}y.ca IS an r- open cover in X of K. Then by hypothesis

. m
there exists {A1, N2, ..., An},such that K gxulux , thus the cover

{U, }».ca has a finite subcover of K. Hence K is an r- compactsetinY .
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Definition 2.12 : Let X be a space and W < X . We say that W is compactly r-
closed set if WNK is r- compact , for every r- compact set K in X..

Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed .
The converse of Proposition (2.13), is not true in general as the following
example shows :

Example 2.14 : Let X = {a, b, c} be a space and T = {X, &, {a, b}} be a topology
on X . Notice that the set A = {a, b} is compactly r- closed , but its not r- closed set

Theorem 2.15 : Let X be a T, - space .A subset A of X is compactly r- closed if
and only if A'is r- closed .

Remark 2.16 : Let X be a compact, T, - space and A< X . Then :
(i) Alisclosed if and only if A is r- closed .
(if) A is compact if and only if A is r- compact .

Definition 2.17 [6]: Let X and Y be spaces . We say that the mapping f : X — Y is
a compact mapping if the inverse image of each compact set in Y , is an compact
setin X.

Definition 2.18 : Let X and Y be spaces . We say that the mapping f: X — Y is a
st- r- compact mapping if the inverse image of each r- compact set in Y , is an r-
compact setin X.

Examples 2.19 :

(i) The identity mapping is st- r- compact .

(if)Any mapping from a finite topological space into any topological space is st- r-
compact .

Proposition 2.20 : Let X and Y be spaces , and f : X — Y be a st- r- compact , r-
irresolute , mapping . If T is an r- clopen subset of Y , then f1: f(T) — T is a st-
r- compact mapping .

Proof : Let K be an r- compact subset of T . Since T is an r- open set in Y, then by
Proposition (2.11) , K is an r- compact set in Y . Since f is a st- r- compact
mapping , then f(K) is r-compact in X .

Now , since T is an r- closed set in Y , and f is an r- irresolute mapping , then
F(T) is an r- closed set in X , thus by Proposition (2.10) , f(T)Nf*(K) is an r-
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compact set . But f'Tl(K) = fADNFHK) , then f'Tl(K) is an r- compact set in f
(T) . Therefore is a st- r- compact mapping .

Proposition 2.21 : Let X, Y and Z be spaces ,and f : X - Y ,g:Y — Z be
mappings . Then :

(1) If f and g are st- r- compact mapping , then gof : X — Z is a st-r- compact
mapping .

(i1) If gof is a st- r- compact mapping and f is r- irresolute , onto , then g is st- r-
compact .

(ii1) If gof is a st- r- compact mapping and g is r- irresolute , one to one , then f is
st- r- compact .

Proof :

(i) Let K be an r- compact set in Z . Then g™(K) is an r- compact set in Y , and then
FHg™MK)) = (gof)*(K) is an r- compact set in X . Hence gof : X — Z is a st- I-
compact mapping .

(ii) Let K be an r- compact set in Z . Then (gof)*(K) is an r- compact set in X ,
and then f((gof)™)(K) is r- compact in Y . Now , since f is onto , then  f((g0f)’
N(K) = g*(K) , hence g(K) is an r- compact set in Y . Therefore g is a st- r-
compact mapping .

(iii) Let K be an r- compact set in Y . Since g is an r- irresolute , then g(K) is an r-
compact set in Z , thus (gof)™(g(K)) is an r- compact set in X . Since g is one to
one , then (gof)H(g(K)) = f1(K) , hence f*(K) is an r- compact set in X .
Thus £ is a st- r- compact mapping .

Proposition 2.22 : For any r- closed subset F of a space X , the inclusion mapping
Ir : F — X is a st- r-compact mapping .

Proof : Let K be an r- compact set in X, then by Proposition (2.10) , FNK is an r-
compact set in F . But |- (K) = FNK , then . (K) is an r- compact set in F .
Therefore the inclusion mapping ir : F — X is st- r- compact .

Proposition 2.23 : Let X and Y be spaces , and f : X — Y be a st- r- compact
mapping . If F is an r- closed subset of X , then fr : F— X is a st- r- compact

mapping .
Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , the

inclusion Ir : F — X is a st- r- compact mapping . But f = foig , then by
Proposition (2.21) , f is a st- r- compact mapping .
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Definition 2.24 , [4] : Let X and Y be spaces , A mapping f : X — Y is called a
coercive if for every compact set J — Y, there exists a compact set K — X such
that f(X\K)c Y \J.

Definition 2.25 : Let X and Y be spaces , the mapping f : X — Y is called a st- r-
coercive if for every r- compact set J — Y, there exists an r- compact set K < X,
such that fX\K) cY\J.

Examples 2.26 :

(i) The identity mapping on any space is st- r- coercive .

@) If f : (X, T) — (Y, T) is a mapping , such that X is r- compact space , then f is
st- r- coercive .

Proposition 2.27 : Every st- r- compact mapping is a st- r- coercive mapping .

Proof : Let J be an r- compact set in Y . Since f is a st- r- compact mapping , then
() is an r- compact set in X . But f(X\ f*(J)) c Y \J.Hence f : X — Y is a st-
r- coercive mapping .

Proposition 2.28 : Let X and Y be spaces , such that Y isa T, — space , and f : X
— Y is an r- irresolute mapping . Then f is a st- r- coercive if and only if f is a st-
r- compact.

Proof : —) Let J be an r- compact set in Y . To prove that f*(J) is an r- compact
setin X . Since Y is a T,— space and f is an 1- irresolute mapping , then f7(J) is an
r- closed set in X . Since f is a st- r- coercive mapping , then there exists an r-

compact set K in X , such that fX\K) < Y \J. Then f( KC) - JC,
therefore f(J) = K . Thus by Proposition (2.10) , 1) is an r- compact set
in X . Hence f : X — Y is a st- r- compact mapping .

<) By Proposition (2.25) .

Proposition 2.29 : Let X, Y and Z be spaces . If f: X > Y ,g:Y — Z are st- I-
coercive mapping , then gof : X — Z is a st- r- coercive mapping .

Proof : Let J be an r- compact setin Z . Since g : Y — Z is a st- - coercive
mapping , then there exists an r- compact set Kin Y, such that g(Y \K) c Z\J .
Since f : X — Y is a st- r- coercive mapping , then there exists an r- compact set H
in X, such that f(X\H) c Y\K= g(f(X\H)cg(Y\K)cZ\J= (gof)(X\H)
cZ\J.

Hence gof is a st- r- coercive mapping .
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Proposition 2.30 : Let X and Y be spaces , and f : X — Y be a st- r- coercive
mapping . If F is an r- closed subset of X, then the restriction mapping fr: F — Y
IS a st- r- coercive mapping .

Proof : Since F is an r- closed subset of X , then by Proposition (2.22) , and
Proposition (2.27) , the inclusion mapping ir : F — X is a st- r-coercive mapping .
But f = foig , then by Proposition (2.21) , f is a st- r- coercive mapping .

3- Strongly Regular Proper Mapping :

Definition 3.1, [1] : Let X and Y be spaces , and f : X — Y be a mapping . We
say that f is a proper mapping if :

(1) f 1s continuous .

(1) fxIz: XxZ — YxZ 1s closed , for every space Z .

Definition 3.2 : Let X and Y be spaces , and f : X — Y be a mapping . We say that
f is a strongly regular proper (st-r- proper) mapping if :

(1) f 1s continuous .

(i) fxIz: XxZ — YxZ is st- r- closed , for every space Z .

Example 3.3 : Let X ={a, b}, Y ={x,y} besetsand T = {@, X, {a}, {b}}, t =
{0,Y, {x}, {y}} be topologies on X and Y respectively . The mapping f : X —» Y
which is defined by : f(a) = f(b) =x is st- - proper .

Remarks 3.4 :
(i) Every st- r- proper mapping is st- r- closed .
(if) Every st- r- homeomorphism is st- r- proper .
The converse of Remark (3.4.i) , is not true in general as the following
example shows :

Example 3.5: Let f : (R, U) — (R, U) be the mapping which is defined by f(x) =
0 , for every x [0 R . Notice that f is a st- r- closed mapping but f is not st- r-
proper mapping , since for the usual space (R , U) the mapping fxI; : RxR —
RxR , such that (fxIg)(x,y) = (0,y) , for every (X,y) [l R is not st- r- closed
mapping .

The converse of Remarks (3.4.ii) , is not true in general as the following
example shows :

Example 3.6 : Let X={a, b, c},Y ={x,y}besetsand T = {@, X, {a}, {a, b}},t

= {9, Y, {x}} be topologies on X and Y respectively . Let f : X — Y be a
mapping which is defined by : f(a) = f(b) = x, f(c) =y . Notice that f is a st- I-

196



Journal of Al-Qadisiyah for Computer Science and Mathematics
Vol.3 No.1 Year 2011

proper mapping , but f is not one to one mapping , therefore f is not st- r-
homeomorphism .

Proposition 3.7 : Let X and Y be spaces , and f : X — Y be a st- r- proper
mapping . If T is a clopen subset of Y , then f1: f(T) — T is a st- r- proper

mapping .

Proof : Since f : X — Y is a continuous mapping , then fr is a continuous
mapping . To prove that fxl : f(T)xZ — TxZ is a st- r- closed mapping , for
every space Z . Notice that frxlz = (fxIz)1xz , where fxIz is a st- r- closed
mapping , since T is a clopen subset of Y, then by Proposition (1.12) , TxZ is a
clopen subset of YxZ , thus by Proposition (1.21),  (fxIz)txz = (f1xlz) is a st- r-
closed mapping , hence f1: f(T) — T is a st- - proper mapping .

Proposition 3.8 : Let X and Y be spaces , and f : X — Y be a st- r- proper
mapping . If Y is a T,- space , then fg; : i ({y}) — {y} is a st- r- proper mapping ,
forally e Y.

Proof : Since f : X —> Y is a contmuous mapping , then fg; IS a continuous
mapping . To prove that fgaxlz : f Y({y)xZ — {y}*xZ is a st- r- closed mapplng :

for every space Z . Let F c f'{y})xZ , then : (Fgy }xlz)(F) -

({y}><Z)ﬂ(f><|z)(F)rg {y}><Zr A (f><|z)(F) -

Since Y is a T,- space , then by Proposition (2.2) , {y} is an r- closed set , for
ally € Y, so {y}xZ is an r- closed in YXZ , then {y?zr: {y}*xZ . Since fxIz:
XXxZ — YxZ is a st- r- closed mapping and Fcf ({y})xZ < XxZ , then by
Proposition (1.20) , fxlz)(F) c (f<I)( ¢ ) . Thus w -
YHZN(T)(F ).

Since (Xl ) = (P ) = (Y DNExI)(E ), then

—r _
(Fey¥12)(F) < (feaxI2)( Fr) , therefore by Proposition (1.20) , fgax1z is a st-r-

closed mapping . Hence fgy: f({y}) — {y} is a st- r- proper mapping .

Theorem 3.9 : Let f : X — P = {w} be a mapping on a space X . If f is a st- I-
proper mapping , then X is an r- compact space , where w is any point which does
not belong to X .

Proof : To prove that X is an r- compact space . Let ([Jq)qop be a netin X, and let
X =XU{w} . Consider: O(x)={U0 X:xJU},x0X.
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O(w) = {MU{w} M 0O X and ([Jg) is eventually in M} .
Clearly that for each x O X, the family [J(x) satisfies the conditions of

Proposition (1.14) , and therefore we can define a topology on X by : T = {U [J
X Ux 0 U=U U [(x)}, such that the family U {[1(x)}«ax is the neighborhood
system of the space (X , T )

' 'r
Now , suppose w [ X with respectto T . Let U T _w [1 U, then U i is an r-

open set , and then U is an [- open set , then there exists an open set V [ T such

that VOUDV OV, hencew 1V, thus for all open set U;(1T
such that w [0 U; UiNV #@ . Since the set Uy= XU {w} O T and w [J
U,, then U;NV # 0 — XU WHNV G - (XNV) U (W (V) £ 3 .

Claim XNV £0 ,if XN"V=0 then {w}N\V£0 ->w I VDO T—>VDIw)
, thus V = MyU{w} , where M, [1 X and a net ([1) is eventually in M, . But
XNV =@, then XN(M,U {w}) =@, hence XNM, =@, and this is a contradiction

Thus XNV£0Q — XNU£O (V 0 U), thusw [1X . Now, let A be the diagonal
set of XxX in T, and let F=A,

consider the commutative diagram :

eIy '
Xx X X > {wixX

P, h(z)

X

Where h : {w}xX — X is the homeomorphism and Pr, : XxX — X is the
projection map . Since f : X — {w} is a st- I- proper mapping , then fxIz: XxX
— {w}xX isast- r- closed mapping . L

Claim X [0 Pry(F) , if x D X — (x X)OADA =F—x=Pry(x,x) [I Pry(F) —

X [ Pry(F) . Since w [ X 0 prz(F) = Pry(F) , then w [ Pry(F) . Therefore there

exists a point x [1 X , such that (x,w) [ F = A . Let U be an r- open set in X
contains x and V be any subset of X, such that a net ([1g) is eventually in V .Thus
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VU {w} 00 Ow), w [0 VU{w}. Thus by Propositiogl(l.12) , Ux(VU{w}) is an r-
open set in Xx X containing (x,w) , since (x,w) € A , then Ux(VU {w})NA # @

— UNV £ @ . So for all r- open set U in X containing x and for all subset V of X,
such that a net ([I4) is eventuallyin V, UNV#0Q.
Since ([g) is eventually in Ag =V 1 X, then AgoNU # @, for all d, I D and

—r
all r- open set contains x . Thus x [J Ago - d, [ D, therefore Proposition (1.31),

(g Orc X . Hence by Proposition (2.9) , X is an r- compact space .

Theorem 3.10 : Let X and Y be spaces, and f : X — Y be a continuous mapping .
If Y is a T,- space , then the following statements are equivalent :

(1) f is a st- r- proper mapping .

(ii) f is a st- r- closed mapping and f*({y}) is r- compact foreach y 'Y .

(ii1) If (Ug)aopis a net in X and y [J Y is an 1- cluster point of f([14) , then there is
an r- cluster

point x [1 X of ([g)4op , such that f(x) =y .

Proof :

(i—1i1). Let f : X — Y be a st- r- proper mapping , then fxIz : XxZ — YXZ is a st-
r- closed for every space Z . Let Z = {t} , then XxZ = Xx{t} 0 X and YxZ =
Yx{t} Y, and we can replace fxIz by f, thus f is a st- r- closed mapping . Now
,lety 'Y, then by Proposition (3.8) , the mapping fgy : iy — {y} isast-r-
proper . Thus by Theorem (3.9), f({y}) is an r- compact set .

(ii—iii). Let (g)anopbe a net in X and yJ'Y be an r- cluster point of g.net f([g) in
Y . Assume that f(y) £ 0, if fi(y)=0, theny 0 f(x) »y 0 (X)) | since X is
an r- closed set in. X and f is a st- r- closed mapping , then f(X) is an r- closed set
inY . Thus X)) isanr-opensetinY . Thereforce (f(Og)) is frequently in(f(X))

But f(g) O f(X), 0 dO0O D, then f(X)N X)) £ @ | and this is a contradiction

.Thus  f*(y)# @, therefore 3 x € X, such that f(x) =1y .

Now , suppose that the statement (1ii) , is not true , that means , for all x [ f
'(y) there exists an r- open set Uy in X contains x , such that (Cg) is not frequently
in Uy . Notice that f™(y) = f!l();}). Therefore the family {Ux| x [ f(y)} is an r-

S

open cover for f(y). But  f7(y) is an r- compact set , thus there exists Xy, Xy, . . .
, Xn € fX(y), such that FHy) 0 UxUUX, ... UUX, , then f(y)
C

N0 u]=9 — W) NIALS]=2 . But is not frequently in ('
LU Uil = ~ SO N LN Uyl =2 But (a)icals not frequently in U y,; -
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but iQJlUXi is an r- open set in X, then iéluf(i is an r- closed set in X . Thus
s Uf(i) is an r- closed setin Y .
=1
) n ¢ ) n ¢ ) n ¢
Claimy [ f( igluxi) ,ify [0 f( igllJXi) , then there exists x [ ifz]luxi , such that
n
fx) =y, thus x 0 Jy,. ,but x [ fX(y) , therefore f(y) is not a subset of
i=1
Lrj U » and this is a contradiction . Hence there is an r- open set A in Y, such that
i=1
n : ) n } n
y 0 Aand ANF( ug) =0 = S AN U 0 ) =0 = FANT N g =
0 — iAo Lnj Uyj - But (f(g)) is frequently in A, then () is
=1

n
frequently in f(A) , and then (g) is frequently in (J Ui .This is contradiction ,
i=1

and this is complete the proof .

(iii — 1). Let Z be any space . To prove that f : X — Y is a st- r- proper mapping ,
i.e , to prove that fxI; : XxZ — YXZ is a st- r- closed mapping . Let F be an r-
closed set in XxZ . To prove that (fxIz)(F) is an r- closed set in YxZ . Let (y,z)

D(fx|z)(|:)r, then by Proposition (1.30) , there exists a net {(yq , Zq)}sop IN

;
(f*Iz)(F) such that (ya, Zd) o (v.2) , where (Ya, Zg) = ((f*I2)(X4 , Ya)) , and {(Xq ,
, r
Ya)}aop is anetin F . Thus (f(xa) » 12(24)) o (v,2) , 5O f(Xq)
Orc y and z4 orc z . Then U x [ X, such that x4 Orc X and f(X) =y — (Xq, Zq)

o (x2) and {(Xs . Zo)}uop is a net in F , thus (xy) O ¢ . Since F = ", then

_—r
xYOF = (v.z) = (f<I)xy) — (v.2) O (f*I2)(F) , and then (rx1,)F) =
(f*Iz)(F) , thus (fxIz)(F) is an r- closed set in YXZ . Hence fxIz : XxZ — YXZ is a
st- r- closed mapping . Therefore f : X — Y is a st- - proper mapping .

Proposition 3.11 : If X is an r- compact space , then the mapping f : X — P = {w}
on a space X is st- r- proper , where w is any point which does not belongs to X .

Proof : Let X be an r- compact space . Since P is a single point , then f is a
continuous

mapping . To prove that f : X — P = {w} is a st- r- proper mapping :

(i) Since f(P) =X, then f(P) is an r- compact set .
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(if) Let F is an r- closed subset of X , then either : f(F) =@ or f(F) = {w} . Then f
IS st- r- closed mapping , hence by Theorem (3.10) , f is a st- r- proper mapping .

Proposition 3.12 : Let X, Y and Z be spaces . If f : X —» Yand g: Y — Z are st-
r- proper maps , then gof : X — Z is a st- r- proper mapping .

Proof : Since f and g are st- - proper maps , then fxI,y and gxly are st-r- closed ,
for every space W , then by Proposition (1.22) , (gxlw)o(fxIy) is st- r- closed
mapping . But (gxlw)o(f*Iw) = (gof)xIw , then (gof)xIw Is st- r- closed , and
since gof is continuous . Hence gof is an st- r- proper mapping .

Proposition 3.13 : Let X, Y and Z be spaces ,and f : X > Y ,g:Y — Z be
continuous maps , such that gof : X — Z is a st- r- proper mapping . If g is one to
one, r- irresolute , then f is a st- r- proper mapping .

Proof : Let W be any space . To prove that fxIy : XXW — YXW is a st- r- closed
mapping . Since gof : X — Z is a St- r- proper , then (gof)xIy : XxW — ZxW is a
st- r- closed mapping , so we can write (gof)xIw = (g%lw)o(f*Iw) . Since gxly, is
one to one , r- irresolute mapping , then by Proposition (1.22) , fxIy IS a st- r-
closed . Hence f : X — Y is a st- - proper mapping .

Proposition 3.14 : Let f; : X; — Y; and f, : X, — Y, be maps . Then
f1Xf2 1 X1xX; — Y1xY, s a st- r- proper mapping if and only if f; and f, are st- r-
proper .

Proof : —) To prove that f, s a st- r- proper . Since f1xf5 is continuous , then both
f1and f, are continuous . To prove that f,Xl; : XoxZ — Y,XZ is st- r- closed , for
every space Z . Let F be an r- closed subset of X,xZ , since X is an r- closed set in
X1 , then by Proposition (1.12) , X;xF is an r- closed set in X;xX,xZ . Since f1Xf,
IS st- r- proper , then (fixf,Xl7)(X;XF) is an r- closed set in Y;XY,xZ .But
(f1xf2x12) (X xF) = f1(X)X(f2X12)(F) , thus f1(X1)*(f2xIz)(F) is an r- closed set in
Y1XY,xZ , then by Proposition (1.12) , (f2xIz)(F) is an r- closed set in Y,xZ , then
foXlz 1 XoxZ — Y,xZ is a st- r- closed mapping . Therefore f, : X, — Y, is a st-
r- proper mapping .
Similarly , we can prove that f; : X; — Y is a st- r- proper mapping .

<) To prove that fixf, : X;XX; — Y;XY; is a st- r- proper . Since f; and f, are
continuous , then f1Xxf, is continuous mapping . Let Z be any space . Notice that :
f1xfa%lz = (lypx foxIz2)o(f1xIxx17) , since f; and f, are st- r- proper maps , then
(ly1xfoxlz) and (fixIxpxlz) = f1XIXoxz are st- r- closed maps . Therefore by
Proposition (1.22) , the mapping f1xf,XIz is a st- r- closed . Hence f;xf, is a St- r-
proper mapping .

201



Journal of Al-Qadisiyah for Computer Science and Mathematics
Vol.3 No.1 Year 2011

Proposition 3.15 : Let X be an r- compact space , and Y any space , then the
projection  Pr, : XxY — Y is a st- r- proper mapping .

Proof : Consider the commutative diagram :

X1y
XxY » {pIxY

Pr, h(=)

Y

Where h : {p}*xY — Y is the homeomorphism of {p}*xY onto Y and Pr, : XxY
— Y is the projection of XXY into Y . Since X an is r- compact space , then by
Proposition (3.11) , f:X— {p}isast-r-properandly: Y — Y isast-I-
proper , then fxIy is a st- r- proper . Therefore ho(fxIy) is a st- r- proper mapping .
But Pr,=ho(fxl,) , then Pr; is a st- r- proper mapping .

Proposition 3.16 : Let X and Y be spaces , and f : X — Y be a st- r- proper
mapping . If F is a clopen subset of X', then the restriction map f|r: F — Y isa
st- r- proper mapping .

Proof : To prove that f|gxlz : FXZ — YXZ is a st- r- closed mapping for every
space Z . Since F is an clopen subset of X , then by Proposition (1.12) , FxZ is a
clopen subset of XxZ . Since fxIz is a st- r- closed mapping , then by Proposition
(1.21) , (f*Iz)exz is @ st- r- closed mapping . But f|gXlz = (f*Iz)rxz , thus f|¢Xlz
is a st- r- closed mapping . Since f|f is continuous , hence f|r: F — Y is a st- r-
proper mapping .

Proposition 3.17 : Let X and Y be spaces . If f : X — Y is a st- r- proper mapping
, then f is a st- r- compact mapping .

Proof : Let A be an r- compact subset of Y . To prove that f™*(A) is an r- compact
set in X , let (Clg)aop be a net in f(A) , then f([g) is a net in A . Since A is an r-
compact set in Y , then by Proposition (2.9) , there exists y [J A, such that y is an
r- cluster point of f([lg4) . Since f is st- r- proper , then by Theorem (3.10) , there
exists x [ X , such that x 1s an r- cluster point of ([g) , and f(x) =y . Thus every
net in f(A) has r- cluster point in itself , then by Proposition (2.9) , f*(A) is an r-
compact set in X .Therefore f : X — Y is a st- r- compact mapping .

The converse of Proposition (3.17) , is not true in general as the following
example shows :
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Example 3.18 : Let X ={a, b,c,d}, Y ={x,y, z} be setsand T = {@, X, {a, b},
{c,d}}, T ={9,Y, {z}} be topologies on X and Y respectively . Let f : X —> Y
be a mapping which is defined by : f(a) = f(b) = f(c)=y, f(d)=z.

Notice that f is a st- r- compact mapping , but f is not st- r- proper mapping .
Since {c,d} is an r- closed set in X , but f({c,d}) = {y,z} which is not r- closed set
in Y , then f is not st- r- closed mapping .

Theorem 3.19 : Let X and Y be spaces , such that Y isa T,- space ,and f : X —
Y is a continuous , r- irresolute mapping . Then f is a st-r- proper mapping if and
only if f is a st- r- compact mapping .

Proof : —) By Proposition (3.17) .

<) To prove that f is a st- r- proper mapping :

(i) Let F be an r- closed subset of X . To prove that f(F) is an r- closed set in Y, let
K be an r- compact set in Y , then f(K) is an r- compact set in X , then by
Theorem (2.10) , FNf(K) is r- compact in X . Since f is r- irresolute , then
FENFYK)) is r- compact set in Y . But f(FNfY(K)) = f(F)NK , then f(F)NK is
r- compact , thus f(F) is compactly r- closed setin Y . Since Y is T,- space , then
by Theorem (2.15) , f(F) is r- closed set in Y. Hence  f is a st- r- closed mapping

(i1) Let yOY , then {y} is r- compact in Y . Since f is a st- r- compact mapping ,
then 1 {y}) is r- compact in X . Therefore by (i) , (ii) and using
Theorem (3.10) , f is a st- r- proper mapping .

Theorem 3.20 : Let X and Y be spaces , such that Y isa T, -spaceand f : X —> Y
IS a continuous , r- irresolute , mapping . Then the following statements are
equivalent :

(1) f is a st- r- coercive mapping .

(i1) f is a st- r- compact mapping .

(iii) f is a st- r- proper mapping .

Proof :

(1 — 11). By Proposition (2.28) .

(ii — iii). By Theorem (3.19) .

(iii — 1). Let J be an r- compact set in Y . Since f is a st- r- proper , then by
Proposition

(3.17), f is a st- r- compact mapping , then f*(J) is an r- compact set in X . Thus
FX\ 1) 0 Y\ T . Hence f: X — Y is a st- r- coercive mapping .
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