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the volume of transmitted data without sacrificing its quality. This paper presents a model for
wireless sensor networks energy saving using the Static Extended Kalman Filter (SEKF). The
technique is used to accurately dual predict. The plan consists of two stages. In the first stage,
the transmission from the sensor node to the sink node is reduced based on four steps (data
Energy, Wireless Sensors Network equality, data deviation computation, faulty data detection, data reduction based on
(WSNs), Static ,Prediction, prediction). In the second stage, the data is reconstructed at the sink node to maintain system
Extended Kalman Filter (EKF) . reliability. The proposed model demonstrated superior performance compared to other
methods, reducing data throughput in the first phase by 60.72%. In the second phase, data
was reconstructed with 97.86% accuracy at a data reduction rate of 62-60%, with an energy
consumption of 3.928 J. These results were achieved by SEKE for single-node reconstruction.
Furthermore, the proposed model performed well when applied to data containing negative
values, achieving acceptable data reduction with accuracy ranging from (94-95%) in several

experiments. The Intel Berkeley Research Lab (IBRL) dataset was used for all experiments.
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1. Introduction

Wireless sensor networks (WSNs) are low-cost systems composed of wireless sensor nodes and antennas for
environmental monitoring [1]. Their small size and portability make them suitable for remote areas. Despite limited
energy, processing power, and storage, WSNs have many applications in environmental sustainability and smart
cities. These networks consist of sensors distributed in the environment that collect and wirelessly transmit data to
a central sink node. Battery life is a major concern since radio transmissions consume the most energy due to large
data volumes. Effective data management is crucial to extend network life and reduce energy use. Because sensory
data show high temporal and spatial correlation, predicting data is a promising strategy to reduce transmitted data
by using past data to forecast future values, thus eliminating redundant information before transmission[2]. Several
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advanced techniques such as data aggregation [3][4] data compression [5][6], adaptive sampling [7], and data
prediction [8] have been proposed. Compared to others, data prediction achieves a higher data Suppression Ratio
(SR), making it a more effective and preferred approach. data prediction builds a prediction model based on
correlations in previously collected data to forecast future measurements. Data that can be estimated at cluster
heads, sinks, or base stations are not transmitted. By comparing measured data with predicted values at sensor
nodes, transmissions are stopped when predictions meet accuracy requirements. Only unexpected data are sent to
the sink. Prediction accuracy depends on the sink's ability to reconstruct non-transmitted data. However, some DP
strategies impose high computational loads on sensor nodes, which may not be suitable for resource-constrained
environments. This paper proposes a new prediction-based data reduction approach aiming to improve
transmission reduction, data reliability, and energy consumption. The main contributions are:

¢ Developing a data reduction algorithm to discard redundant, predictable, or faulty data at sensor nodes .

e Developing a data prediction algorithm at the sink node based on the Kalman Filter to predict missing data

reliably

Figure (1) illustrates the structure of WSN
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Figure
(1): WSN Structure

2. Related Researches

Prediction-based data transmission reduction in wireless sensor networks uses for past data analysis to forecast
future values, allowing just critical information to be transmitted rather than all data. According to some research,
employing prediction can also increase sensor device battery life and enhance network performance as a whole.
Predictive models have been created by researchers using a variety of methods, including:

Bashar Chreim et al. (2021) [9] introduce (RADAR), a simultaneous prediction model that utilizes linear
correlation among all data variables. The models include time series prediction and linear regression. These models
produce satisfactory and accurate results while still being straightforward. A time series model will predict the
value of the first applications' variables, which in turn input to the next SLR prediction model to predict the second
variable. Then, successive predictions of the value of the next corresponding variable take place by multiple linear
regression (MLR) simultaneous models. The proposed dual prediction scheme (DPS) implemented on both the
source and the destination nodes. RADAR outperforms LMS_MOD in terms of RMSE, data reduction percentage, and
energy consumption. The results fill in between 5 and 14% and 23 and 34% for humidity and black photons data
reduction respectively.
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Marcin Lewandowski and Barttomiej Ptaczek. (2021) [10] proposed a novel dual prediction model that can be
applied to neural nets, decision trees, random forests, and other frameworks. The suggested method determines
whether or not to transmit the sensed data without using prediction error. This approach, on the other hand, checks
to see if the anticipated data are accurate enough to identify the relevant events. The parent node's event detection
task can be characterized as a binary function with the formula

E() = event(spt,sct,E) (1)

Where E(t) = 0 in the absence of an event and 1 in the presence of one and sensor readings taken at time step t
by the parent (Spt) and the child nodes (Sct) respectively. the experimental results achieves 94% accuracy, 79%
data reduction with 0.1 % accuracy depletion in comparison with ANN, and Naive models.

Haibin Wang and colleagues. (2021) [11] presented a data reduction method based on Dual Prediction. The
model is divided into two stages. Data reduction is the focus of the first phase, which comprises: fault and equal data
detection, and data deviation computation. Kalman filter in the second phase aims to predict unsent data as an
expectation of previously seen data. The experiments were evaluated with the Intel Berkeley Research Lab (IBRL).
The obtained results demonstrated that the suggested method could preserve data reliability while reducing data
transmission by up to 75.75%. The suggested method not only reduces data but also finds and removes inaccurate
data.

A Combinational Data Prediction Model (CDPM) was developed by KHUSHBOO JAIN et al. (2022) in [12]; it can
predict future data to minimize data transmission and build previous data to manage latency. The training and
prediction phases serve as the foundation for the model's construction. The training phase delay is reduced by
adjusting the training data size in accordance with the data interrelations. Comparing the CDPM model to the HLMS,
ELR, and P-PDA algorithms, respectively, experiments conducted on temperature and humidity in the Intel Berkeley
Research Laboratory show significant transmission reduction about (16.49%, 19.51%, and 20.57%), enhanced
energy saving (29.56%, 50.14%, 61.12%), and enhanced accuracy (15.38%, 21.42%, 31.25%).

AROUNA NDAM NJOYA et al. (2022) [13] proposed a model that uses a sequence-to-sequence (Seq2Seq) encoder-
decoder neural network with LSTM units to predict spatial features from sensed data in WSNs. By producing
additional information, the previously mentioned method may reduce network traffic and energy consumption for
data transmission on WSNs. The experimental results on Berkeley Research Laboratory data from Intel,
demonstrate that the proposed model can save twice as much energy and accurately forecast data with little error
(measured by Root Mean Squared Error) when the appropriate nodes are used.

In [23] El-Sayed, Walaa M. et al [14]. (2023) proposed the Distributed Data Predictive Model (DDPM), which
operates in three phases: Dissemination/Mobility, Classification, and Data Generating. Sensors transmit data to
clusterhead nodes that categorize faults, identify missing data, and assess sensor status. Data prediction is
performed using Recursive Least Squares (RLS) and Finite Impulse Response (FIR) adaptive filters. RLS minimizes a
weighted least squares cost function, while FIR adapts without feedback, producing output via convolution. The
model recovered nearly 99% of lost data, reduced energy consumption, enhanced network performance, and
decreased transmitted signals, achieving 19% reliability in WSNs.

M. Revanesh et al. (2023) proposed the ANN-ILMNN model in [15], an enhancement of LEACH and ESR protocols,
incorporating the Levenberg-Marquardt Neural Network (LMNN) for improved anomaly detection and energy
efficiency. Simulations showed ANN-ILMNN outperformed other models, achieving 97.85% accuracy with 600 data
points compared to LEACH (84.89%), EESR (87.94%), LEACH-LMNN (90.69%), and EESP-LMNN (94.59%). Energy
consumption was significantly lower with ANN-ILMNN, requiring 29.12 | for 20 nodes, compared to LEACH (41.24])
and others. The model demonstrated superior accuracy and energy efficiency across varying network sizes.

A prediction-error-based method (PEM) was proposed by Umut Yildirim et al. (2024) in [16] to optimize
transmissions and detect damages in wireless sensor networks, the methodology combines prediction, FFT, and
bandpass filters for noise reduction. Decisions are made based on the deviation of predicted data from the actual
sensor reading. The term "excitation data," which refers to the set of data read from a trustworthy set of sensors as
reference data for prediction, is attractively used by the model. The results show that the transmissions for each
sensor can be minimized to 10% where 90% of the readings are unsent with 45% predefined error tolerance.



4 Furqan Muhammad Abbas, Hadeel Noori Saad, Journal of Al-Qadisiyah for Computer Science and Mathematics VoL.17.(4) 2025,pp.CoMP 27-44

Li Wu et al. (2024) in [17] proposed Fourier transform for a new data collection strategy in the energy control
system, which exhibits power in periodic characteristics detection of the temperature data. The study demonstrates
that these data can be linearly fitted using Fourier transforms, where data parameters can be optimized with least
squares. This model reduces equal-value data and prolongs the lifespan of sensor nodes. Although Compared to the
complex model, the Fourier transform needs more computation and high parameterization to fit with, it shows
much better performance in data with periodic characteristics, where it exhibits fitness up to 93.0285.

Ting Hu. (2024) in [18] suggested a data fusion mechanism for WSNs to optimize clustering design. The proposal
enhances the conventional cluster-based routing protocol and develops a deep-learning (DL) data fusion algorithm.
In this manner, the cluster head plays the main role in extracting, classifying, and fusing similar data features,
whereas the cluster's node members fit the gathered raw data using the DL model. The experiments performed on
the KDDCup99 dataset, where results showed reduced data transmission, improved energy utilization, and
prolonged network life. The proposed algorithm out performs LEACH and DFA-IACOBP by 32.2% and 15.9% in
energy saving respectively.

3. Proposed Approach

The proposed model begins by loading datasets. Three sensor nodes are used to read the data. Data is predicted
at the sensor node to reduce transmission and then transmitted to the sink node. Un transmitted data is then
predicted at the last mentioned node. Finally, a model that conserves sensor battery power is created by combining
data reduction at the sensor node and reconstruction it at the sink node using a Kalman filter algorithm. Figure (2)
illustrates the basic steps of the proposed method.
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Figure (2): Proposed System Model

3.1 Experiments Environment

It is important to mentioned that all the experiments were conducted within MATLAB Integrated Environment
version (2020) for model simulation. The computational setup consisted of a laptop equipped an Intel Core i5
processor, 8 GB RAM, and running Windows 10 operating system.

3.2 Data Set

This work focused on working with WSN-environmental data so, Intel Berkeley research lab (IBRL) Dataset is a
consistent to be utilized in this study. This dataset consists of real sensor nodes readings collected between
February and April, 2004. A total of 54 Mica2Dot sensor nodes were deployed within IBRL facilities to record
environmental data, including temperature, humidity, light, and voltage within sampling interval of about 31
seconds. For the purpose of, a subset of 10,000 humidity readings was selected. Sensors 1, 2, and 3 were utilized to
assess the proposed method. For additional details on the datasets employed, Further information regarding the
dataset can be found in [19].

Figure (3) shows an architectural diagram of the dataset.
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Figure (3): Intel Berkeley Research Lab Dataset

3.3 Data Preprocessing

Collecting high-quality datasets is essential to building an excellent model, as the model's effectiveness depends
on the data it inputs. When building our system, we used humidity data to implement the algorithm. The data was
cleaned by removing negative values.

3.4 Sensor Nodes Model (Data Reduction Phase)

The data reduction phase aims to reduce the number of data transfers between sensor nodes and sink nodes. In
the presented work, links between each sensor node and its corresponding sink node are used to achieve the
targeted reduction. The data reduction phase relies on four algorithm steps implemented in each sensor node start
with data equality, data deviation computation, faulty data detection, and data reduction based on prediction. The
following subsections detailed the processing operations within each step.

3.4.1 Data Equality (DE)
The data reduction phase algorithm's initial phase, data equality, determines whether or not the newly sensed
information is equivalent to the prior reading, as specified by Equation (2):

Ze =l 10 (2)

where [,_, is the previous value and z; is the current reading. A certain amount of values from each sensor node
in the network were first cached by the data reduction phase before being sent to the sink node. The same sensor
node then compares each newly sensed reading z; at time t of sensor s; with the previously acquired reading L,_,
.Therefore, if no change is found, the current reading z,, is disregarded. And will begin the second phase of the
suggested method.

3.4.2 Data Deviation Computation (DDC)

In order to determine the value of this deviation and transmit or delete the reading appropriately, data deviation
computation makes sure that the current sensed reading z; , differs in some way from the previous reading ,_; . In
fact, two distinct methods are suggested in the proposed data reduction phase to determine the data deviation
computation. The initial procedure seeks to determine, using Equation (2), the difference between the present
sensed value, z,, and the earlier readingsl,_;. If the difference between z; andl,_;is smaller than the
predetermined e,,,,, the data transmission will be discarded, and the cache updated. If not, the second data
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deviation computation procedure begins. To determine how far the current sensed reading deviates from the
expected values, a data deviation computation is presented to calculate the deviation of the current sensed reading
from their predicted values. Comparing the current reading z, with the Kalman Filter based estimated value est,
which is nearly identical to the prior reading, is the principle behind this procedure because Kalman Filter estimated
values are quite accurate. Equation (4) computes the difference between z; and L,._; , If deviation Ey.,, is bigger than
the predefined threshold e,,,,, then z;is transmitted to the sink node; else, the z, data transmission is discarded,
and the cache is updated:

Vdev,_z,_,_, 3)

Edev, - |z,_ o, (4)

3.4.3 Faulty Data Detection (FDD)

Faulty data detection is used to stop inaccurate sensed readings from being transmitted. Indeed, because of their
limited resources, wireless sensor nodes are prone to malfunction. Therefore, ensuring that the data collected is
error free is crucial for data reliability and accuracy. Equations (5) and (7) serve as the foundation for the suggested
faulty data detection approach in this stage. Fault detection is a crucial procedure since WSNs are prone to
malfunctions. The suggested method takes defect detection procedures into account, in contrast to several cutting
edge data reduction techniques:

dis = Yitolze -y (5)
corr = | dis — (| lpax = lmin 1) | (6)
z, = { transmitted if dis < 0 ,discarded otherwise (7

where z, denotes the current sensed reading, l,,,,, and l,,;,, are the maximum and minimum cached readings,
respectively, and 0 is a predetermined value determined by the application requirements. Dis indicates the distance
between the values that are cached and the current reading. When comparing the current sensed reading to the pre-
cached readings, the corr is the difference between the maximum and minimum cached values. Equations (5) and
(7) determine how to discard defective data transfer and update the cache with the estimated value [11].

3.4.4 Predictable Data Reduction

In Data Reduction based on Prediction step Extended Kalman Filter is used to recursive estimation are made to
predict sensor readings, reducing data transmissions by sending the new data, only when prediction errors exceed a
predefined threshold, this can further reduce the transmitted data and consequently enhancing energy harvesting.
For efficient and accurate data prediction, manual tuning estimation mode were used.

Algorithm (1): Data Reduction Phase

Input: Sensor current Readings

Output: Reduced Transmitted Readings

Step 1: Initialize variables

* liache sjze for previously collected readings
o z(t) gurrent reading value
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o [, —lgstcache value

e est —Kalman Filter based estimated value

*  Chax —praximum acceptable deviation for data transmission

e corr orrelation factor of current sensed reading

e theta _@ulty data detection threshold

o dis —_djstance between the current reading and the cached values

e threshold __tRreshold of prediction

Step 2: Read current sensor value

1. Ifitisthe lastlreadings, then send to Sink
2. else go to next step
Step 3: Data Equality (DE)

1. Ifzt=1I.;then
Discard transmission
l.append(zt) (add new value to cache)
EKF.update(zt)
Continue to the next iteration
2. Else go to next step

Step 5: Data Deviation Computation (DDC)

2. Mean(l;) = mean(l_cach)

3. if|zt-I+1] < mean(]) then

4. Discard transmission
l.append(zt) (Remove the oldest value from cache and append zt)
EKF.update(zt)
Continue to the next iteration

5. else go to next step

Step 6: Faulty Data Detection (FDD)

Compute dis based on equation (4)

Compute Corr based on equation (5)

If Corr > theta

Discard transmission

l.append(zt) (Remove the oldest value from cache and append zt)
EKF.update(zt)
Continue to the next iteration

6. Else continue to next step

Ul W=

Step 7: Data Prediction

1. est=EKF.estimate (Ix-1)
2. EstErr = abs (zt - est)
3. if EstErr>= threshold
Discard transmission
Lappend(zt) (Remove the oldest value from cache and append zt)

4.  Else send to sink and Continue to the next iteration

End

3.5 Sink Node Model Data Reconstruction Phase (DRCP)
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In WSN, the sensor node senses, generates, and transmits all of the data that the sink node receives. In general,
sink nodes outperform sensor nodes in terms of performance, transmission capacity, and computing power. Thus,
the primary objective of the suggested method is to strike a balance between data accuracy and dependability on the
one hand, and data reduction and energy consumption on the other. As a result of the Sensor Nodes DRP, the
accuracy and dependability of WSN data are impacted since the data gathered by sensor nodes is deemed full in
comparison to the data received by the sink node. The data reconstruction phase, are suggested as a solution to
these problems. The core function of this phase is to predict un transmitted data at the sink node at each time
interval (t) using Extended Kalman Filter. Un transmitted readings are Reconstructed using previously cached
readings from sensor nodes, where each reading is cached as (I) for a sensor node (si). For every sensor node (si) the
reading obtained at time ¢ is used to update the cached values. WSN nodes in many applications are characterized by
geographically closed spaced (the proposal of this work), then at any time point t where there is no reading is
received, two methods are fired to forecast the missing reading, self-prediction (SP) and neighbor prediction (NP)
method.

3.5.1 Neighboring-based prediction (NP)

This method benefit from the close proximity of neighbor sensors which make them reported high similarity data,
this the good news for sink node to compensate missing data with real existing neighbor similar data and increase
reconstruction accuracy by avoiding further predictions. NP aims to check whether one of the targeted sensor
neighboring nodes is transmitting readings at time t. In the case of one or more neighboring transmit readings, the
sink node fill missing one with this data. The selection of the neighbor whose data to be candidate for compensation
is strait forward process follow the sequential search within neighbor set, while it is a small set, that require
negligible time consuming.

3.5.2 Self-based prediction (SP)

Self-based prediction (SP) method aims to predict un transmitted readings passed through the first step. In fact,
the nature of the network plays a crucial role in determining the prediction technique. In some WSN, sensor nodes
are spatially redundant, which increases reading similarity, and cause all neighbor nodes to behave the same upon
data reduction (deleting data for the same data slots). However, the proposed SP data reconstruction used extended
Kalman filters to predict missing data points. Every time slot ¢t the sink node update Kalman Filter state to
synchronize it with the last reading of the targeted Sensor.

Algorithm (2) Sink Node Model (Data Reconstruction phase).

Input: Reading Data (SN, T) Received time stamped Data

Sensor Nodes Pool (SN)

Output: Reconstructed Data (RD(T))
Step 1: for the received data pool (D) check missing data at time t

If ~(3dData(sn,t))= Vd-Data(sn,t) then
Identify Missing Data (Time Slot t)
else
update EKF state
RD(t) = cache (data (d,t))
Step 3: Check Neighboring node’s Data at (Time Slot t)

If Isn(sn(j)€((negibor)ASN)) AData(sn(j), t)) then
RD(t)=fill. Data(sn(j), t) where j=1,2,...,n neighbor sensors index
else
RD(t)= EKF.Predict (Data(sn(i), t-1)) where i=1,2,...,n current sensor index
Update Kalman Filter
Step 4: send constructed data to gateway node
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end
4. Results and analysis

This section examines the outcomes of data reduction and prediction algorithms using various e,,,, values (0.0002,
0.0003,0.0005,0.0007and 0.0009). The suggested performance for data reduction is assessed by contrasting the
percentage sizes of the input and output data. Additionally, ten thousand humidity readings from sensors 1, 2, and 3
were used to assess the effectiveness of the suggested strategy. Additionally, to confirm the efficacy of the suggested
data reduction technique, the outcomes of three well-known data reduction approaches are compared with the
results of the proposed approach. The criteria chosen to assess the outcomes of the suggested strategy are data
reduction percentage, data correctness, and energy conception.

4.1 Data Reduction Stage

The first stage of the proposed model begins by minimizing data transmission from the sensor node to the sink node
using the proposed Kalman Filter based model to save the nodes' battery power, where data reduction encompasses
removing equal data readings (data equality), data deviation computation, faulty data detection, and EKF-based
predictable data. The experiments was accommodated using manual tuned EKF parameters and a certain threshold
value e, -

4.1.1 Static Extended Kalman Filter (SEKF)

The experiment involved applying an EKF with the process noise set to 0.03 and the measurement noise set to
0.16. Table (1) shows the Percentage of reduced transmitted data with selected threshold values e,,,, and 10000
data readings.

Table (1) Data Reduction Percentage in Sensors (1-3) with (SEKF)

€max Process Measurement Sensor 1 Sensor 2 Sensor 3
Noise (Q) Noise (R)
0.0002 0.03 0.16 23.29 23.52 23.60
0.0003 0.03 0.16 30.36 30.75 30.71
0.0005 0.03 0.16 42.61 43.42 43.48
0.0007 0.03 0.16 52.72 53.01 53.18
0.0009 0.03 0.16 60.25 60.51 60.72

The results show the impact of change e,,,, parameter on the data reduction Percentage achieved across three
sensor nodes, The percentage increases with increasing e,,,, from 0.0002 to 0.0009, Sensor 1 shows an increase
from 23.29% to 60.25%, Sensor 2 from 23.52% to 60.51%, and Sensor 3 from 23.60% to 60.72%. On other hand,
system parameters were carefully tuned with 0.03 and 0.16 for Q and R, respectively, ensuring stable and reliable
prediction performance across all scenarios.

Figure (4) illustrates the relationship between e,,,, and transmitted data reduction for the three sensor nodes.
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Figure (4) Threshold variation effect on data reduction percentage
5. Data Reconstruction Stage

After reducing data transmission at the sensor node, the sink node is responsible for reconstructing the missing
readings by applying the same Kalman Filter used during the data reduction stage. Since both the sensor and sink
nodes share the same prediction logic, the sink can accurately estimate the skipped values based on previously
received data. This stage is essential to restore the original data sequence as closely as possible. It ensures that the
system maintains reliable data quality while significantly lowering energy consumption.

5.1 Single Node-Based Reconstruction with Static EKF

The experiment involved reconstructing sensed data from each sensor node independently, without relying on
communication or data exchange with neighboring nodes. Static Extended Kalman Filter (SEKF) was applied with
process noise set to 0.03, and the measurement noise set to 0.16. The results of the Kalman Filter algorithm are
presented in Tables (2), (3), and (4), respectively below. These tables show the results in terms of the percentage of
reduced transmitted data and prediction accuracy after data reconstruction. The proposed method was compared
with several other methods, and according to the results, the proposed method outperforms the other methods.

Table (2) Accuracy comparison of proposed approach, Reliable KF, DP_LSTM, DDR-IoT, and Least-Mean-
Square LMS for sensor 1

Data Reduction%
23-25% || 30-32% || 42-44% 52-54% 60-62%
Methods
Proposed Method 98.37 98.26 98.07 97.8 97.55
Reliable KF 98.71 96.23 95.16 94,5 94.56
DP_LSTM 74.12 63.45 56.81 48.26 45.75
DDR-IoT 86.83 75.22 77.12 69.41 68.56
LMS 88.42 75.67 74.51 71.92 72.49
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Table (3) Accuracy comparison of proposed approach, Reliable KF, DP_LSTM, DDR-IoT,
and Least-Mean-Square LMS for sensor 2

Data Reduction%
23-25% || 30-32% || 42-44% || 52-54% || 60-62%
Methods
Proposed Method 98 .48 98.38 98.17 98.004 97.86
R eliable KF 99.06 98.52 97.85 97.18 97.18
DP_LSTM 76.79 67.31 55.09 4575 4575
DDR-IoT 86.13 82.36 77 .43 68.56 68.56
LMS 88.37 77.09 75.72 72 .49 72.49
Data Reduction%
23-25% || 30-32% || 42-44% 52-54% 60-62%
Methods
Proposed Method 98 .44 98.28 98.002 97.82 97.67
Reliable KF 98.8 97.66 96.07 94.56 94 .56
DP_LSTM 7412 64.23 56.81 48.26 45.75
DDR-IoT 86.83 82.77 7712 69.41 68.56
LMS 88.42 76.39 74 .51 71.92 72.49

Table (4) Accuracy comparison of proposed approach, Reliable KF, DP_LSTM, DDR-IoT,
and Least-Mean-Square LMS for sensor 3
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The obtained results for sensor 1 showed that the proposed approach achieved the highest accuracy (97.55%)
with highest data reduction ratio (60-62%), demonstrating its robustness. In comparison, (Reliable Kalman Filter)
Reliable KF maintained an accuracy of 94.56%, while Differential Privacy _Long Short Term Memory (DP_LSTM),
Double Data Rate _Internet Of Things (DDR-I0T), and Least Mean Squares Algorithm (LMS) achieved only 45.75%,
68.56%, and 72.49%, respectively. For Sensor 2, the results show the superior performance of the proposed method
under various levels of data reduction. At the highest reduction level (60%_62%), the proposed approach achieved
an accuracy of 97.67%, by comparison, Reliable KF maintained an accuracy of 94.56%, while DP_LSTM, DDR-IoT,
and LMS systems achieved much lower accuracies of 45.75%, 68.56%, and 72.49%, respectively. The obtained
results for sensor 3 showed, the proposed method achieved high prediction accuracy for all data reduction
percentage. At the highest reduction percentage (60-62%), the method maintained an accuracy of 97.86%,
significantly outperforming competing methods. A reliable KF approach achieved 97.18%, while DP_LSTM dropped
to 45.75, DDR-IoT and LMS both achieved 68.56% and 72.49%, respectively. Across the other reduction ranges from
(23-25%) to (52-54%) the proposed method maintained accuracy values above 97% for all sensors, outperforming
all other methods.

Figures (5) _ (7) illustrates the prediction accuracy of the sensors 1-3 across different data reduction percentage,
comparing the Proposed Method with (LMS, DDR-IoT, DP-LSTM, and Reliable KF), respectively.
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Figure 6: Accuracy _Reduction comparison for sensor 2
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Figure 7: Accuracy _Reduction comparison for sensor 3

Figures (8) _ (10) show the model prediction accuracy , for sensor (1), sensor (2), and
sensor (3)
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Figure 8: Proposed model data predictions for sensor 1
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Figure 8: Proposed model data predictions for sensor 2
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6.Wireless Sensor Network (WSN) Energy Consumption Analysis

Due to the limited resources of sensor nodes, energy consumption is critical in these devices the proposed model
focuses on reducing waste and enhancing communication and processing efficiency. This section provide system
evaluation in energy point of view, with comparison to other existing models.

6.1 Power Consumption with Single Node
The comparison is based on unified data reduction percentage ranges. Power consumption is calculated from the
number of transmitted readings. Tables (5-7) presents a power consumption comparison with existing work, for

sensors 1-3 across various data reduction levels.

TABLE (5) Power Consumption with Single Node (Sensor 1)

Data Proposed Method || Reliable DP_LSTM DDR-IoT LMS
Reduction % (Power)) KF (Power]) || (Power]) | (Power]) |(Power])

23-25% 7,671] 7,658] 8,160] 8,439] 9,508]
30-32% 6,925] 6,964] 6,502] 6,729] 7,969]
42-44% 5,658] 5,739] 5,161] 5,346] 6,351
52-54% 4,682] 4,699] 3,805] 4,682] 5,293]
60-62% 3,928] 3,949] 3,085] 3,809] 4,466]

TABLE (6) Power Consumption with Single Node (Sensor 2)

Data Proposed Method| Reliable KF | DP_LSTM DDR-IoT LMS
Reduction % (PowerJ) (Power]) (Power]) | (Power]) || (Power])
23-25% 7,648] 7,508] 8,160] 8,439] 9,508]
30-32% 6,925] 6,964] 6,502] 6,729] 7,969]
42-44% 5,658] 5,739] 5,161] 5,346] 6,351]
52-54% 4,682] 4,699] 3,805] 4,682] 5,293]
60-62% 3,928] 3,949] 3,085] 3,809] 4,466]
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TABLE (7) Power Consumption with Single Node (Sensor 3)

Data Proposed Method| Reliable KF | DP_LSTM | DDR-IoT LMS
Reduction % (Power J]) (Power J]) (Power]) | (Power]) | (Power])
23-25% 7,640] 7,501] 8,328] 8,649] 9,473]
30-32% 6,929] 4,926] 6,222] 6,452] 7,369]
42-44% 5,652] 3,305] 4,874] 5,152] 6,452]
52-54% 4,682] 2,895] 3,805] 4,682] 5,293]
60-62% 3,928] 2,425] 3,085] 3,809] 4,466]

The obtained results indicate that the proposed method achieves lower energy consumption compared to the
LMS algorithm across all levels of data reduction. Moreover, the proposed approach outperforms both the DP-LSTM
and DDR-IoT methods specifically at data reduction level (23% -25%). For sensor 1 and sensor 2, the proposed
method exhibits performance that is nearly equivalent to that of the Reliable KF method across all reduction levels.
Except for these cases, the Reliable KF, DP_LSTM, and DDR-IoT methods show slightly better energy savings than
the proposed method. However, this reduction in energy consumption comes at the cost of estimation accuracy and
result reliability. As shown in the accuracy evaluation tables in Section 5.1, the lower energy usage of those methods
correlates with a noticeable decline in performance metrics, highlighting their limited capability to preserve result
reliability during aggressive data reduction. In contrast, the proposed method demonstrates a more effective trade-
off between energy efficiency and estimation fidelity. It maintains high data quality and prediction accuracy while
still offering considerable energy savings. This balance substantially enhances the overall efficiency of the system,
ensuring optimized resource utilization without compromising the required level of performance.

7.Conclusion and Future Work

A dual prediction data reduction strategy for WSNs is put out in this study. There are two stages to the suggested
data reduction strategy. Data reduction is the focus of the first stage. founded on four methods: data equality, data
deviation computation, faulty data detection, and data reduction based on prediction. The second stage estimates
the filtered-out data from the sensor nodes using the Kalman filter, for reconstructed it which increases data
reliability. Reducing transmissions while maintaining data dependability and correctness is the primary goal of the
suggested strategy. The findings obtained demonstrated effective performance for model with a 60.72% data
throughput reduction achieved by the SEKF model based on a single sensor node during the first stage. In the
second stage, the data was reconstructed with an accuracy of 97.86% and a data reduction rate of 60.62% with an
energy conception of 3,928 ] . The suggested method finds and removes inaccurate data. Using 10,000 humidity real-
world data points, the suggested method is contrasted with three distinct data prediction-based data reduction
techniques, DP_LSTM, DDR-IoT, and LMS. Based on the results, the suggested method has the maximum efficiency in
terms of energy usage, data accuracy, and data reduction. Rebuilding the missing data that might arise from a
network failure will be the focus of future development.
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