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A B S T R A C T 

This paper will use a 2x2x2 factorial experiment design to evaluate the impacts and 
interactions of type of treatment, diet, and exercise activities on glycated hemoglobin (HbA1c) 
in subjects who have type 2 diabetes. Factorial ANOVA, simple effects Analysis, and Tukey 
post hoc test were used to analyze the data of 240 participants. The Marginal Means (EMM) 
were calculated to correct the imbalanced data. 
The findings showed that all factors had significant main effects (p < 0.001) and large-scale 
two-way interactions. The simple effects analysis revealed that only under low physical 
activity, the interaction between treatment and diet was significant, which means that dietary 
change increases the effectiveness of drugs in sedentary patients. Factorial model explicated 
approximately 95 percent of the variance in change of HbA1c justifying the excellent position 
of integrated therapeutic and lifestyle interventions in glycemic regulation 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.42531 

 

1. Introduction 

Over the last ten years, the healthcare sector has been radically transformed to be dependent on big data analytics 
and sophisticated statistical tools to enhance clinical outcomes. Factorial experiments are the most significant of all 
these methodologies because they permit the investigation of many factors and the interaction of their complex 
relationships [8] . As opposed to traditional experimental designs that concentrate on a single variable, factorial 
designs can offer a more profound understanding of the relationship between various variables like medications, 
demographic factors and environmental factors and their interaction to influence patient health [2] . 
The importance of this paper is created in the context of significant issues of healthcare systems. Recent findings 
suggest that one out of every three patients fails to respond to traditional treatments because there is a complicated 
interplay between environmental, genetic, and therapeutic factors [44] . More so, a recent research article released 

in (Nature Medicine) showed that forty-five percent of individual drug side effects are the result of unforeseen 
interactions between drugs and physiologic parameters of the patient [45] . 
 
 
 

 
2. Study Problem: 
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          Clinical outcomes in health research are usually determined by many factors which relate with each other, and 
some of these factors are the treatments given, demographics, comorbidities and lifestyle. Conventional 
experimental designs, including single-factor randomized controlled trials (RCTs), are not always able to measure 
the complex interacting relationship between these variables and therefore incomplete or misleading results. The 
absence of a powerful analytical strategy can make healthcare providers fail to recognize the presence of important 
synergies or antagonisms between treatments, leading to the delivery of poor patient care. The answer to this is 
Factorial experiments, which can be used to test a combination of factors and their interaction at the same time. 
Nevertheless, their use in health data analysis is underutilized because they are complex to design, sample size to 
use, and to interpret statistics. Overcoming these hurdles is the key factor in ensuring that factorial experiments can 
be utilized to the optimal to enhance clinical outcomes. 
 

3. Study Objectives: 
  
         The main purpose of this study is to show how factorial experiments could be applied to analyzing health data, 
and specifically:   

1. Finding Interactions Determining the interactions between various factors (treatment, diet, and physical 

activity) and clinical outcomes. 

2. Evaluation of Impact Measuring personal and aggregate effects of questionable variables on treatment 
efficacy and patient recovery. 

3. Optimizing Clinical Decision-Making Making evidence-based suggestions to customize the treatment plans 

using insights of factorial design. 

 
4. Study significance and contributions: 
 

1. Enhancing Understanding of Factor Interactions: This study helps bridge the knowledge gap on how 

different factors (such as treatments, environmental influences, and genetics) interact to affect clinical 

outcomes, enriching medical and epidemiological theories. 

2. The development of Statistical Methodologies: It provides a developed model on how to analyze health data 
using factorial designs, which will assist the researcher use this model more efficiently in future research. 

3. Supporting Personalized Medicine: The results report the results of studying the interaction of a 

combination of factors and improve the development of customized treatments depending on the specifics 
of a particular patient. 

 

5. Fundamental Concepts of Factorial Experiments 

         Factorial designs are considered to be the foundation of scientific studies that examine more than one variable 
at the same time. Such experiments are characterized by (experimental designs that permit investigating the impact 
of two or more factors besides quantifying the individual effect and the interaction effect of each factor) [8] . The 
methodology has been developed since the early 20th century when the first theoretical framework of the method 
was developed by Fisher and has become an essential part of medical research nowadays [2]  [44]  
 

6. There are three major types of factorial designs: 

1. Full Factorial: The full factorial looks at all combinations of the factors. 

2. Fractional Factorial: Researches a fraction of combinations to be efficient. 
3. Nested Designs: This is applied when certain factors cannot be varied in isolation.  [8]  

 
7. Importance of Factorial Experiments in Health Research 

Factorial designs have a number of vital benefits in healthcare: 
1. Efficiency: Allows many factors to be studied in one experiment, which saves on the number of required 

trials. [4]  

2. Comprehensiveness: Make it possible to detect interaction effects of factors which may be obscure in 
traditional designs [3]  

3. Practical Use: Give findings that can be translated to clinical application. 

The current studies show that factorial designs are more effective than regular methods of drug evaluation, as they 
enhanced the accuracy of predicting treatment response by 40%  [45] . 
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According to the existing evidence, about 45 percent of drug side effects can be attributed to unexpected drug-
physiology interactions [43] , which explains why this methodology is highly needed in pharmacological assessment. 
 

8. Factorial Experiments and Personalized Medicine 

Factorial designs form a foundation for advancing personalized medicine by enabling: [4]  
1. Genetically tailored treatments 
2. Optimized drug dosing regimens 
3. Individualized treatment response prediction 
 
 

9. Three-factor Interaction Model: 

 

In factorial experiments where all factors are none other than two levels, the treatments will be 2n. In the event of 
two levels of factor (A), two levels of factor (B), and two levels of factor C. Therefore, the amount of processors 
involved in the experiment (23 = 8) [8]  [41]  
 

                                                               

                          

 

 
10. Estimated Marginal Means (EMMs): Theoretical and Applied Perspective 

Estimated Marginal Means (EMMs) are an essential part of the interpretation of statistical results of processes 
based on general linear models (GLMs), such as analysis of variance (ANOVA) or multiple regression models, 
especially where the design is unbalanced or the relationships between variables are complex.  [42]  

EMMS are also called least-squares means and are adjusted estimates of category means, which are corrected by 
the impact of other variables in the model (e.g., covariates or confounding factors). They are obtained with the 
supposition of balanced representation between groups when the original data are not balanced [42]  [7] . That is 
what causes EMMs to be more reliable than observed (raw) means in determining the actual effect of independent 
variables. 

The parameter estimates of the fitted statistical model are then used to compute EMMs to predict what would be 
the group means when all groups were represented equally using the design matrix. Therefore, they offer a more 
precise and less biased comparison across the levels of factors particularly in cases whereby sample sizes across 
groups are quite distinct [7] . 
Mathematically, EMMs can be expressed as the expected value of the dependent variable Y given the levels of one or 
more factors, averaged over the levels of other predictors: 

 ̂            ̂   … (2) 
where: 
      : is the design matrix representing the specific linear combinations of predictors corresponding to the factor 
levels being estimated, 

  ̂ : is the vector of estimated regression coefficients obtained from the model fit. 
For a linear model of the form: 

                             … (3) 
the estimated marginal mean for a specific treatment combination is given by: 

 ̂     
    ̂         … (4) 

where   
  is a contrast vector representing the coding of the categorical predictors. 

The standard error of the EMM is computed as: 

    ̂    √  
    

                … (5) 
Confidence intervals for each estimated marginal mean are then obtained as: 

    ̂          

 
      ̂            … (6) 
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In the case of several comparisons among levels, post-hoc tests like Tukey HSD or Bonferonni revisions are used to 

maintain control on the family-wise error rate. 

EMMs come in handy especially in medical research where covariates like age, BMI or baseline clinical values differ 

among groups. These variables are adjusted, making EMMs unbiased comparisons that can be used to validly 

interpret the treatment effect, particularly when there is an unbalanced or observational dataset [9] . 

Besides, EMMs are broadly employed when examining the effects of interaction. EMMs are calculated at every 

combination of factor levels (where there is a statistically significant interaction between two factors e.g., treatment 

effect is age-dependent) and are either used in post-hoc tests or to formulate adjusted confidence intervals (e.g., 

Bonferra corrections are made or Tukey corrections) are typically made [7] . 

 

 

11. Simple Effects Analysis: Theoretical and Mathematical Background 

 
When factorial ANOVA indicates a significant interaction particularly a three-way interaction it becomes 

necessary to examine simple effects to determine how the relationship between two factors changes across levels of 
the third factor. 

 
The simple effect of one factor (A) at a specific level of another factor (B) is defined as the difference 
between the means of A’s levels within that fixed level of B. Mathematically, for a two-way interaction (A × 
B), the simple effect of A at level    is: 

     ⁄   ̅    
   ̅    

   … (7) 

 
where  ̅    

  represents the cell mean for the combination of levels    and    

In a three-factor experiment (A × B × C), the simple two-way interaction between A and B at a fixed level of C is 
computed as: 

        ( ̅      
  ̅      

)   ( ̅      
  ̅      

)    … (8) 

This allows the researcher to determine whether the A × B interaction depends on the level of the third factor (C). 
 
The statistical significance of each simple effect is tested using an F-ratio based on the within-group mean square 
error (MSE) from the overall ANOVA: 

  
               

         
     … (9) 

 
where                 represents the variance attributable to the simple effect of interest. 

 
Simple effects analysis is a more detailed analysis of complex data structures which helps us to understand whether 
the observed interaction is indicative of a regular pattern or which is conditional on particular combinations of 
factor levels. Such approach is particularly helpful in health data research, where it helps to find conditional 
treatment effects i.e. whether the effectiveness of a treatment is conditional on a patient diet, activity level, or 
comorbidities.  [6[ ]5]  

 

12. Application 

 
The patients with type 2 diabetes were a dataset used with a factorial experimental design (2x2x2) to determine the 
impact of three primary factors on the level of glycated hemoglobin (HbA1c) as the primary clinical outcome 
measure. The studied factors included: type of treatment (Metformin vs. combination therapy), diet (low-
carbohydrate vs. conventional diet), and physical activity level (regular vs. irregular). 
Data were collected from 240 patients enrolled in an integrated diabetes care program across eight healthcare 
centers over a period of six months. Patients were randomly assigned to the eight possible groups according to the 
three-factor design (2³ = 8 groups). HbA1c levels were measured at baseline, and then again at three and six months 
after the intervention. 
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Description of the three factors and their levels affecting glycated hemoglobin (HbA1c) levels in patients with type 2 
diabetes. 
 

1. Factor A: Treatment 

A1: Metformin only 

A2: Combination therapy (Metformin + SGLT2 inhibitor) 

2. Factor B: Diet 

B1: Conventional 

B2: Low-carbohydrate 

3. Factor C: Physical activity 

C1: Irregular 

C2: Regular 

 

A factorial analysis of variance (Factorial ANOVA) was conducted to determine the main effects of each factor, as 

well as the interaction effects among them. The results are presented in Table (1) below. 

 

Table 1: Analysis of variance for a (RCD) of a factorial experiment 23 
 

S.O.V DF Sum of Squares 
Mean 

Square 
F-value P-value 

Treatment 1 28.45 28.45 113.8 1.114 >  

Diet 1 18.2 18.2 72.8 1.114 >  

Physical activity 1 5.12 5.12 20.5 1.114 >  

Treatment x Diet 1 3.2 3.2 12.8 0.0004 

Treatment x 
Physical activity 

1 1.1 1.1 4.4 0.037 

Diet x Physical 
activity 

1 6.45 6.45 25.8 1.114 >  

Treatment x Diet 
x Physical 

activity 
1 2.3 2.3 9.2 0.0027 

Error 232 58 0.25   

Total 239 122.82    

 
 
 
 
 
The following bar chart shows the effects of treatment, diet and physical activity on Hba1c 
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Bar chart (1): Effects of Treatment, Diet and Physical Activity on HbA1c 

  

This bar chart (1) the effects of treatment, diet, and physical activity on HbA1c levels: 
 The combined therapy (Metformin + SGLT2 inhibitor) achieved the lowest HbA1c levels compared to 

other treatment regimens, highlighting its superior effectiveness in glycemic control. 
 The low-carbohydrate diet demonstrated better outcomes than the conventional diet, emphasizing the 

importance of dietary interventions in diabetes management. 
 The effect of regular exercise on HbA1c was higher than irregular exercise, which shows that regular 

exercise is beneficial in enhancing the outcomes of treatment.  
 
The integration of combined therapy, a low-carbohydrate diet, and regular physical activity represents the most 
effective approach for achieving optimal HbA1c control in patients with type 2 diabetes. 
       

The results of the table (1) demonstrated the presence of statistically significant main effects for each factor 

individually, as indicated by the large F-values and the very small p-values (p < 0.001). This means that each factor 

independently exerted a strong and statistically significant effect on the dependent variable. In addition, the analysis 

revealed statistically significant two-way and three-way interactions, namely: the interaction between treatment 

and diet (Treatment × Diet), the interaction between treatment and physical activity (Treatment × Physical 

Activity), the interaction between diet and physical activity (Diet × Physical Activity), as well as the three-way 

interaction among treatment, diet, and physical activity (Treatment × Diet × Physical Activity). In other words, the 

effect of a two-way interaction (e.g., treatment × diet) is itself dependent on the level of the third factor (physical 

activity, in this case). That is, the pattern of the interaction between treatment and diet varies significantly 

depending on whether the level of physical activity is high or low, and vice versa. 

These findings confirm that the relationship between the dependent variable and the independent factors 

under study is complex. The full effect of any factor cannot be understood solely by examining its main effect; rather, 

it is necessary to consider the intricate interactions among the factors within the model. 

The results further indicate that there were no non-significant two-way interactions. However, not all 

significant two-way interactions were of the same magnitude of importance. Specifically, the interactions between 

diet and physical activity, and between treatment and diet, were highly significant, whereas the interaction between 

treatment and physical activity, although statistically significant, was weaker and potentially of limited importance 

compared to the other two. 

It is essential to interpret these two-way interactions with caution due to the presence of a significant 

three-way interaction. This implies that the nature of any two-way interaction may depend on the level of the third 

factor. Therefore, it is recommended to conduct a Simple Effects Analysis to disentangle these complex interactions. 

Simple Effects Analysis is the most appropriate and methodologically sound approach to break down and interpret a 

three-way interaction and its associated two-way interactions. When a three-way interaction is present, 
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interpreting the two-way interactions in isolation may be misleading, as their form changes depending on the level 

of the third variable. 

13. Steps for Conducting and Interpreting Simple Effects Analysis 

Step 1: Fixing the level of one factor 

To reduce the complexity introduced by the three-way interaction, one factor is fixed at its levels. For example, 

we can fix the factor Physical Activity at one level and then examine the interaction between the other two factors at 

this fixed level. 

A common approach is to fix the factor that is clinically easier to interpret or of primary research interest. In 

this case, Physical Activity will be fixed at its two levels: 

 High Physical Activity 

 Low Physical Activity 

Step 2: Conducting separate ANOVA for each level  
Two separate two-way ANOVAs will be performed for the factors TREATMENT and DIET to examine their main 

effects and possible interaction within two groups: 
 First: Analysis of the high physical activity group only. 

The results for the factors treatment and diet were analyzed while fixing the third factor, physical activity, 
at the high level, and the outcomes are presented in Table (2). 
 

Table 2: Analysis of variance of the high physical activity group only 
 

S.O.V DF Sum of Squares 
Mean 

Square 
F-value P-value 

Treatment 1 48.260 48.260 134.568 1.1111 

Diet 1 5.002 5.002 13.947 1.1113 

Treatment x Diet 1 0.00008 0.00008 0.000232 0.9879 

Error 116 41.60 0.3586   

Total 119 94.862    

 
Analysis of variance demonstrated a highly significant main effect of treatment on HbA1c levels (F = 

134.568, p < 0.001). A significant main effect of diet was also observed, though less pronounced (F = 13.947, p < 
0.01). In contrast, the treatment × diet interaction was not statistically significant (F = 0.0002, p > 0.05). Clinically, 
this indicates that treatment and diet act almost independently, with each contributing to the reduction of HbA1c, 
but without a substantial interactive effect between them. In practical terms, treatment should be considered the 
primary determinant in improving HbA1c, while dietary intervention serves as an effective complementary factor to 
enhance overall outcomes. 

The following Interaction Plot (2) shows the comparison between the treatment factor and the diet factor at 
high levels of physical activity 
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Interaction plot 2: Treatment x Diet under high physical activity 
 
The interaction plot demonstrates a clear crossover interaction between treatment and diet type on HbA1c 

levels under low physical activity conditions. In particular, Treatment A caused lower levels of HbA1c level in 
combination with the traditional diet, and Treatment B caused the least levels of HbA1c in combination with the 
low-carbohydrate diet. The crossing of lines indicates that the effect of diet on HbA1c depends on the treatment 
type, and vice versa. This interaction suggests that optimizing glycemic control requires considering the combined 
influence of both treatment and dietary regimen, rather than evaluating each factor independently. 

 Second: Analysis of the low physical activity group only. 
The results for the factors treatment and diet were analyzed while fixing the third factor, physical 

activity, at the low level, and the outcomes are presented in Table (3). 
 

Table 3: Analysis of variance of the low physical activity group only 
S.O.V DF Sum of Squares Mean Square F-value P-value 

Treatment 1 32.865 32.865 102.157 1.1111 

Diet 1 4.1181 4.1181 12.997 1.1115 

Treatment x Diet 1 3 3 9.335 0.0070 

Error 116 37.318 0.3217   

Total 119 77.314    

 

Analysis of variance demonstrated a highly significant main effect of treatment on HbA1c levels (F = 
102.157, p < 0.001). A significant main effect of diet was also observed (F = 12.997, p < 0.01). Importantly, the 
treatment × diet interaction was statistically significant (F = 9.335, p < 0.01), indicating that the combined effect of 
treatment and diet on HbA1c reduction was greater than the sum of their individual effects. Under conditions of low 
physical activity, the synergistic interaction becomes particularly evident, as patient's experience more pronounced 
improvements in glycemic control when treatment is combined with dietary modification, compared to either factor 
alone. 

The following Interaction Plot (3) shows the comparison between the treatment factor and the diet factor at 
low levels of physical activity 
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               Interaction plot 3: Treatment x Diet under low physical activity 

 
This is the interaction plot at the high physical activity level: 

 We notice that HbA1c levels are generally lower than in the low activity condition (due to the positive effect 

of physical activity). 

 The lines have become closer to parallel meaning the interaction between treatment and diet weakens with 
high activity, and each factor almost works independently. 

 This explains that high physical activity itself enhances the reduction of HbA1c, thereby reducing the 
reliance on the interaction between treatment and diet. 

 
The following table (4) shows the clinical interpretation of the comparison between physical activity levels based on 
the Interaction plot (2) and (3) and Tables (2) and (3) 
 
 

Table 4: Clinical interpretation of the comparison between physical activity levels 
 

Factor 
Low PA 
(Irregular 
Activity) 

High PA 
(Irregular 
Activity) 

Clinical Interpretation 

Treatment 
F=102.157 
(P 1.114> ) 

F=134.568 
(P 1.114> ) 

Treatment is the strongest determinant of HbA1c 
reduction under both conditions, remaining the 
primary driver regardless of diet or physical activity 

Diet 
F=12.997 
(P 1.14> ) 

F=13.947 
(P 1.14> ) 

A low-carbohydrate diet contributes to HbA1c 
improvement, though its effect is considerably 
smaller than treatment, and it appears with similar 
strength across both activity levels. 

Treatment x Diet F=9.335 (P 1.14> ) 
F=0.000232 
(P 1.15< ) 

At low physical activity, a significant effect is 
observed between treatment and diet, whereas at 
high physical activity this interaction disappears and 
each factor acts independently. 

 
The simple effects analysis demonstrated that treatment was the dominant factor influencing HbA1c 

reduction across both levels of physical activity, with the combination therapy (Metformin + SGLT2 inhibitor) 
consistently achieving the strongest effect (p < 0.001). While diet also showed a significant independent 
contribution (p < 0.01), its influence was less pronounced compared to pharmacological treatment. Interestingly, 
under low physical activity, a significant treatment × diet interaction was detected, suggesting that patients 
adhering to a low-carbohydrate diet achieved additional benefit when combined with pharmacological therapy. 
Conversely, under high physical activity, this interaction disappeared, and treatment alone became the primary 
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determinant of HbA1c reduction, with diet acting more as an independent supportive factor rather than an 
interacting one. 
Clinically, the findings indicate that in non-patient with irregular or low levels of physical activity, more significant 
changes in glycemic control could be obtained when combining optimized pharmacological treatment with diet 
alteration. Nevertheless, in patients who have regular or high activity, treatment will be the primary determinant of 
the decrease in HbA1c and diet will provide supplementary but independent advantages. 
The table below represents the overall outcome of treatment, diet, and exercise on the level of HbA1c. 
 

Table 5: Mean HbA1c (%) by Treatment, Diet, and Physical Activity Level 
 

Treatment Diet Physical Activity Mean HBA1C(%) 

Metformin only Conventional Irregular 8.400 

Metformin only Conventional Regular 7.767 

Metformin only Low-Carb Irregular 7.733 

Metformin only Low-Carb Regular 7.367 

Combo Therapy Conventional Irregular 7.200 

Combo Therapy Conventional Regular 6.933 

Combo Therapy Low-Carb Irregular 6.400 

Combo Therapy Low-Carb Regular 6.100 

 
The table demonstrates a clear influence of treatment type, diet, and physical activity on mean HbA1c 

levels. The greatest mean HbA1c (8.40) was established to belong to those patients who received Metformin alone 
under a traditional diet and inconsistent exercise. Conversely, the best HbA1c (6.10) was achieved among those who 
were under combination therapy (Metformin + SGLT2 inhibitor) with low-carbohydrate diet and physical exercise. 

These results indicate that multi-drug therapy, low-carbohydrate diet, and regular physical activity are 
effective in lowering the level of HbA1c, as opposed to the influence of each factor on its own. A general decreasing 
trend in HbA1c is observed as patients shift from irregular to regular activity, from conventional to low-carb diet, 
and from monotherapy to combination therapy, indicating a cumulative effect of the three factors on improving 
glycemic control. 
 

14. Simple Effects Analysis (Key Comparisons) 

The critical simple effects test: 
1. Under Irregular Physical Activity (Testing Treatment × Diet interaction) 
With Conventional Diet: 
Combo (7.211) vs. Metformin (8.411) → Difference = -1.200% 
With Low-Carb Diet: 
Combo (6.411) vs. Metformin (7.733) → Difference = -1.333% 
Interaction Effect: The additional benefit of the low-carb diet is 0.133% greater with combo therapy. This 

difference-in-differences equals (-4.333) − (-1.200) = -0.133%. Given the low within-group standard deviation 
(~0.6), this difference is statistically significant (p < 0.05). 

2. Under Regular Physical Activity 
With Conventional Diet: 
Combo (6.933) vs. Metformin (7.767) → Difference = -0.834% 
With Low-Carb Diet: 
Combo (6.411) vs. Metformin (7.367) → Difference = -1.267% 
Interaction Effect: Difference-in-differences = (-4.267) − (-0.834) = -0.433%. However, because both diet 

groups show large, independent benefits, the relative interaction is less pronounced, and it may not reach 
significance. 
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The largest absolute reduction is observed in the Combo + Low-Carb + Irregular Activity group (8.411 → 
6.400 = -2.000%). 

The interaction is most clinically relevant for sedentary patients, where dietary modification significantly 
potentiates the drug effect. 

For physically active patients, the drug effect is strong and consistent, and diet provides an additive (but not 
synergistic) benefit. 

Following the initiation of treatment, HbA1c levels were reassessed after six months. The difference 
between baseline (pre-treatment) HbA1c and the six-month post-treatment measurement was calculated to 
quantify the change in glycemic control. This change in HbA1c served as the dependent variable in a factorial, 
analysis of variance (ANOVA), designed to evaluate the independent and combined effects of treatment modality, 
dietary regimen, and physical activity on the observed reduction in HbA1c levels, the following table (6) represents 
the results of the ANOVA. Change in HbA1c as a dependent variable 
 

Table 6: Analysis of variance considering change in HbA1c as the dependent variable 
 

S.O.V DF Sum of Squares Mean Square F-value P-value 

Treatment 1 74.668 74.668 1964.469 1.114 >  

Diet 1 50.91558 50.91558 1339.557 1.114 >  

Physical activity 1 27.77636 27.77636 730.7787 1.114 >  

Treatment x Diet 1 2.559847 2.559847 67.34798 1.114 >  

Treatment x Physical activity 1 0.894027 0.894027 23.52128 1.114 >  

Diet x Physical activity 1 2.107739 2.107739 55.4533 1.114 >  

Treatment x Diet x Physical activity 1 0.035667 0.035667 0.938382 0.3337 

Error 232 8.780139 0.038   

Total 239 167.7374    

 
The ANOVA results indicate that all main effects treatment, diet, and physical activity as well as all two-way 

interactions, are statistically significant (p < 0.001), demonstrating their substantive influence on the change in 
HbA1c levels six months post-treatment. In contrast, the three-way interaction (treatment × diet × physical activity) 
is not statistically significant (p = 0.334), suggesting no additional synergistic effect when all three factors are 
considered jointly. The treatment type is the strongest among the predictors as it has a very high F-value (F = 
1964.47) and is crucial in influencing HbA1c reduction. The residual mean square (MSE = 0.038, dependent on SSe = 
8.78 and df = 232) demonstrates that there is very little variability within the groups, which increases the accuracy 
and reliability of the estimated effects. More importantly, the model explains about 95% of the overall variance in 
change of HbA1c (R2 0.948), which is outstanding and it indicates the strong ability to explain and hence predictive 
power in an intervention model (as well as prediction in clinical practice). 

Explanation of Approximately η² (eta-squared) = 44.9 per cent of total variance in HbA1c change, and about 
partial η² (partial eta-squared) = 89.5 per cent when other factors are held constant. It means that the type of 
treatment has the greatest effect on enhancing glycemic control. 

Diet explains an approximation of η² (eta-squared) = 31.6% of the total variance and roughly partial η² 
(partial eta-squared) = 85.3% when other variables are held constant, which means that dietary regimen is very 
important in lowering HbA1c. 

Physical activity explains η² = 46.7% of the total variance, and η² = 76.1% when other factors are held 
constant. This highlights its relevance as an influential factor though not important as the treatment and diet. 

There is statistically significant interaction effect between diet and treatment. Interaction effect is not so 
large and its contribution is η² (eta-squared) = 1.5% to overall variance yet when other factors are taken into 
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consideration, it becomes moderate (partial η² = 22.6%). This implies that the dietary regimen used may be more or 
less effective in terms of treatment. 

A statistically significant, yet relatively weak, interaction is observed between treatment and physical 
activity. This indicates that the treatment effect may vary slightly depending on the level of physical activity, though 
this interaction is not substantial. 

A clear and statistically significant interaction is found between diet and physical activity. This implies that 
combining a healthy diet with regular physical activity yields greater improvement in HbA1c than would be 
expected from the sum of their individual effects. 

The three-way interaction (treatment × diet × physical activity) is not statistically significant, indicating that 
the combined effect of all three factors together does not differ meaningfully from the two-way interactions already 
described. 
 

To know the effect of each factor as well as the interaction of the three factors on the decrease in HbA1c, we 
use Estimated Marginal Means (EMMs) to estimated marginal means for each experimental group after removing 
the effect of other variances in the statistical model. Table (7) shows the results of the calculation. 
 

Table 7: (EMMs) estimate the adjusted mean for each experimental group 
 

Treatment Diet Physical Activity EMMs 

Metformin only Conventional Irregular 2.737 

Metformin only Conventional Regular 1.724 

Metformin only Low-Carb Irregular 1.397 

Metformin only Low-Carb Regular 0.804 

Combo Therapy Conventional Irregular 1.268 

Combo Therapy Conventional Regular 0.544 

Combo Therapy Low-Carb Irregular 0.387 

Combo Therapy Low-Carb Regular -0.010 

 
Based on the EMMs results in table (7), the best reduction in HbA1c was achieved with the 

combination of Combo Therapy + Low-Carb Diet + Regular Physical Activity, which recorded an exceptional 
reduction of −1.141%. This value is the closest to zero and represents the most effective outcome among all 
experimental groups. 
The least effective combination (highest HbA1c value, i.e., smallest reduction) was Metformin only + 
Conventional Diet + Irregular Physical Activity, which recorded 2.737%.  
When comparing groups that share the same Diet and Physical Activity, it is clear that Combo Therapy 
consistently performs better than Metformin only.  
Under the same conditions of the Treatment and Physical Activity, the Low-Carb Diet is always better than the 
Conventional Diet, meaning that the diet composition has a strong impact on the reduction of the HbA1c 
levels. 

Under the same conditions of Treatment and Diet, the Regular Physical Activity is always better than the 
Irregular Physical Activity and thus the high influence of the regularity of physical activity on the results of 
treatment is proved. 

The outcomes reflect that the three factors are all determining: none of the factors (treatment, di et, or 
activity) per se is determinant: the combination of all three factors is paramount to best HbA1c control.  
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In the event, the patient is not able to completely comply with the best protocol (Combo Therapy + Low -Carb 
+ Regular), the most effective alternatives in that order are: 

 Low-Carb + Irregular + Combo Therapy (0.387%) 
 Combo Therapy + Conventional + Regular (0.544) 
 Low-Carb + Regular + Metformin Only (0.804%) 

Thus, Combo Therapy should be first, then Low-Carb Diet, and lastly Regular Physical Activity should be 
adopted, which would give the best glycemic control.  

This discussion indicates that it is the combination of proper treatment, diet, and lifestyle in management of 
diabetes that results in success and not any of these factors alone.  

Following the analysis of variance presented in Table (6), with the change in HbA1c levels as the dependent 
variable which revealed statistically significant differences among the levels of the main factors and some of their 
interactions Tukey’s Honest Significant Difference (HSD) post hoc test was applied to identify which specific factor 
levels differed significantly from one another for each main effect individually. The results are shown in the 
following Table (8). 
 

Table 8: Tukey's test of each factor's levels 
 

Factors Level 1 Level 2 meandiff p-adj lower upper reject 

Treatment Combo Therapy Metformin only -1.1183 0 -1.2776 -0.9589 TRUE 

Diet Conventional Low-Carb -0.9238 0 -1.1023 -0.7452 TRUE 

Physical Activity Irregular Regular -0.6821 0 -0.8775 -0.4866 TRUE 
 
The results from table (8) show that 
The mean difference (−4.4483) indicates that Combo Therapy achieved a greater reduction in HbA4c by 

approximately 1.12% compared to Metformin only. 
The mean difference (−1.9238) shows that the Low-Carb Diet resulted in a greater HbA1c reduction by 

about 0.92% compared to the Conventional Diet. 
The mean difference (−1.6824) reveals that Regular Physical Activity led to a greater HbA4c reduction 

approximately 0.68% more than Irregular Physical Activity. 
The findings evidently show that the three factors of Treatment, Diet and Physical Activity are significantly and 
independently influencing the reduction of HbA1c. 
All the comparisons point to the overall pattern that: 

 Combo Therapy > Metformin only 
 Low-Carb Diet > Conventional Diet 
 Regular Activity > Irregular Activity 

 
The Tukey HSD post-hoc test confirmed that the combination of combination therapy + low-carbohydrate 

diet + regular physical activity produced a statistically significant greater reduction in HbA1c than most other 
treatment combinations (p < 0.05). These evidences indicate that pharmacological, dietary and behavioral 
interventions have a high level of synergy and that integrated management approaches are vital in the maximality of 
glycemic control. 

The figure below illustrates the algorithmic treatment of a type 2 diabetes patient, which is founded on 
physical activity, pharmacotherapy, and dietary regimen. 
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Figure 1: Algorithm of the Decision-Making in the Management of Type 2 Diabetes Mellitus. 
 

The algorithm presents the clinical decision-making process with regard to patient management of type 2 
diabetes in respect to their physical activities and supporting conditions. In case of regular physical activity, 
pharmacotherapy is the main force in glycemic control, but a combination of Metformin and an SGLT2 
inhibitor is recommended, so a low-carbohydrate diet can be introduced as a supportive measure. On the 
contrary, in case of irregular physical activity, pharmacotherapy and dietary modification are the key 
elements of the therapy, and it is imperative that a low-carbohydrate diet will be followed to complement 
the effect of the drug. Six months after the start of the treatment, the efficacy of the treatment is evaluated 
by measuring the level of HbA1c; a level below 7% is sufficient to continue with the current plan, a level 
equal to or higher than 7% leads to reassessing adherence and may consider additional intensification of 
treatment to proper glycemic control. 
 

15. CONCLUSION 
 

1. The ANOVA results indicate that all three factors (treatment type, diet, and physical activity) had a 

significant main effect on reducing HbA1c, in addition to the presence of statistically significant two-way 

and three-way interactions. This confirms that blood sugar control does not depend on a single factor alone, 

but rather on an integrated combination of pharmacological therapy, dietary behavior, and physical activity. 
2. The results show that dual therapy is the most influential factor in reducing HbA1c in patients with regular 

physical activity, while diet has an additional but independent effect. That is, high physical activity enhances 

the effectiveness of the treatment and reduces the need for a strong interaction between diet and 
pharmacological therapy. 

3. The results indicate that patients with low physical activity benefit more from the synergistic interaction 

between treatment and diet, as combining dual therapy with a low-carbohydrate diet leads to a greater 

reduction in HbA1c compared to the effect of each factor individually. This suggests that dietary 
improvement can partially compensate for inadequate physical activity. 

4. It has been analyzed that dual therapy is the most effective factor irrespective of the activity level and 

effects of diet depend on the level of physical activity. A robust interaction is found between diet and 
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treatment with low activity and each factor functions practically independently with regular activity, which 

means that exercise decreases the treatment-diet interaction. 
5.  A tendency toward gradual decrement of HbA1c in the case of the transition to the use of less effective 

factors (metformin + traditional diet + irregular activity) to the one that is optimal (dual therapy + low-

carbohydrate diet + regular activity) can be observed. This indicates that there is a synergistic interaction of 

the three factors and that minimal blood sugar control can be attained only by implementing the three 
factors together. 

6. The findings indicate that dual therapy covers the highest percentage of variance in the change of the 

HbA1c level (some 45 percent), followed by the diet (30 percent), and physical activity (17 percent). The 
two-directional interactions also suggest that the effectiveness of treatment is partially dependent on the 

diet and the activity but not on the three-way interaction. These results indicate that the power of the 

factorial experiment model is very high (R2 0.95) and, as a result, the results presented by them are more 

reliable. 
7. The test presented by Tukey affirmed that there were evident significant differences in the levels of each 

factor, with the optimal results recorded by the use of dual therapy, low-carbohydrate diet, and regular 

activity, respectively. This suggests that all three factors have an independent effect on the lowering of 
HbA1c and that an integration of the factors will result in a significant enhancement of the blood sugar 
control. 

8. The results of these clinical determinations point to the necessity of a specific approach to therapy, in which 

the therapeutic choice of drugs, diet, and exercise should be selected depending on the lifestyle of the 
patient and his or her adherence potential. 

9. Such a comprehensive strategy can enhance the glycemic results in the long term, decrease the risk of 

diabetic complications, and improve the quality of life in general. 
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