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Abstract 

We prove that for a function  ,1,11  pWf  10  p and n,r in N , we 

have 
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where 11 1  nxx   the roots of Legendre polynomial, and 

 p
m g  , , is the Ditzian-Totik mth modulus of smoothness of g in 

pL . 

 

 

 1.Introduction 

Let pL ,  p0  be the set of all functions, which are measurable on 

 ba, , such that   
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And let  ,,baW r
p be the space of functions that 

   baLf p
r ,  and  1rf  is 

absolutely continuous in  ba, . 

 We believe that for approximation in 1, pLp  the measure of 

smoothness  p
r f  ,  introduced by Ditzian and Totik  [1] is the appropriate 

tool. Recall that  
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 For    1,1:, ba  for simplicity we write  ,,baLp p
 and 

     .,,,:, p
r

p
r baff     

 Recall that the rate of best nth degree polynomial approximation is given 

by  

 
pn

p
pn pffE
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inf:  

where n denote the set of all algebraic polynomials of degree not exceeding n. 

         To prove our theorem we need the following direct result given by:  

 

Theorem 1.1.  For n,r in N and  1,1 pLf  

                                                 pr
pn nfcfE 1,                                 (1)  

where c is a constant depending on r and p (if p<1). For  p1  (1) was 

proved by Ditzian and Totik [1] and for 0<p<1, it has been proved by DeVore, 

Leviatan and Yu [2].  

 Now, consider the Gaussian Quadrature process [3] 
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based on the roots 11 1  nxx   of the nth Legendre polynomial. Since 

this exact polynomial of degree less than 2n, we get for the error  

     fIdxxffe nn  


1

1

 

in (2) by the definition of the degree of best approximation we have 

                                                  fEfe nn 122                                    (3) 

where  
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(note that 0j  and 


n

j
j

1
 ). The crude method of estimating  fen  consists 

of applying Jackson estimate on the right of (3) from (1) we get the sharp 

inequality 
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                                              1,nfcfe r
n                                        (4) 

which already takes in to account the possibly less smooth behavior of f at 1 . 

However the supremum norm in (5) is still too rough, and the natural question is 

whether for smooth functions one can get upper bounds for   fen  using certain 

1, pLp  quasi-norm. 

 R. A. DeVore and L. R. Scott [3] found such estimates, they proved 
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first for s=1 which obviously implies 

                                       1,22
1  
 pfEcnfe pnn                        (6) 

where   pn fE ,  means the best weighted approximation with weight  x  of f 

in pL  defined by  
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They then proceeded to estimate  pn fE  , 1p , using higher derivatives of f  

which finally yielded (5) for any 1s . 

 

 

 

2. The main result  
Using (6) we obtain the following theorem 

 

Theorem 2.1.  For   10,1,11  pWf p  we have  
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 Of course the convergence of the integral on the right implies that f is pL  

equivalent of a locally absolutely continuous function. We use this equivalent 

representative of f in the quadrature formula ( Otherwise, we don’t have even 

   1ofen  ) 

Proof.  Let nnp   be the best approximating polynomial for f in 

  1,1,1  pLp . Then    
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in  1,1pL  (i.e. the expression in the right  is the pL  equivalent of f which we 

need ). From (6) and Markov-Bernstein type inequality (see for example [4])  
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          Then using the fact that any two quasi norms are equivalent on the space 

of algebraic polynomials of a fixed degree we have  
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         In view of (1) we get 
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         Now since   10,1,11  pWf p , so that  
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Provided the last integral convergence  

 As a final remark, we mention that similar bounds holds for many other 

systems of nodes and in (7) the right hand side has the order 
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for any f constructed from analytic functions,  
s

x 1 and iterated logarithms of 

these, which means that (7) is the best possible estimate for such functions. 
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