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A B S T R A C  

Wireless Sensors Networks (WSNs) recently, have drawn a lot of attention.  Despite its 
potential applications in a wide range of fields, wireless sensor nodes' restricted 
communication bandwidth, inadequate processing units, little memory, and power limitations 
severely limit their capabilities. One of the main challenges in this area is extending the life of 
battery-powered sensors in WSNs by reducing energy usage. This problem is addressed using 
a variety of techniques, such as deep learning, machine learning techniques, statistical 
techniques, and time series forecasting.  One strategy is to utilize data prediction to reduce 
the volume of transmitted data without sacrificing its quality. This paper presents a model for 
wireless sensor networks energy saving using the Static Extended Kalman Filter (SEKF). The 
technique is used to accurately dual predict. The plan consists of two stages. In the first stage, 
the transmission from the sensor node to the sink node is reduced based on four steps (data 
equality, data deviation computation, faulty data detection, data reduction based on 
prediction). In the second stage, the data is reconstructed at the sink node to maintain system 
reliability. The proposed model demonstrated superior performance compared to other 
methods, reducing data throughput in the first phase by 60.72%. In the second phase, data 
was reconstructed with 97.86% accuracy at a data reduction rate of 62–60%, with an energy 
consumption of 3.928 J. These results were achieved by SEKE for single-node reconstruction. 
Furthermore, the proposed model performed well when applied to data containing negative 
values, achieving acceptable data reduction with accuracy ranging from (94-95%) in several 
experiments. The Intel Berkeley Research Lab (IBRL) dataset was used for all experiments.  

MSC. 

https://doi.org/10.29304/jqcsm.2025.17.42533 

1. Introduction  

Wireless sensor networks (WSNs) are low-cost systems composed of wireless sensor nodes and antennas for 
environmental monitoring [1]. Their small size and portability make them suitable for remote areas. Despite limited 
energy, processing power, and storage, WSNs have many applications in environmental sustainability and smart 
cities. These networks consist of sensors distributed in the environment that collect and wirelessly transmit data to 
a central sink node. Battery life is a major concern since radio transmissions consume the most energy due to large 
data volumes. Effective data management is crucial to extend network life and reduce energy use. Because sensory 
data show high temporal and spatial correlation, predicting data is a promising strategy to reduce transmitted data 
by using past data to forecast future values, thus eliminating redundant information before transmission[2]. Several 
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advanced techniques such as data aggregation  [3][4] data compression [5][6], adaptive sampling [7], and data 
prediction [8] have been proposed. Compared to others, data prediction achieves a higher data Suppression Ratio 
(SR), making it a more effective and preferred approach. data prediction builds a prediction model based on 
correlations in previously collected data to forecast future measurements. Data that can be estimated at cluster 
heads, sinks, or base stations are not transmitted. By comparing measured data with predicted values at sensor 
nodes, transmissions are stopped when predictions meet accuracy requirements. Only unexpected data are sent to 
the sink. Prediction accuracy depends on the sink's ability to reconstruct non-transmitted data. However, some DP 
strategies impose high computational loads on sensor nodes, which may not be suitable for resource-constrained 
environments. This paper proposes a new prediction-based data reduction approach aiming to improve 
transmission reduction, data reliability, and energy consumption. The main contributions are: 
 Developing a data reduction algorithm to discard redundant, predictable, or faulty data at sensor nodes . 
 Developing a data prediction algorithm at the sink node based on the Kalman Filter to predict missing data 

reliably 
 

Figure (1) illustrates the structure of WSN 
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(1): WSN Structure 
 
 
 
 
 

2. Related Researches   

Prediction-based data transmission reduction in wireless sensor networks uses for past data analysis to forecast 
future values, allowing just critical information to be transmitted rather than all data. According to some research, 
employing prediction can also increase sensor device battery life and enhance network performance as a whole. 
Predictive models have been created by researchers using a variety of methods, including: 

Bashar Chreim et al. (2021) [9] introduce (RADAR), a simultaneous prediction model that utilizes linear 
correlation among all data variables. The models include time series prediction and linear regression. These models 
produce satisfactory and accurate results while still being straightforward. A time series model will predict the 
value of the first applications' variables, which in turn input to the next SLR prediction model to predict the second 
variable. Then, successive predictions of the value of the next corresponding variable take place by multiple linear 
regression (MLR) simultaneous models. The proposed dual prediction scheme (DPS) implemented on both the 
source and the destination nodes. RADAR outperforms LMS_MOD in terms of RMSE, data reduction percentage, and 
energy consumption. The results fill in between 5 and 14% and 23 and 34% for humidity and black photons data 
reduction respectively. 
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Marcin Lewandowski and Bartłomiej Płaczek. (2021) [10] proposed a novel dual prediction model that can be 
applied to neural nets, decision trees, random forests, and other frameworks. The suggested method determines 
whether or not to transmit the sensed data without using prediction error. This approach, on the other hand, checks 
to see if the anticipated data are accurate enough to identify the relevant events. The parent node's event detection 
task can be characterized as a binary function with the formula 

 

                 ( )   event(spt,sct,E)                                                  (1)       

 Where E(t) = 0 in the absence of an event and 1 in the presence of one and sensor readings taken at time step t 
by the parent (Spt) and the child nodes (Sct) respectively. the experimental results achieves 94% accuracy, 79% 
data reduction with 0.1 % accuracy depletion in comparison with ANN, and Naïve models. 

 Haibin Wang and colleagues. (2021) [11] presented a data reduction method based on Dual Prediction. The 
model is divided into two stages. Data reduction is the focus of the first phase, which comprises: fault and equal data 
detection, and data deviation computation. Kalman filter in the second phase aims to predict unsent data as an 
expectation of previously seen data. The experiments were evaluated with the Intel Berkeley Research Lab (IBRL). 
The obtained results demonstrated that the suggested method could preserve data reliability while reducing data 
transmission by up to 75.75%. The suggested method not only reduces data but also finds and removes inaccurate 
data.     

A Combinational Data Prediction Model (CDPM) was developed by KHUSHBOO JAIN et al. (2022) in [12]; it can 
predict future data to minimize data transmission and build previous data to manage latency. The training and 
prediction phases serve as the foundation for the model's construction. The training phase delay is reduced by 
adjusting the training data size in accordance with the data interrelations. Comparing the CDPM model to the HLMS, 
ELR, and P-PDA algorithms, respectively, experiments conducted on temperature and humidity in the Intel Berkeley 
Research Laboratory show significant transmission reduction about (16.49%, 19.51%, and 20.57%), enhanced 
energy saving (29.56%, 50.14%, 61.12%), and enhanced accuracy (15.38%, 21.42%, 31.25%). 

AROUNA NDAM NJOYA et al. (2022) [13] proposed a model that uses a sequence-to-sequence (Seq2Seq) encoder-
decoder neural network with LSTM units to predict spatial features from sensed data in WSNs. By producing 
additional information, the previously mentioned method may reduce network traffic and energy consumption for 
data transmission on WSNs. The experimental results on Berkeley Research Laboratory data from Intel, 
demonstrate that the proposed model can save twice as much energy and accurately forecast data with little error 
(measured by Root Mean Squared Error) when the appropriate nodes are used. 

In [23] El-Sayed, Walaa M. et al [14]. (2023) proposed the Distributed Data Predictive Model (DDPM), which 
operates in three phases: Dissemination/Mobility, Classification, and Data Generating. Sensors transmit data to 
clusterhead nodes that categorize faults, identify missing data, and assess sensor status. Data prediction is 
performed using Recursive Least Squares (RLS) and Finite Impulse Response (FIR) adaptive filters. RLS minimizes a 
weighted least squares cost function, while FIR adapts without feedback, producing output via convolution. The 
model recovered nearly 99% of lost data, reduced energy consumption, enhanced network performance, and 
decreased transmitted signals, achieving 19% reliability in WSNs. 

M. Revanesh et al. (2023) proposed the ANN-ILMNN model in [15], an enhancement of LEACH and ESR protocols, 
incorporating the Levenberg-Marquardt Neural Network (LMNN) for improved anomaly detection and energy 
efficiency. Simulations showed ANN-ILMNN outperformed other models, achieving 97.85% accuracy with 600 data 
points compared to LEACH (84.89%), EESR (87.94%), LEACH-LMNN (90.69%), and EESP-LMNN (94.59%). Energy 
consumption was significantly lower with ANN-ILMNN, requiring 29.12 J for 20 nodes, compared to LEACH (41.24 J) 
and others. The model demonstrated superior accuracy and energy efficiency across varying network sizes. 

A prediction-error-based method (PEM) was proposed by Umut Yildirim et al. (2024) in [16] to optimize 
transmissions and detect damages in wireless sensor networks, the methodology combines prediction, FFT, and 
bandpass filters for noise reduction. Decisions are made based on the deviation of predicted data from the actual 
sensor reading. The term "excitation data," which refers to the set of data read from a trustworthy set of sensors as 
reference data for prediction, is attractively used by the model. The results show that the transmissions for each 
sensor can be minimized to 10% where 90% of the readings are unsent with 45% predefined error tolerance. 
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Li Wu et al. (2024) in [17] proposed Fourier transform for a new data collection strategy in the energy control 
system, which exhibits power in periodic characteristics detection of the temperature data. The study demonstrates 
that these data can be linearly fitted using Fourier transforms, where data parameters can be optimized with least 
squares. This model reduces equal-value data and prolongs the lifespan of sensor nodes. Although Compared to the 
complex model, the Fourier transform needs more computation and high parameterization to fit with, it shows 
much better performance in data with periodic characteristics, where it exhibits fitness up to 93.0285. 

Ting Hu. (2024) in [18] suggested a data fusion mechanism for WSNs to optimize clustering design. The proposal 
enhances the conventional cluster-based routing protocol and develops a deep-learning (DL) data fusion algorithm. 
In this manner, the cluster head plays the main role in extracting, classifying, and fusing similar data features, 
whereas the cluster's node members fit the gathered raw data using the DL model. The experiments performed on 
the KDDCup99 dataset, where results showed reduced data transmission, improved energy utilization, and 
prolonged network life. The proposed algorithm out performs LEACH and DFA-IACOBP by 32.2% and 15.9% in 
energy saving respectively. 

3. Proposed Approach 

The proposed model begins by loading datasets. Three sensor nodes are used to read the data. Data is predicted 
at the sensor node to reduce transmission and then transmitted to the sink node. Un transmitted data is then 
predicted at the last mentioned node. Finally, a model that conserves sensor battery power is created by combining 
data reduction at the sensor node and reconstruction it at the sink node using a Kalman filter algorithm. Figure (2) 
illustrates the basic steps of the proposed method. 
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                                                        Figure (2): Proposed System Model 

3.1 Experiments Environment 

    It is important to mentioned that all the experiments were conducted within MATLAB Integrated Environment 
version (2020) for model simulation. The computational setup consisted of a laptop equipped an Intel Core i5 
processor, 8 GB RAM, and running Windows 10 operating system.  

3.2 Data Set 

This work focused on working with WSN-environmental data so, Intel Berkeley research lab (IBRL) Dataset is a 
consistent to be utilized in this study. This dataset consists of real sensor nodes readings collected between 
February and April, 2004. A total of 54 Mica2Dot sensor nodes were deployed within IBRL facilities to record 
environmental data, including temperature, humidity, light, and voltage within sampling interval of about 31 
seconds. For the purpose of, a subset of 10,000 humidity readings was selected. Sensors 1, 2, and 3 were utilized to 
assess the proposed method. For additional details on the datasets employed, Further information regarding the 
dataset can be found in [19]. 

Figure (3) shows an architectural diagram of the dataset. 
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                                            Figure (3): Intel Berkeley Research Lab Dataset 

 

3.3 Data Preprocessing 

    Collecting high-quality datasets is essential to building an excellent model, as the model's effectiveness depends 
on the data it inputs. When building our system, we used humidity data to implement the algorithm. The data was 
cleaned by removing negative values. 

3.4 Sensor Nodes Model (Data Reduction Phase)   

      The data reduction phase aims to reduce the number of data transfers between sensor nodes and sink nodes. In 
the presented work, links between each sensor node and its corresponding sink node are used to achieve the 
targeted reduction. The data reduction phase relies on four algorithm steps implemented in each sensor node start 
with data equality, data deviation computation, faulty data detection, and data reduction based on prediction. The 
following subsections detailed the processing operations within each step.  
 
3.4.1 Data Equality (DE) 
The data reduction phase algorithm's initial phase, data equality, determines whether or not the newly sensed 
information is equivalent to the prior reading, as specified by Equation (2): 
 

                                                                                                                 (2) 

where      is the previous value and    is the current reading. A certain amount of values from each sensor node 
in the network were first cached by the data reduction phase before being sent to the sink node. The same sensor 
node then compares each newly sensed reading     at time t of sensor    with the previously acquired reading      
.Therefore, if no change is found, the current reading    , is disregarded. And will begin  the second phase of the 
suggested method.   

3.4.2 Data Deviation Computation (DDC) 

In order to determine the value of this deviation and transmit or delete the reading appropriately, data deviation 
computation makes sure that the current sensed reading    , differs in some way from the previous reading      . In 
fact, two distinct methods are suggested in the proposed data reduction phase to determine the data deviation 
computation. The initial procedure seeks to determine, using Equation (2), the difference between the present 
sensed value,    , and the earlier readings      . If the difference between     and      is smaller than the 
predetermined     , the data transmission will be discarded, and the cache updated. If not, the second data 
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deviation computation procedure begins. To determine how far the current sensed reading deviates from the 
expected values, a data deviation computation is presented to calculate the deviation of the current sensed reading 
from their predicted values. Comparing the current reading     with the Kalman Filter based estimated value    , 
which is nearly identical to the prior reading, is the principle behind this procedure because Kalman Filter estimated 
values are quite accurate. Equation (4) computes the difference between    and      , If deviation      is bigger than 
the predefined threshold     ,  then    is transmitted to the sink node; else, the    data transmission is discarded, 
and the cache is updated:   

 

                                                                                                                                (3) 

 

                                - |        |                                                                                  (4) 

 

3.4.3 Faulty Data Detection (FDD) 
Faulty data detection is used to stop inaccurate sensed readings from being transmitted. Indeed, because of their 
limited resources, wireless sensor nodes are prone to malfunction. Therefore, ensuring that the data collected is 
error free is crucial for data reliability and accuracy. Equations (5) and (7) serve as the foundation for the suggested 
faulty data detection approach in this stage. Fault detection is a crucial procedure since WSNs are prone to 
malfunctions. The suggested method takes defect detection procedures into account, in contrast to several cutting 
edge data reduction techniques:    
 
                          ∑          

 
   |                                                                                     (5) 

 
                                 (        -      |) |                                                           (6) 
 

                       *                                                     (7) 

   where    denotes the current sensed reading,       and      are the maximum and minimum cached readings, 
respectively, and   is a predetermined value determined by the application requirements. Dis indicates the distance 
between the values that are cached and the current reading. When comparing the current sensed reading to the pre-
cached readings, the       is the difference between the maximum and minimum cached values. Equations (5) and 
(7) determine how to discard defective data transfer and update the cache with the estimated value [11].                            

3.4.4 Predictable Data Reduction 

In Data Reduction based on Prediction step Extended Kalman Filter is used to recursive estimation are made to 
predict sensor readings, reducing data transmissions by sending the new data, only when prediction errors exceed a 
predefined threshold, this can further reduce the transmitted data and consequently enhancing energy harvesting. 
For efficient and accurate data prediction, manual tuning estimation mode were used. 

 

 

Algorithm (1): Data Reduction Phase   

 

 
 

Step 1: Initialize variables 

                      size for previously collected readings 

  ( )                  current reading value 

Input: Sensor current Readings  

Output: Reduced Transmitted Readings  
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                       last cache value 

                        Kalman Filter based estimated value 

                      maximum acceptable deviation for data transmission 

                      correlation factor of current sensed reading  

                     faulty data detection threshold 

                       distance between the current reading and the cached values 

 threshold          threshold of prediction  

 
Step 2: Read current sensor value 

1. If it is the last l readings, then send to Sink  
2. else   go to next step 

Step 3: Data Equality (DE) 

1.  If zt = lx-1 then   
     Discard transmission  

l.append(zt) (add new value to cache) 
      EKF.update(zt) 
      Continue to the next iteration 

2. Else go to next step 

Step 5: Data Deviation Computation (DDC) 
 

2.  Mean(lx-1) = mean(l_cach) 
3. if |zt-lx-1| < mean(l) then 

4. Discard transmission  
      l.append(zt) (Remove the oldest value from cache and append zt) 
      EKF.update(zt) 
      Continue to the next iteration 

5. else go to next step 
Step 6: Faulty Data Detection (FDD) 
 

1. Compute dis based on equation (4) 
2. Compute Corr based on equation (5) 
3. If Corr > theta  
4. Discard transmission  
5. l.append(zt) (Remove the oldest value from cache and append zt) 

     EKF.update(zt) 
     Continue to the next iteration 

6. Else continue to next step 
 

Step 7: Data Prediction 

1. est=EKF.estimate (lx-1) 
2. EstErr = abs (zt – est) 
3. if EstErr>= threshold 

    Discard transmission 
                   l.append(zt) (Remove the oldest value from cache and append zt) 

4. Else send to sink and Continue to the next iteration 

End                                                                                                                                                                                      

 

3.5 Sink Node Model Data Reconstruction Phase (DRCP) 
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       In WSN, the sensor node senses, generates, and transmits all of the data that the sink node receives. In general, 
sink nodes outperform sensor nodes in terms of performance, transmission capacity, and computing power. Thus, 
the primary objective of the suggested method is to strike a balance between data accuracy and dependability on the 
one hand, and data reduction and energy consumption on the other. As a result of the Sensor Nodes DRP, the 
accuracy and dependability of WSN data are impacted since the data gathered by sensor nodes is deemed full in 
comparison to the data received by the sink node. The data reconstruction phase, are suggested as a solution to 
these problems. The core function of this phase is to predict un transmitted data at the sink node at each time 
interval (t) using Extended Kalman Filter. Un transmitted readings are Reconstructed using previously cached 
readings from sensor nodes, where each reading is cached as (l) for a sensor node (si). For every sensor node (si) the 
reading obtained at time t is used to update the cached values. WSN nodes in many applications are characterized by 
geographically closed spaced (the proposal of this work), then at any time point t where there is no reading is 
received, two methods are fired to forecast the missing reading, self-prediction (SP) and neighbor prediction (NP) 
method. 

3.5.1 Neighboring-based prediction (NP) 

   This method benefit from the close proximity of neighbor sensors which make them reported high similarity data, 
this the good news for sink node to compensate   missing data with real existing neighbor similar data and increase 
reconstruction accuracy by avoiding further predictions. NP aims to check whether one of the targeted sensor 
neighboring nodes is transmitting readings at time t. In the case of one or more neighboring transmit readings, the 
sink node fill missing one with this data. The selection of the neighbor whose data to be candidate for compensation 
is strait forward process follow the sequential search within neighbor set, while it is a small set, that require 
negligible time consuming.  

3.5.2 Self-based prediction (SP)      
    Self-based prediction (SP) method aims to predict un transmitted readings passed through the first step. In fact, 
the nature of the network plays a crucial role in determining the prediction technique. In some WSN, sensor nodes 
are spatially redundant, which increases reading similarity, and cause all neighbor nodes to behave the same upon 
data reduction (deleting data for the same data slots). However, the proposed SP data reconstruction used extended 
Kalman filters to predict missing data points. Every time slot t the sink node update Kalman Filter state to 
synchronize it with the last reading of the targeted Sensor. 

 

Algorithm (2) Sink Node Model (Data Reconstruction phase). 
 
 
 
 
 

Step 1:  for the received data pool (D) check missing data at time t 

If ¬(∃dData(sn,t))≡ ∀d¬Data(sn,t) then  
      Identify Missing Data (Time Slot t)  
else 
      update EKF state     
     RD(t) = cache (data (d,t)) 

Step 3: Check Neighboring node’s Data at (Time Slot t)  

If ∃sn(sn(j)∈((negibor)∧SN)) ∧Data(sn(j), t)) then 

       RD(t)= fill. Data(sn(j), t) where j=1,2,…,n neighbor sensors index 
else  
       RD(t)= EKF.Predict (Data(sn(i), t-1)) where i=1,2,…,n current sensor index     
Update Kalman Filter  

Step 4: send constructed data to gateway node 

Input:  Reading Data (SN, T) Received time stamped Data  

                 Sensor Nodes Pool (SN) 

Output: Reconstructed Data (RD(T)) 



10  Furqan Muhammad Abbas, Hadeel Noori Saad, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL.17.(4) 2025,PP.COMP 77–44

 

end   

4. Results and analysis 

 This section examines the outcomes of data reduction and prediction algorithms using various      values (0.0002, 
0.0003,0.0005,0.0007and 0.0009). The suggested performance for data reduction is assessed by contrasting the 
percentage sizes of the input and output data.  Additionally, ten thousand humidity readings from sensors 1, 2, and 3 
were used to assess the effectiveness of the suggested strategy.  Additionally, to confirm the efficacy of the suggested 
data reduction technique, the outcomes of three well-known data reduction approaches are compared with the 
results of the proposed approach. The criteria chosen to assess the outcomes of the suggested strategy are data 
reduction percentage, data correctness, and energy conception. 

4.1 Data Reduction Stage 

The first stage of the proposed model begins by minimizing data transmission from the sensor node to the sink node 
using the proposed Kalman Filter based model to save the nodes' battery power, where data reduction encompasses 
removing equal data readings (data equality), data deviation computation, faulty data detection, and EKF-based 
predictable data. The experiments was accommodated using manual tuned EKF parameters and a certain threshold 
value      .  

 

4.1.1 Static Extended Kalman Filter (SEKF) 

The experiment involved applying an EKF with the process noise set to 0.03 and the measurement noise set to 
0.16. Table (1) shows the Percentage of reduced transmitted data with selected threshold values      and 10000 
data readings. 

            Table (1) Data Reduction Percentage in Sensors (1-3) with (SEKF)  

     Process 
Noise (Q) 

Measurement 
Noise (R) 

Sensor 1 Sensor 2 Sensor 3 

0.0002 0.03 0.16 23.29 23.52 23.60 

0.0003 0.03 0.16 30.36 30.75 30.71 

0.0005 0.03 0.16 42.61 43.42 43.48 

0.0007 0.03 0.16 52.72 53.01 53.18 

0.0009 0.03 0.16 60.25 60.51 60.72 

 

The results show the impact of change      parameter on the data reduction Percentage achieved across three 
sensor nodes, The percentage increases with increasing        from 0.0002 to 0.0009, Sensor 1 shows an increase 
from 23.29% to 60.25%, Sensor 2 from 23.52% to 60.51%, and Sensor 3 from 23.60% to 60.72%.  On other hand, 
system parameters were carefully tuned with 0.03 and 0.16 for Q and R, respectively, ensuring stable and reliable 
prediction performance across all scenarios. 

 Figure (4) illustrates the relationship between      and transmitted data reduction for the three sensor nodes. 
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                  Figure (4) Threshold variation effect on data reduction percentage 

5. Data Reconstruction Stage 

    After reducing data transmission at the sensor node, the sink node is responsible for reconstructing the missing 
readings by applying the same Kalman Filter used during the data reduction stage. Since both the sensor and sink 
nodes share the same prediction logic, the sink can accurately estimate the skipped values based on previously 
received data. This stage is essential to restore the original data sequence as closely as possible. It ensures that the 
system maintains reliable data quality while significantly lowering energy consumption. 

5.1 Single Node-Based Reconstruction with Static EKF 

The experiment involved reconstructing sensed data from each sensor node independently, without relying on 
communication or data exchange with neighboring nodes. Static Extended Kalman Filter (SEKF) was applied with 
process noise set to 0.03, and the measurement noise set to 0.16. The results of the Kalman Filter algorithm are 
presented in Tables (2), (3), and (4), respectively below. These tables show the results in terms of the percentage of 
reduced transmitted data and prediction accuracy after data reconstruction. The proposed method was compared 
with several other methods, and according to the results, the proposed method outperforms the other methods. 

Table (2) Accuracy comparison of proposed approach, Reliable KF, DP_LSTM, DDR-IoT, and Least-Mean-
Square LMS for sensor 1  

 

 

 

 

 

 

 

 

 

 

  Data Reduction%  

                        Methods 
23-25% 30-32% 42-44% 52-54% 60-62% 

Proposed Method  98.37 98.26 98.07 97.8 97.55 

Reliable KF 98.71 96.23 95.16 94.5 94.56 

DP_LSTM 74.12 63.45 56.81 48.26 45.75 

DDR-IoT 86.83 75.22 77.12 69.41 68.56 

LMS 88.42 75.67 74.51 71.92 72.49 
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Table (3) Accuracy comparison of proposed approach, Reliable KF, DP_LSTM, DDR-IoT, 
and Least-Mean-Square LMS for sensor 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (4) Accuracy comparison of proposed approach, Reliable KF, DP_LSTM, DDR-IoT, 
and Least-Mean-Square LMS for sensor 3 

 

  Data Reduction%       

                Methods 
23-25% 30-32% 42-44% 52-54% 60-62% 

Proposed Method  98.44 98.28 98.002 97.82 97.67 

Reliable KF 98.8 97.66 96.07 94.56 94.56 

DP_LSTM 74.12 64.23 56.81 48.26 45.75 

DDR-IoT 86.83 82.77 77.12 69.41 68.56 

LMS 88.42 76.39 74.51 71.92 72.49 

  Data Reduction%       

                Methods 
23-25% 30-32% 42-44% 52-54% 60-62% 

Proposed Method  98.48 98.38 98.17 98.004 97.86 

Reliable KF 99.06 98.52 97.85 97.18 97.18 

DP_LSTM 76.79 67.31 55.09 45.75 45.75 

DDR-IoT 86.13 82.36 77.43 68.56 68.56 

LMS 88.37 77.09 75.72 72.49 72.49 
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The obtained results for sensor 1 showed that the proposed approach achieved the highest accuracy (97.55%) 
with highest data reduction ratio (60-62%), demonstrating its robustness. In comparison, (Reliable Kalman Filter) 
Reliable KF maintained an accuracy of 94.56%, while Differential Privacy _Long Short Term Memory (DP_LSTM), 
Double Data Rate _Internet Of  Things (DDR-IoT), and Least Mean Squares Algorithm (LMS) achieved only 45.75%, 
68.56%, and 72.49%, respectively. For Sensor 2, the results show the superior performance of the proposed method 
under various levels of data reduction. At the highest reduction level (60%_62%), the proposed approach achieved 
an accuracy of 97.67%, by comparison, Reliable KF maintained an accuracy of 94.56%, while DP_LSTM, DDR-IoT, 
and LMS systems achieved much lower accuracies of 45.75%, 68.56%, and 72.49%, respectively. The obtained 
results for sensor 3 showed, the proposed method achieved high prediction accuracy for all data reduction 
percentage. At the highest reduction percentage (60-62%), the method maintained an accuracy of 97.86%, 
significantly outperforming competing methods. A reliable KF approach achieved 97.18%, while DP_LSTM dropped 
to 45.75, DDR-IoT and LMS both achieved 68.56% and 72.49%, respectively. Across the other reduction ranges from 
(23-25%) to (52-54%) the proposed method maintained accuracy values above 97% for all sensors, outperforming 
all other methods.    

Figures (5) _ (7) illustrates the prediction accuracy of the sensors 1-3 across different data reduction percentage, 
comparing the Proposed Method with (LMS, DDR-IoT, DP-LSTM, and Reliable KF), respectively. 

 

 

 

 

 

 

 

 

                             

 

 

                                Figure 5: Accuracy _Reduction comparison for sensor 1 
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                                   Figure 6: Accuracy _Reduction comparison for sensor 2 

 

 

 

 

 

 

 

 

 

                                                            

                                          Figure 7: Accuracy _Reduction comparison for sensor 3 

 

Figures (8) _ (10) show the model prediction accuracy , for sensor (1), sensor (2), and            
sensor (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      

 

                                Figure 8:  Proposed model data predictions for sensor 1 
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                                    Figure 8:  Proposed model data predictions for sensor 2 

 

 

 

 

 

 

 

 

 

 

 

     

     

Figure 9:  Proposed model data predictions for sensor 3 
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6.Wireless Sensor Network (WSN) Energy Consumption Analysis 

Due to the limited resources of sensor nodes, energy consumption is critical in these devices the proposed model 
focuses on reducing waste and enhancing communication and processing efficiency. This section provide system 
evaluation in energy point of view, with comparison to other existing models. 

6.1 Power Consumption with Single Node  

The comparison is based on unified data reduction percentage ranges. Power consumption is calculated from the 
number of transmitted readings. Tables (5-7) presents a power consumption comparison with existing work, for 
sensors 1-3 across various data reduction levels. 

  TABLE (5) Power Consumption with Single Node (Sensor 1) 

Data 
Reduction % 

Proposed Method               
(Power J) 

Reliable 
KF (Power J) 

DP_LSTM 
(Power J) 

DDR-IoT 
(Power J) 

LMS 
(Power J) 

23-25% 7,671J 7,658J 8,160J 8,439J 9,508J 

30-32% 6,925J 6,964J 6,502J 6,729J 7,969J 

42-44% 5,658J 5,739J 5,161J 5,346J 6,351J 

52-54% 4,682J 4,699J 3,805J 4,682J 5,293J 

60-62% 3,928J 3,949J 3,085J 3,809J 4,466J 

 

      TABLE (6) Power Consumption with Single Node (Sensor 7) 

Data 
Reduction % 

Proposed Method 
(Power J) 

Reliable KF 
(Power J) 

DP_LSTM 
(Power J) 

DDR-IoT 
(Power J) 

LMS 
(Power J) 

73-75% 7,648J 7,508J 8,160J 8,439J 9,508J 

30-37% 6,925J 6,964J 6,502J 6,729J 7,969J 

47-44% 5,658J 5,739J 5,161J 5,346J 6,351J 

57-54% 4,682J 4,699J 3,805J 4,682J 5,293J 

60-67% 3,928J 3,949J 3,085J 3,809J 4,466J 
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        TABLE (7) Power Consumption with Single Node (Sensor 3) 

Data 
Reduction % 

Proposed Method 
(Power J) 

Reliable KF 
(Power J) 

DP_LSTM 
(Power J) 

DDR-IoT 
(Power J) 

LMS 
(Power J) 

73-75% 7,640J 7,501J 8,328J 8,649J 9,473J 

30-37% 6,929J 4,926J 6,222J 6,452J 7,369J 

47-44% 5,652J 3,305J 4,874J 5,152J 6,452J 

57-54% 4,682J 2,895J 3,805J 4,682J 5,293J 

60-67% 3,928J 2,425J 3,085J 3,809J 4,466J 

 

The obtained results indicate that the proposed method achieves lower energy consumption compared to the 
LMS algorithm across all levels of data reduction. Moreover, the proposed approach outperforms both the DP-LSTM 
and DDR-IoT methods specifically at data reduction level (23% -25%). For sensor 1 and sensor 2, the proposed 
method exhibits performance that is nearly equivalent to that of the Reliable KF method across all reduction levels. 
Except for these cases, the Reliable KF, DP_LSTM, and DDR-IoT methods show slightly better energy savings than 
the proposed method. However, this reduction in energy consumption comes at the cost of estimation accuracy and 
result reliability. As shown in the accuracy evaluation tables in Section 5.1, the lower energy usage of those methods 
correlates with a noticeable decline in performance metrics, highlighting their limited capability to preserve result 
reliability during aggressive data reduction. In contrast, the proposed method demonstrates a more effective trade-
off between energy efficiency and estimation fidelity. It maintains high data quality and prediction accuracy while 
still offering considerable energy savings. This balance substantially enhances the overall efficiency of the system, 
ensuring optimized resource utilization without compromising the required level of performance. 

 

7.Conclusion and Future Work 

A dual prediction data reduction strategy for WSNs is put out in this study. There are two stages to the suggested 
data reduction strategy. Data reduction is the focus of the first stage. founded on four methods: data equality, data 
deviation computation, faulty data detection, and data reduction based on prediction. The second stage estimates 
the filtered-out data from the sensor nodes using the Kalman filter, for reconstructed it   which increases data 
reliability. Reducing transmissions while maintaining data dependability and correctness is the primary goal of the 
suggested strategy. The findings obtained demonstrated effective performance for model with a 60.72% data 
throughput reduction achieved by the SEKF model based on a single sensor node during the first stage. In the 
second stage, the data was reconstructed with an accuracy of 97.86% and a data reduction rate of 60.62% with an 
energy conception of 3,928 J . The suggested method finds and removes inaccurate data. Using 10,000 humidity real-
world data points, the suggested method is contrasted with three distinct data prediction-based data reduction 
techniques, DP_LSTM, DDR-IoT, and LMS. Based on the results, the suggested method has the maximum efficiency in 
terms of energy usage, data accuracy, and data reduction. Rebuilding the missing data that might arise from a 
network failure will be the focus of future development. 
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