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A B S T R A C T 

   Chest X-ray is the most popular examination type for thoracic diseases, but its 
interpretation exhibits error rates which are still subject to inter-observer variability and 
economic workload constraints. This work can be found in this paper: "A reproducible deep 
learning pipeline for pneumonia identification vs normal based on DenseNet-121 from chest 
X-ray". The dataset originated from the NIH ChestX-ray14 corpus and was downsampled to 
8,500 frontal radiographs (1,050 pneumonia-positive, 7,450 normal) and split at the patient 
level into training, validation and testing sets. Preprocessing: Grayscale normalization, Resize, 
Targeted Augmentation and Training (with) Early Stopping, Learning Rate Scheduling, Class 
Weighting and Post-Hoc Probability Calibration. In the held-out test set, the model achieved 
ROC-AUC: 0.87, PR-AUC: 0.72, as well as a general accuracy of 93.2%, sensitivity: 82.8% and 
specificity: 94.6%. Calibration analysis contributed to improving the Brier score from 0.042 to 
0.019 and led to good-fitting reliability curves. Interpretability was built into the inference 
using Grad-CAM and Integrated Gradients, with explanation faithfulness quantitatively 
checked (deletion AUC = 0.84, insertion AUC = 0.87, sanity check pass rate = 98%, pointing-
game hit rate = 76%). Based on the above results, it can be seen that CNN-based diagnosis is 
promising to achieve a good accuracy as well as interpretability and reproducibility 
simultaneously. Hence, the proposed framework provides a white-box baseline for clinical 
examination and future multi-label thoracic disease detection extensions. 

MSC.. 

https://doi.org/10.29304/jqcsm.2026.18.12528 

 

1. Introduction 
Chest radiography is the most commonly requested imaging study of a suspected thoracic disease because it is speedy, inexpensive and low-

dose; however, the interpretation is vulnerable to inter-observer variability; particularly under time constraint and in resource poor settings 

where subspecialty interpretation is not necessarily readily available  [1] In parallel, convolutional neural networks (CNNs) have gained 

compelling accuracy on public chest X-ray (CXR) benchmarks using massive collections of curation of labeled benchmarks and pull transfer 

learning from Natural image pretraining .[2]  However, reliable clinical translation is not just a question of raw parallel accuracy for clinicians, but 

they must know why a model is making a certain prediction, and there must be evidence to believe that its explanation is related to regions of the 

image that are causally related to the decision rather than spurious correlates.  [3]  

This work addresses both needs by developing a transparent and end-to-end pipeline that couples a strong CNN baseline and 

quantitatively evaluates maps of explanation for the binary pneumonia vs normal CXR. 

In spite of some promising figures in the headlines, in the literature there is a heterogeneity regarding data handling (or not), 

definition of the labels and evaluation protocols that lead to a complexity to compare and re-executing the study. For example, two popular 

datasets, ChestX-ray14 and CheXpert, use different sources of labels, handle uncertainties differently, and suggest different recommended splits  
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[4] and view types usually get mixed up and patient-level versus image-level partitioning likewise gets mixed up ,
  these choices may result in an 

inflation in performance or an information leak across splits if not carefully controlled, depriving the validity of the repo rted gains. Moreover, 

most publications show saliency visualizations as qualitative reassurance, without going further to provide quantitative tests for consistency 

between such maps and the model's internal reasoning  .[5]For example, without the standardization of perturbation-based tests, sanity checks, 

and localization with respect to reference annotations, saliency may transform into a veneer of interpretability, rather than a verifiable property.  
[6] 

 

The current research addresses these shortcomings with a unified and reproducible process. We assess a single, clinically relevant task 

(pneumonia vs. non-pneumonia discrimination) from a transfer-learned DenseNet-121 backbone coupled with a fully-described recipe of 

training procedures (sample preprocessing, numerical augmentation, optimization, early stopping, calibration) to minimize the degrees of 

freedom for researchers while attempting to maximize the competitive performance  .We make patient-level mutually exclusive partition 

(train/validation/test) and preserve test section until final evaluation to ensure that we do not implicitly use the test data for tuning, The setting 

files of the pipeline, random seeds, and version of the dependencies are result-write to allow for exact replication, again, as part of increasing 

demands for precision and transparency in the reporting of medical-AI  [7] 

The process of inference is explainable as opposed to explaining it afterwards. Particularly, we produce class-discriminative heatmaps 

on test image data via Grad-CAM and, when suitable, compare them to Integrated Gradients to explore sensitivity to input dimensions. This is 

followed by the evaluation of the faithfulness of the explanations using deletion and insertion curves, in which the most sal ient pixels are deleted 

and inserted sequentially to evaluate the resulting model confidence change. This provides area-under-the-curve (AUC) values that reflect a 

causal effect of emphasized regions in controlled perturbations. Moreover, we perform sanity checks by randomizing model parameters to make 

the saliency maps model-sensitive as opposed to being edge detectors. We also conduct a type of localization test in the form of a pointing-game 

when annotated pathology boxes exist to test whether the saliency is localized to the disease-relevant regions. These evaluations, in turn, move 

beyond visual plausibility to quantifiable and falsifiable explanation properties. 

These two research questions are thus two in nature. The first question is (RQ1): What is the diagnostic performance that a w ell-

controlled, transfer-learned CNN can achieve on a publicly available CXR dataset with a fixed protocol? ROC-AUC, sensitivity, and specificity. 

Second, (RQ2): Are there areas of the resulting explanation maps that lead to what are causally related to the model predictions as reflected by 

large deletion/insertion AUCs, passing sanity checks, and, in cases possible, localization to reference annotations? By answering RQ1 and RQ2 

within the same, openly exchanged framework, we will create a workable baseline, both precise and accountable, to which clinical inspection may 

be applied, and on which further extensions, such as multi-label tasks, additional uncertainty modelling, and others, may be added in the future 

without jeopardizing the reproducibility or transparency  .[8]  

2. Previous Studies 
Both the literature on the study of the image of a chest X-ray (CXR) under the influence of convolutional neural networks (CNNs) has both 

high standards and has shown inadequate performance in the labelling process, the quality of assessment, and explainability. We provide a brief 

overview of four classical papers that have had an impact on the field, including data scale and provenance, label space and uncertainty 

treatment, model families and training protocols, metrics and test-set hygiene, and the importance of explainability (which is often constrained). 

Every vignette is briefed by highlighting the material connection it has with the design choices of our work.  

Study 1 — CheXNet (Rajpurkar et al., 2017, arXiv).The CheXNet single-pathology prediction (pneumonia vs. other findings) model on the NIH 

ChestX-ray14 corpus was framed on a backbone of DenseNet-121 and was pretrained on ImageNet. The study popularized transfer learning in 

CXR, achieving radiologist-level results on a held-out set, and provided qualitative reassurance in the form of class-activation/Grad-CAM-style 

heatmaps. However, compared to cross-paper comparisons, the source of the label (report-mined, weakly supervised), the combination of view 

types, and a risk of leakage (image- vs. patient-level splitting) make comparisons across papers more difficult. The explanation was made 

graphical, and no quantitative tests of faithfulness were given. 

Relevance to our study: We use the identical backbone family (DenseNet-121) and transfer-learning logic, but with a binary pneumonia vs. 

normal task and patient-level splits and an entirely defined pipeline. We make explainability part of inference and quantify faithfulness instead of 

using saliency just to make illustrations. [9]  

Study 2 — ChestX-ray8/14 baseline (Wang et al., 2017, CVPR).This dataset paper is a model baseline as well: multi-label classification of 14 

thoracic findings based on report text, large-scale weak supervision, and initial CAM-based localization. It triggered a movement of CNN papers 

by supplying scale and standard labels, nevertheless, the noise of labeling and non-homogeneous study protocols (e.g. mixed frontal/lateral 

views, variability of splits) permitted methodical drift between follow-ups. CAMs were once more rather qualitative materials. 

Irrelevance to our study. We take over the focus on clear dataset curation, but limit it to one clinically coherent endpoint and omit lateral 

perspectives. We also keep CAM-family approaches (Grad-CAM), but we substitute ad hoc visualization with deletion/insertion curves and sanity 

checking to measure causal consistency. [10]  

Study 3 — CheXpert baseline (Irvin et al., 2019, AAAI).CheXpert presented label definitions that were uncertainty-sensitive 

(Positive/Negative/Uncertain) and offered top of the box patient-wise splits and a competitive baseline classifier compared to radiologists on a 

hold-out set. Clear splits, label rules and clinical comparators were sharpened in this paper. Nevertheless, explainability was st ill secondary; 

saliency or localization was not standardized or quantitatively audited in faithfulness in the baseline. 



Manaaf Abdulredha Yassen, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 1–11                            3 

 

Relation to our work: In structure, we are as rigorous as CheXpert in splits, labelling definitions, but by mapping to Pneumonia vs. Normal, we 

prevent propagation of ambiguity in Uncertain labels. Calibration of probability (temperature scaling/Platt scaling) and bootstrap CIs are also 

included, and quantitative XAI is a first-class result. [11] 
 

Study 4 — Reliability of saliency in medical imaging (e.g., Adebayo et al., 2018; Arun/Gaw et al., 2020–2021).Later literature's line of 

thought challenged the idea that common saliency methodology captures model thought. It was demonstrated that the model randomized 

version of saliency maps can still be visually plausible, and medical image (including CXR) experiments had warned that saliency can be volatile 

or mislocalized, particularly with distribution shift or confounding factors. These proposed here were sensitivity tests of model parameters, 

measures of sensitivity based on perturbations (deletions/insertions), and, where possible, localization measures (e.g., bounding boxes) instead 

of depending solely on visual plausibility. 

These recommendations are operationalized in our study: Grad-CAM maps are assessed quantitatively through deletion/insertion AUCs; sanity 

checks are performed to check sensitivity to randomization of parameters; and in the event that there are bounding boxes, the  pointing-game 

score is also provided. This makes explainability not a qualitative addition but a quantifiable property.  [12]  

 

Table 1. Comparative summary of recent studies 

3. Methodology 

3.1 Study Design 

In this study, the retrospective computational design is adopted in the form of a publicly available chest X-ray dataset. The scope of the 

analysis is limited to a predetermined binary classification task (Pneumonia vs. Normal), which will guarantee the awareness of the goals and 

reproducibility of the findings. There is no interaction with direct patients or even access to de-identifiable health data; the study will run based 

on de-identified radiographic images being published under the original license terms of the dataset.  

Patient-level partitions are applied to ensure that training, validation and test sets are mutually exclusive and prevent information leakage and 

ensure statistical validity. The test set is not subjected to any exploratory measures, and only the last evaluation level will visit them. Every part 

of the pipeline, such as data filtering rules, label mappings, preprocessing steps, augmentation parameters, and training configuration, is 

completely described and stored, and thus can be reproduced by other researchers to the letter.  

Figure 1 shows how the study works end-to-end. It illustrates the subsequent process of raw data import, filtering and label mapping, 

preprocessing and augmentation, model training, and inference, up to the evaluation of performance and explainability. The schematic is not only 

a conceptual overview but a map of reproducibility, as it helps to be clear and transparent in every approach, every methodological step and 

promptly connects the methods to further analysis. 

Study (year) 
Dataset & Label 
Space 

Model & Training Evaluation (held-out) XAI method Notes on evaluation 

Rajpurkar et al., 
“CheXNet” (2017) 

NIH ChestX-ray14; 
pneumonia vs. 
others 

DenseNet-121, 
ImageNet init; 
transfer learning 

AUC and radiologist 
comparison on held-out 
set; details vary across 
re-analyses 

CAM/Grad-CAM 
(qualitative) 

Patient- vs. image-level 
split concerns; mixed 
views; no quantitative XAI 

Wang et al., ChestX-
ray8/14 (2017) 

14 labels from 
reports; weak 
supervision 

CNN baselines; 
multi-label training 

Basic ROC metrics; 
preliminary localization 

CAM (qualitative) 

Large-scale but noisy 
labels; protocol 
heterogeneity across 
follow-ups 

Irvin et al., CheXpert 
(2019) 

Uncertainty-aware 
labels; 
recommended splits 

Strong baseline 
classifier 

AUC vs. radiologists; 
clear split policy 

Limited/optional 
saliency 

Better reporting; XAI not 
quantitatively audited 

Saliency reliability 
(2018–2021) 

Multiple medical 
sets incl. CXR 

– (methodological) – 
Sanity checks; 
perturbation tests 

Shows need for 
deletion/insertion, 
parameter sensitivity, 
localization tests 
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3.2 Dataset and Label Definition 

The data used in the current work were obtained based on the publicly available NIH ChestX-ray14 corpus, which was published by the NIH 

Clinical Centre in Bethesda, USA. The initial group consists of over 100,000 frontal and lateral radiographs of more than 30,000 patients. In the 

current study, rigid filtering criteria were used in order to match the dataset with the binary diagnostic task. 

Inclusion criteria were restricted to the frontal chest radiographs of adult patients. Cases specifically marked with Pneumonia were put into the 

positive category, and those that were marked either as normal or no finding were put in the negative category. The exclusion criteria included all 

the late-lateral images and radiographs that had uncertain or absent tags of the target classes.  

After this process, the resulting dataset included about 8,500 images, and 1,050 of them were of the pneumonia-positive type, and 7,450 were 

normal cases. Such a class imbalance is in line with the anticipated distribution in clinical data, in which the percentage of pneumonia cases is a 

minor fraction of the normal results. 

A mutually exclusive scheme was used to partition the patients on the basis of mutually exclusive sets: 70% of the images wer e used as training 

material (5,950 images), 15% as a validation material (1,275 images), and 15% as a testing material (1,275 images). The test set was not touched 

at all until the last evaluation phase. Preprocessing was performed by standardising all the images to a standard 224×224 pixels, in accordance 

with the input specifications of the model. 

Table 2 gives a comprehensive overview of the dataset distribution in the three subsets, such as class balance and image resolution.  

Split Total Images 
Pneumonia 
(Positive) 

Normal (Negative) Resolution 

Training (70%) 5,950 735 5,215 224×224 px 

Validation (15%) 1,275 158 1,117 224×224 px 

Test (15%) 1,275 157 1,118 224×224 px 

Total 8,500 1,050 7,450 224×224 px 

 

Table 2. Dataset summary 

3.3 Preprocessing and Augmentation 

All radiographs in the chest radiographs that were part of the study were subjected to a standardized preprocessing pipeline before 

they were trained on the models. All the images were initially converted to one grayscale channel and normalised to a range of intensity [0,1]. 

Radiographs resolution was then down-sampled to 224×224 pixels, which was consistent with the requirements of the input of the DenseNet-
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121 architecture. Histogram equalisation was experimented with as an optional, and was only kept in cases where it did not affect validation and 

introductions of label leakage. 

In order to enhance generalisation, and minimise overfitting, extra augmentation was only done to the training subset. These were 

random horizontal flips, small rotations within a range of +5 -5, and random cropping with zero-padding. These changes mimic changes in 

patient position and acquisition conditions but still retain the diagnostic integrity of the radiographs.  

The input images of the dataset, such as normal chest radiography and a patient with pneumonia before preprocessing and 

augmentation, are presented in Figure 2. After that, the training pipeline was systematically subjected to subsequent transformations 

(normalization, resizing, flipping, rotation, and cropping).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example chest X-ray images used in this study: Normal (left) and Pneumonia (right), obtained from the NIH ChestX-ray14 dataset 
[Wang et al., 2017]. 

3.4 Model Architecture and Training 

The classification model was trained based on the DenseNet-121 convolutional neural network, which was pre-trained on the 
ImageNet dataset. DenseNet-121 was selected due to its good results in medical image classification tasks, good use of parameters, and features 
propagation between layers. In this research, the last fully connected layer was substituted by one linear unit with a Sigmoid activation function 
that generated probabilistic outputs related to the binary task (Pneumonia vs. Normal).  

 Adam optimizer was used to model train in an initial learning rate of 1×10⁻⁴with a 32-batch size. The maximum number of epochs was 
50, and it was only interrupted by early stopping in case the validation AUC did not move upwards after five consecutive epoc hs. The learning 
rate was also decreased by 0.1 when the performance based on the validation stagnated to stabilize the optimization further. The imbalance in 
class was resolved by weighting the classes in the form of the inverse frequency of every class. 

Training was done using the validation set, with calibration being done following training, and either temperature scaling was used or Platt 
scaling was used, depending on which method gave lower Brier scores. This guaranteed that the ones predicted were highly cali brated and could 
be interpreted clinically. 

Table 3 provides a summary of the training configuration, and Figure 3 shows some representative training and validation curves that s how 
convergence and no overfitting. 

Component Specification 

Backbone Architecture DenseNet-121 (ImageNet pre-trained) 

Final Layer Single linear head + sigmoid activation 

Optimizer Adam 
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Initial Learning Rate 1 × 10⁻⁴ 

Batch Size 32 

Epochs (max) 50 

Early Stopping Patience = 5 (based on validation AUC) 

LR Scheduler ReduceLROnPlateau (factor = 0.1) 

Class Balancing Inverse frequency weighting 

Calibration Temperature scaling / Platt scaling 

 

Table 3. Training configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (Training/Validation curves: Loss + AUC) 

3.5 Explainability (Integration and Quantification) 

 In order to balance predictive performance with interpretability, the research incorporated explainable artificial intelligence (XAI) 

techniques right into the inference pipeline. Gradient-weighted Class Activation Mapping (Grad-CAM) was the main method, which generated 
class-discriminative heatmaps that indicated the areas of the lungs that are most significant to each prediction. Besides that, Integrated Gradients 
(IG) was tested on a subset of cases in order to cross-check the consistency of attribution. 

 The Grad-CAM visualizations were obtained and saved in all the test images along with the model results. Four diagnostic outcomes of 
true positive, true negative, false positive, and false negative were then selected with representatives’ cases. By using the se examples, qualitative 
evaluation of a match or mismatch between the patterns of attention of the model and clinically relevant lung regions could be done. 

 The explanation maps were quantitatively validated with the help of several protocols. Deletion/Insertion tests were used to  quantify 
changes in model confidence as pixels with high scores on attribution are gradually deleted or inserted to give metrics of area-under-curve (AUC) 
to explain reliability. Sanity checks ensured that the explanation maps were sensitive to model parameters that were learned and not the base 
statistics of the image. When the bounds of the boxes were known, the Pointing Game was used to test the proportion of times Grad-CAM maxima 
occurred in the locations of expert-marked lesions. 
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 The results of Grad-CAM in this study are provided in visual representations in Figure 4. The radiographs in panel A have normal and 
pneumonia cases, and the heatmaps have correctly identified the pathological regions in true positives and pay little attention to true negatives. 
In Panel B, there are also other results, such as misclassified cases (false positive rate and false negative rate), in which  the focus of attention 
shown by Grad-CAM was not the diagnostic regions. Collectively, these findings reveal the role of XAI techniques in giving an intuitive 
understanding of how models make decisions and allow quantitative association between predictions and clinical interpretability. 

 

Panel A: correctly classified examples (normal and pneumonia), showing attention aligned with relevant lung regions 

 

Panel B: misclassified examples (false positive and false negative), where Grad-CAM highlights non-diagnostic regions, illustrating model 
limitations. 

 

3.6 Evaluation Metrics and Statistical Analysis 

Both discrimination and calibration measures were used to evaluate model performance on the held-out test set in a comprehensive 
way. The main measure of evaluation was the area under the receiver operating characteristic curve (ROC-AUC) because it offers a threshold-free 
measure of how the model can differentiate normal radiographs and pneumonia. Furthermore, the region below the precision-recall curve (PR-
AUC) was found to explain the class imbalance in the set of data. 

The secondary performance indicators were the overall accuracy, sensitivity (recall with pneumonia), specificity (recall with normal 
cases), the precision (positive predictive value), and the F1-score. A summary report on the classification with detailed classification metrics was 
made with the confusion matrix as the visualization of the distribution of true positives, true negatives, false positives, and false negatives. The 
entire classification report along with the confusion matrix are given in Table 5.  
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To consider the statistical uncertainty, 95% confidence intervals (CIs) were calculated using non-parametric bootstrapping with 2,000 
resamples of the test set. The DeLong test was used to compare the ROC-AUC values and the test of differences in the classification between the 
models was carried out with the help of the McNemar test, which was applied to the paired prediction results. 

To evaluate the predicted probabilities, the reliability diagrams were used, as well as the Brier score. The plotted reliability diagrams 
compared the predicted probabilities to the observed outcome frequencies before and after calibration and the Brier score was used to measure 

the overall calibration error. The validation set was calibrated using post-hoc calibration techniques (temperature scaling or Platt scaling) and 
their performance was visualized in Figure 6. 

Figure 5 shows ROC and PR curves on test set that shows discrimination performance. Table 5 presents the results of the classification and the 
confusion matrix whereas Figure 6 illustrates the comparison of the calibration behavior prior and after probability adjustment 

 

Figure 5 (ROC & PR curves). 

Metric Value 

Accuracy 0.932 

Sensitivity (Recall, +) 0.828 

Specificity (Recall, -) 0.946 

Precision (PPV) 0.684 

NPV 0.975 

F1-score 0.75 

 

Table 5 — Classification report and confusion matrix 

Confusion matrix 

  Actual + Actual - 

Predicted + TP = 130 FP = 60 

Predicted - FN = 27 TN = 1,058 
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Figure 6 — Reliability diagram (before/after calibration) 

 

 

4. Results 

The proposed pipeline was evaluated on the held-out test set of 1,275 radiographs (157 pneumonia-positive, 1,118 normal). Results are 
organized around three core outcomes: diagnostic performance, explanation quality, and calibration behavior.  

4.1 Diagnostic Performance 

The model obtained a ROC-AUC of 0.87 and a PR-AUC of 0.72 which showed good discriminatory power although the classes were imbalanced 
(Figure 5). The overall accuracy was 93.2 and the sensitivity (recall of pneumonia) and specificity (recall of normal) were 82.8 and 94.6. The 
positive class precision was 68.4 with an F1-score of 0.75. 

According to the confusion matrix (Table 5), 130 pneumonia cases were recognized (true positives), 27 were not recognized (false negatives), 
1,058 normal cases were recognized (true negatives), and 60 normal radiographs were recognized as pneumonia (false positives). These findings 
are consistent with CNN baselines previously reported, only that they have strict patient-level splitting and report the findings explicitly. 

4.2 Explainability Outcomes 

Grad-CAM analysis generated clinically plausible saliency distributions by heatmap analysis (Figure 4). True positives had model attention 
centered on focal pulmonary opacities and true negatives were consistent with the disease absence as evidenced by diffuse or  low-intensity map. 
False positives tended to show spurious responding to the clavicles, whereas false negatives redirected the attention to non-diagnostic parts of 
the body like to the diaphragm. 

Explanation faithfulness was also supported by quantitative evaluation. Deletion and insertion AUCs were 0.84, 0.87 on average, and 0.03, 0.04, 
respectively, which demonstrates the causal relevance of highlighted pixels. Sanity checks were successful (98 out of 100 trials) and the pointing-
game score (where bounding boxes were distributed) showed 76 out of 100 hits (Table 4). Collectively, these findings prove that explanations 
were not that pretty but quantitative. 

4.3 Calibration Performance 
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Uncalibrated model probabilities were slightly over-confident with a pre-calibration Brier score of around 0.042. The calibration of the post-hoc 
was done using temperature scaling to enhance reliability, and the Brier score was lowered to approximately 0.019. Figure 6 demonstrates that 
the post-calibration curve followed closely the diagonal, which means that there were well-calibrated probabilities, which improve 
interpretability and clinical utility. 

5. Discussion 

The results affirm that a well-specified CNN pipeline could achieve state-of-the-art accuracy together with a high level of interpretability in 
binary chest X-ray diagnosis. Relative to the previous studies (Rajpurkar et al., 2017; Wang et al., 2017; Irvin et al., 2019), our findings  are at the 
high end of the reported ROC-AUC values and do not fall into the typical traps of image-level splitting and unreported preprocessing decisions. 
Notably, with the quantitative explainability tests (deletion/insertion AUCs, sanity checks, pointing-game analysis) we are able to resolve long-
running issues that saliency maps may be deceptive or untrue to model thoughts. 

Clinically, the high specificity (94.6) will decrease the occurrence of sentinel patients (healthy patients) being sent to fo llow-up, whereas 
sensitivity (82.8) will be used to guarantee a high number of patients with pneumonia are sent to follow-up. False positives were concentrated in 
areas around the anatomy of the clavicles and it can be argued that CNNs still might be dependent on the spurious correlates,  which is a 
limitation to be exploited by further improvements. There were frequent false negatives with thin-basal opacities, which highlights the difficulty 
of identifying mild pneumonia and the fact that more variated training data are required, with a variety of presentations.  

Another strength Calibration analysis demonstrates is that the post-hoc scaling yielded probability estimates that follow observed outcome 
frequencies, which is a critical decision support property. Model confidence is easily interpreted through well-calibrated outputs to facilitate risk 
stratification and triage decisions by clinicians. 

These results demonstrate the manner in which the transparent design, as demonstrated by five characteristics of design clarity (task definition), 
patient-level splits, reproducible preprocessing, and quantitative XAI, can convert into credible results. Limiting the research degrees of freedom 
and introducing reproducibility protective measures (stored seeds, recorded versions) not only introduce performance threshol ds to the CXR-AI 
literature but also offer methodological rigor to the same. 

6. Conclusion 

This paper introduced a repeatable CNN-based pipeline that can be used to automatically diagnose chest X-rays with explainability of decisions. 
With the NIH ChestX-ray14 challenge, a system based on a DenseNet-121 backbone (trained on a filtered version of the original dataset) attained 
ROC-AUC of 0.87, PR-AUC of 0.72, and an overall accuracy of 93.2% on the held-out test set. 

In addition, to performance, explanation faithfulness was also quantitatively checked with deletion/insertion AUCs, sanity checks and localization 
metrics and explainability ceased being a put-on aspect of a system and became a quantitative concept. Probability outputs were interpretable 
and improved the clinical usefulness of the model, through post-hoc calibration. 

The accuracy, interpretability, and reproducibility combine this pipeline to be a clear foundation of future studies. Althoug h there are still 
constraints, e.g., spurious activations and missing subtle cases, the framework offers a good basis towards generalizing to multi-label tasks, 
uncertainty modeling, and prospective validation. 

In the end, this study shows that chest X-ray AI can be both performant and interpretable and fulfill the criteria of both technical and clinical 
implementation. 
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