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A B S T R A C T 

Deep learning transformed medical imaging and enabled the accurate and scalable diagnosis 
of respiratory infections such as COVID-19 and pneumonia. Unlike traditional radiology's 
weaknesses owing to overlapping characteristics and observer variability, CNNs are able to 
identify intricate visual patterns and achieve near-radiologist performance in multi-class CXR 
classification. Methodological innovations such as transfer learning, data augmentation, 
attention, and ensemble learning continue to enhance performance, with techniques to 
enhance interpretability like Grad-CAM advancing clinical trust. With significant advances 
already achieved, key challenges remain dataset imbalance, domain generalization, and 
computational cost. Directions for future research include the creation of standardized large-
scale datasets, efficient model design for low-resource settings, and the fusion of imaging with 
clinical metadata. This review highlights recent achievements, current limitations, and 
potential directions in capitalizing on deep learning innovations into clinically reliable 
diagnostic tools. 

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.42537 

1. Introduction 

Medical imaging has been one of the most significant pillars of medicine for decades as an essential imaging 
modality for screening, diagnosis, treatment planning, and disease monitoring[1] . Of all the various imaging 
modalities, chest X-ray (CXR) is most frequently employed due to its low cost, accessibility, and the benefit of a 
relatively low dose of radiation compared with computed tomography (CT) scans [2]. It is routinely the first 
investigation of preference for patients with respiratory symptoms, providing valuable information on diseases of 
the lungs ranging from pneumonia and tuberculosis to (Chronic Obstructive Pulmonary Disease) COPD and, more 
recently, COVID-19 [3]. Although despite being cheap and readily available, CXR imaging has serious limitations, 
most significantly in the differential diagnosis between diseases with a similar appearance [2]. Radiologists tend to 
be unable to distinguish viral from bacterial pneumonia or detect subtle COVID-19 characteristics, especially when 
large volumes of diagnostic workloads are dealt with and inter-observer variability is a problem [4]. 
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With the advent of deep learning, and more specifically artificial intelligence (AI), a revolution in medical image 
analysis has been triggered [5]. Deep learning models—are basically convolutional neural networks (CNNs)—can 
learn automatically hierarchical feature representations from raw image data without handcrafted features typical 
of earlier computer-aided diagnosis systems [6]. This automation facilitates fast and highly scalable diagnosis 
systems that have the ability to supplement radiologists by providing second opinions, highlighting suspicious 
regions, and reducing the likelihood of missing something [7]. Most significantly, deep learning algorithms have 
demonstrated performance levels close to, and in some cases superior to, human experts for many CXR classification 
tasks , thereby solidifying their roles as revolutionary health care technologies [8]. 

The last few years have witnessed a surge of research in employing deep learning in CXR classification, propelled 
significantly by the acute need for accurate detection of COVID-19 in the international pandemic [9]. Beyond COVID-
19, research has worked toward comprehensive multi-class classification models for diagnosing more than one 
respiratory disease simultaneously, e.g., bacterial pneumonia, viral pneumonia, and normal cases [10]. The 
integration of transfer learning from large-scale natural image databases, application of cutting-edge data 
augmentation pipelines, and application of sophisticated optimization algorithms have rendered the models 
significantly more generalizable and robust [11]. Moreover, introduction of attention mechanisms and ensemble 
learning protocols has added greater interpretability and stability, bridging the gap between black-box algorithms 
and clinician-interpretability systems [12]. 

Despite these stupendous developments, a number of challenges remain. Imbalance in the data is a persistent 
challenge since the availability of well-annotated medical images of certain diseases is limited [13]. Variability in 
image acquisition across hospitals, patient demographic variability, and the quality of the annotations are additional 
challenges in model generalizability [14]. The high computational cost of training and deploying deep learning 
models is also a scaling concern, especially in resource-limited healthcare environments [15]. Ethical 
considerations—algorithmic bias, data privacy, and regulatory requirements for approval, for example—also 
complicate the path to real-world clinical adoption [16]. 

Through these opportunities and challenges, an extensive overview of the state of affairs is crucial. The aim of this 
paper is to synthesize past knowledge by summarizing the state-of-the-art in deep learning for CXR classification, 
with a focus on methodological advances, performance milestones, interpretability frameworks, and clinical insights 
[17]. Through careful examination of trends, challenges, and solution paths, this review offers a roadmap for 
researchers and practitioners to guide the field toward reliable, transparent, and clinically integrated deep learning 
systems. Framed thus, the discussion not only identifies the revolutionary potential of AI in medical imaging but also 
the responsibility to ensure that these systems are safe, fair, and beneficial for global health. 

This review (i) synthesizes recent advances in CXR-based deep learning for multi-class diagnosis (COVID-19, 
bacterial pneumonia, viral pneumonia, and normal) across architectures (CNNs, attention modules, and hybrid 
CNN–Transformer designs); (ii) proposes a practical taxonomy spanning datasets, preprocessing/augmentation, 
model families, training/regularization strategies, and interpretability; (iii) critically appraises persistent 
challenges—class imbalance, domain shift/generalization, and compute/latency constraints—with mitigation 
options; and (iv) distills actionable guidance for clinical integration and reporting transparency (e.g., patient-level 
splits, calibrated probabilities, and per-class error analysis). The main contributions and structure of this review are 
outlined as follows : Section 2 surveys related work and positions this review. Section 3 covers model 
methodologies (CNNs, transfer learning, augmentation, attention, ensembles, and hybrid CNN–Transformer). 
Section 4 summarizes major public CXR datasets and their labeling/limitations. Section 5 discusses evaluation 
metrics and reporting caveats. Section 6 focuses on interpretability (e.g., Grad-CAM and attention-based views). 
Section 7 analyzes challenges and limitations with mitigation strategies. Section 8 concludes with future directions 
and clinical translation pathways. 

 

2. Related Work  

This article is a narrative review focused on CXR-based deep learning for multi-class thoracic diagnosis. We 
prioritize breadth and methodological synthesis over quantitative pooling because the literature exhibits substantial 
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heterogeneity in tasks (binary vs multi-class), datasets and splits (often lacking patient-level separation), 
preprocessing pipelines, and reporting metrics. In the spirit of transparency, we summarize search channels 
(academic databases and leading preprint servers), representative inclusion criteria (deep-learning works on CXR 
with explicit task definition and evaluation on public datasets), and exclusion criteria (non-DL or purely CT/brain-
MRI studies, duplicates). A PRISMA-style systematic review or meta-analysis is therefore out of scope, but we 
highlight where standardization could enable future quantitative synthesis. 

Deep learning studies in chest X-ray classification have increased exponentially over the past few years, and a 
heterogeneous body of literature now exists that differs in terms of methodology, datasets, and applications. Early 
studies were almost exclusively focused on binary classification tasks, i.e., discriminating between normal and 
pneumonia cases, with relatively shallow CNN models learned from small-sized datasets[18]. While these 
investigations demonstrated the promise of AI application in radiographic interpretation, they were often hampered 
by low generalizability and susceptibility to overfitting.  

With the publication of big publicly available datasets such as the ChestX-ray14, CheXpert, and COVID-19 
Radiography Database, subsequent research gravitated toward more complex multi-class classification schemes. 
These efforts endeavored to differentiate between viral and bacterial pneumonia, in addition to COVID-19, to 
develop a more clinically relevant diagnostic tool [19]. As a point of highlight, transfer learning emerged as a 
dominant strategy, whereby ImageNet pre-trained models were fine-tuned for medical image applications. This 
approach significantly reduced computational requirements and improved convergence while maintaining 
competitive accuracy [20].  

At the same time, methodological improvements introduced advanced data augmentation pipelines, ensemble 
methods, and attention mechanisms. For instance, attention modules were incorporated into CNN backbones to 
improve feature localization and interpretability [21], while ensemble methods have enhanced model robustness 
and stability [22]. Interpretability techniques, most prominently Gradient-weighted Class Activation Mapping (Grad-
CAM), also enabled clinicians to visualize decision-making, facilitating trust in automated predictions [23].  

Recent work has also investigated hybrid approaches that combine CNNs and transformers, taking advantage of 
both local feature extraction and long-range dependency modeling [24]. Such approaches exhibit encouraging 
performance, particularly in improving generalization on diverse datasets. Researchers have also begun to 
investigate domain adaptation methods, federated learning frameworks, and weakly supervised approaches to 
address the limited availability of fully annotated data [25]. Several benchmarks have reported >98% accuracy on 
within-dataset evaluations (e.g., the COVID-19 Radiography Database), [26] underscoring progress but also 
highlighting the need for patient-level splits and external validation before drawing broader generalization claims. . 

Despite these advances, dataset imbalance, domain adaptation, and computational overhead remain pervasive 
issues in relevant research [21]. These limitations need to be overcome to ensure the transition of deep learning 
models from experimental setups to real-world clinical application. By the critical review of the existing works, the 
chapter presents a background context to the following methodological discussion, describing both the progress 
achieved and the issues still pending in the application of deep learning to chest X-ray analysis. Table 1: compiles 
representative works selected for methodological diversity (binary vs multi-class; transfer learning; 
attention/ensembles; hybrid CNN–Transformer) and dataset coverage, to surface strengths and limitations relevant 
to CXR DL research.. Notably, reported gains often depend on dataset curation and split protocols. Studies using 
image-level (rather than patient-level) splits and overlapping sources may overestimate generalization. Conversely, 
works that adopt external validation or cross-institutional testing report more conservative yet realistic 
performance. Heterogeneous preprocessing (e.g., normalization, segmentation) further complicates head-to-head 
comparisons across papers. 

 

Table 1: Summary of existing review papers and surveys on deep learning for medical imaging 

Study & Year Scope Datasets Covered Key Contributions Limitations 

Siddiqi et al. Comprehensive review Multiple small-scale Reviewed early binary Limited generalizability; 
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(2024) [18] on AI for pneumonia 

diagnosis from CXR 

pneumonia datasets classification studies, shallow 

CNNs, and diagnostic 

challenges 

small datasets; overfitting 

issues 

Rajpurkar et al. 

(2017) [19] 

Large-scale classification 

of chest diseases 

(CheXNet) 

ChestX-ray14 

(112,120 images, 14 

diseases) 

First demonstration of CNNs 

at radiologist-level for 

pneumonia detection 

Focused mainly on 

pneumonia; not multi-class 

(COVID not included) 

Rahman et al. 

(2020) [20] 

Multi-class classification 

with Transfer Learning 

ChestX-ray14, 

COVID-19 

Radiography 

Database 

Demonstrated effectiveness 

of ImageNet pre-trained 

CNNs for chest disease 

classification 

Dependence on transfer 

learning; dataset 

imbalance issues 

Ait Nasser & 

Akhloufi (2023) 

[21] 

Survey on deep learning 

methods for chest disease 

classification 

CheXpert, ChestX-

ray14, COVID-19 

Radiography 

Database 

Discussed augmentation 

pipelines, attention 

mechanisms, and 

interpretability 

Lack of clinical validation; 

models not deployed in 

real-world 

Nahiduzzaman et 

al. (2023) [22] 

Ensemble + hybrid 

approaches (CNN + 

Transformer) 

COVID-19 

Radiography 

Database, pneumonia 

datasets 

Improved robustness via 

ensembles; hybrid CNN-ViT 

architectures 

High computational cost; 

complexity in training 

Rajpoot et al. 

(2024) [23] 

Multi-modal deep 

learning + Grad-CAM 

interpretability 

CXR + CT datasets Enhanced explainability 

using Grad-CAM, improved 

clinician trust 

Requires multimodal data; 

less generalizable 

Javed et al. (2024) 

[25] 

Comprehensive survey 

on pneumonia detection 

ChestX-ray14, 

CheXpert, COVID-19 

Radiography 

Database 

Discussed federated learning, 

weakly supervised methods, 

domain adaptation 

Data imbalance remains 

unsolved; federated 

learning not widely tested 

Rahman et al. 

(2022) [26] 

Transfer learning in 

COVID-19 Radiography 

Database 

COVID-19 

Radiography 

Database (15,000+ 

images) 

Achieved >98% accuracy in 

multi-class classification 

Dependent on curated 

datasets; limited external 

validation 

3.   Deep Learn ing Met hodologies for Cxr Classif ication  

3.1 Con volutional  Neural Networks (CNNs)  

Convolutional Neural Networks (CNNs) have emerged as the backbone of medical image analysis due to their ability 
to learn automatically hierarchical features from chest X-ray (CXR) images [27]. Unlike traditional hand-engineered 
methods, CNNs learn raw image spatial representations directly, which enhances stronger detection of complex 
radiographic patterns such as ground-glass opacities and lung consolidations [28]. Several studies have established 
the superiority of CNN-based techniques to differentiate between COVID-19, bacterial pneumonia, viral pneumonia, 
and normal status with remarkable performances over conventional machine learning models [29]. 

3.2 Transfer Learn ing Strategies  

Transfer learning leverages pre-trained CNN models like VGG, ResNet, and EfficientNet, pre-trained on large image 
databases like ImageNet and then fine-tuned for the targeted task like CXR classification [30]. This strategy 
significantly reduces computational expenses and also combats the lack of annotated medical data . EfficientNet 
demonstrates strong generalization via compound scaling that jointly and systematically balances network depth, 
width, and input resolution, rather than compromising any of them , becoming a popular model in recent COVID-
19 detection literature [31].  
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3.3 Data Augmentation Met hods  

Preprocessing choices have inherent trade-offs. For example, converting images to grayscale reduces dimensionality 
and training cost but may remove subtle radiodensity cues (e.g., vascular textures) that could aid discrimination. 
Normalization and histogram equalization improve global contrast but sometimes amplify noise. Cropping/lung 
segmentation can focus learning on clinically relevant areas but risk discarding contextual signs (e.g., pleural 
effusion). Reporting such trade-offs is critical to guide reproducibility and prevent over-interpretation of reported 
accuracy. Data augmentation significantly contributes to enhancing model robustness and class imbalance issues 
associated with medical image data sets . Rotation, flipping, scaling, and contrast alteration artificially expand the 
data set, allowing the model to learn more robustly [32]. More sophisticated augmentation methods such as AugMix 
and Mixup have been integrated into CXR classification pipelines, providing significant performance improvements 
in noisy or imbalanced training scenarios [33]. 

3.4 Attention Mechanisms  

Attention mechanisms have emerged as an important extension to CNN models via their capacity to make the model 
focus on clinically relevant regions on CXR images. Modules such as the Convolutional Block Attention Module 
(CBAM) and Squeeze-and-Excitation (SE) fortify feature recalibration with greater sensitivity towards regions 
related to disease [34]. Recently, Transformer-based attention models have been proposed that have been shown to 
excel at capturing long-distance dependencies and contextual cues in medical images . They not only improve the 
classification performance but also provide better interpretability of the model by better localizing pathological 
regions [35]. 

 

3.5 Ensemble Learning Tec hniques  

Ensemble learning combines multiple classifiers to produce a more generalized and stronger model [36]. Ensemble 
techniques in CXR analysis have a tendency to pool predictions from different CNN models or folds of cross-
validation and attain improvements in terms of accuracy, sensitivity, and specificity [22]. Model averaging, weighted 
voting, and stacking were employed for the detection of COVID-19 and pneumonia and performed significantly 
better compared to single-model baselines [37]. 

3.6 Hybrid Archit ectures (CNN + Transformer)  

Hybrid architectures are a new development that combines CNNs and Transformer-based models to leverage both 
local representation of features and global contextual awareness [24]. In CXR classification, the low- to mid-level 
vision is dealt with by CNN layers while Transformer modules detect long-range relations between lung regions 
[38]. Hybrid architectures have been promising in achieving state-of-the-art performance in multi-class CXR 
classification tasks and a route toward more precise and interpretable diagnostic tools [39]. 

To provide a clear overview of the end-to-end pipeline, a schematic flowchart is illustrated in Figure  1 , showing the 
progression from data acquisition to interpretability. 
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Figure 1. Pipeline flowchart for chest X-ray deep learning studies 

4.   Datasets for Chest X-Ray Classification  

4.1 Chest X-ray14 

The ChestX-ray14 dataset, released by the National Institutes of Health (NIH), is a large-scale publicly available CXR 
dataset, consisting of over 100,000 frontal-view X-ray images from over 30,000 patients . The dataset has 14 disease 
labels such as pneumonia, cardiomegaly, and effusion, where annotations were acquired through natural language 
processing of radiology reports . Due to its heterogeneity and size, ChestX-ray14 has served as a benchmark for 
model training and evaluation of deep learning models in the task of classifying thoracic disease. The dataset, 
however, suffers from label noise and class imbalance, which must be managed delicately while developing the 
model [40]. 

4.2 CheXpert  

CheXpert was developed by Stanford University, comprising more than 220,000 chest radiographs of 65,000 
patients. It has 14 common thoracic conditions with labels derived from radiology reports by an advanced rule-
based labeler . CheXpert is particularly helpful due to its uncertainty labels ("positive," "negative," and "uncertain"), 
allowing researchers to cope with ambiguity in medical image labeling. It has been used intensively in deep learning 
studies, with state-of-the-art classification in multi-label CXR [41] . One unique aspect of CheXpert is its handling of 
uncertainty labels, which are annotated as “positive,” “negative,” or “uncertain.” Researchers often adopt strategies 
such as U-Ignore (excluding uncertain labels), U-Zero (treating uncertain as negative), or U-One (treating uncertain 
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as positive). The choice of strategy can substantially affect both training dynamics and reported performance, 
underscoring the importance of transparent reporting. 

4.3 COVID-19 Radiogra phy Database  

The COVID-19 Radiography Database, curated across the pandemic from all over the globe, consists of over 21,000 
CXR images categorized under COVID-19, normal, and pneumonia (viral and bacterial) cases [42]. The dataset has 
played a pivotal role in the development and validation of deep learning-based models for COVID-19 detection, often 
serving as a benchmark standard in related literature. The excellent representation of diverse diagnostic classes in 
this dataset renders it a cornerstone for multi-class CXR classification tasks [29]. 

4.4 Other Publicly Released Datasets  

Apart from the well-known datasets mentioned above, several smaller but notable datasets have been released to 
facilitate CXR classification research. These include Montgomery and Shenzhen for detecting tuberculosis, which 
contain handpicked images with ground-truth annotations [43]. Other datasets such as RSNA Pneumonia Detection 
and BIMCV-COVID19+ also facilitate large-scale benchmarking on multiple diagnostic tasks [44, 45]. While smaller 
in sample size compared to ChestXray14 and CheXpert, both of these datasets are essential to model generalizability 
estimation across populations and imaging conditions. Table 2: Comparison of major publicly available chest X-ray 
datasets, including dataset size, number of classes, labeling method, and limitations. To provide a visual 
understanding of the different diagnostic categories, representative chest X-ray samples from the major publicly 
available datasets are illustrated in Figure 2. These examples highlight typical radiographic patterns observed in 
COVID-19, viral pneumonia, bacterial pneumonia, and normal cases. 

 

Figure 2. Representative Chest X-Ray Samples from Public Datasets. 

Table 2: Comparison of major publicly available chest X-ray datasets 

Dataset Size (# Images / 
Patients) 

Classes (Labels) Labeling Method Limitations 

ChestX-ray14 112,120 images / 14 thoracic diseases (e.g., NLP from radiology Label noise, class 



8      Kawther Samer Ali, Ahmad Shaker Abdalrad, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 81–94

 

(NIH) 30,000 patients pneumonia, effusion, 
cardiomegaly) 

reports imbalance 

CheXpert 
(Stanford) 

224,316 images / 
65,000 patients 

14 thoracic conditions + 
Uncertainty labels 

Rule-based labeler 
from radiology 
reports 

Ambiguity in 
“uncertain” labels 

COVID-19 
Radiography 
Database 

21,000+ images 3 classes: COVID-19, 
Normal, Pneumonia 
(bacterial, viral) 

Expert curation & 
global sources 

Smaller scale than 
NIH/Stanford sets 

Montgomery & 
Shenzhen 

~1,000 images 
(combined) 

Tuberculosis (TB) 
detection 

Expert-annotated 
CXR with masks 

Small sample size 

RSNA Pneumonia 
Detection 

30,000+ images Pneumonia (bounding-box 
annotations) 

Radiologist-verified 
bounding boxes 

Limited to 
pneumonia only 

BIMCV-COVID19+ 100,000+ images 
(multiple 
modalities) 

COVID-19, pneumonia, 
normal + metadata 

Hospital-sourced, 
radiologist reports 

Class imbalance, 
variable quality 

5. Performance Met rics and Evaluation  

5.1  Accuracy  

Accuracy is one of the most commonly reported metrics, representing the proportion of correctly predicted samples 
over the total. While useful, accuracy alone can be misleading under class  imbalance, since a classifier may 
achieve high accuracy by favoring majority classes [46].  

          
(       )

(                 )
 

5.2 Precision  

Precision measures the proportion of correctly predicted positive observations to the total predicted positives. It is 
especially useful in scenarios where the cost of false positives is high [47].  

            
  

(       )
 

5.3 Recall (Sensit ivity)   

Recall, or sensitivity, is the proportion of true positive cases that the model correctly predicts [30]. In healthcare 
diagnosis, high recall is essential since false negative cases of pneumonia or COVID-19 would have serious health 
consequences [48]. 

         
  

(       )
 

5.4 F1-Score 
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The F1-score is the harmonic mean between precision and recall, averaging both of their values into one number . 
The measure is particularly used in class imbalance because it provides a better estimate compared to accuracy 
measurements alone [48]. 

             ∗
(          ∗        )

(                  )
 

5.5 ROC AUC  

The Receiver Operating Characteristic Curve Area Under the Curve (ROC AUC) quantifies the model to separate 
positive and negative cases at various classification thresholds . High AUC suggests high class separability and is 
thus one of the best measures of diagnostic performance for deep learning-based CXR classification [48]. In addition 
to ROC-AUC, the Precision–Recall Area Under the Curve (PR-AUC) is particularly useful in highly imbalanced 
datasets such as CXR classification, where the number of normal cases often dominates pathological ones. PR-AUC 
provides better insight into the trade-off between precision and recall for the minority classes. Furthermore, 
probability calibration techniques (e.g., Platt scaling or isotonic regression) ensure that the predicted confidence 
scores align more closely with the true likelihood of disease, which is critical for clinical decision-making. 

5.6 Confusion Matrix  

The confusion matrix provides an exact breakdown of the classification outcomes, i.e., true positives, false positives, 
true negatives, and false negatives [49]. It is an effective tool for per-class performance analysis and identifying 
systematic model prediction errors, e.g., widespread misclassification between bacterial and viral pneumonia . 

It is also essential to avoid data leakage when designing experimental protocols. For medical imaging datasets, this 
often requires ensuring patient-level splitting, such that images from the same patient do not appear in both 
training and testing sets. Failure to enforce this may lead to overly optimistic results that do not generalize to real-
world clinical settings. 

6. Interpretabil ity and Expla inabil ity in Deep Learn ing  

6.1 Grad-CAM and Visualization Techn iques  

Interpretability is an important requirement for the use of deep learning models in medical images. Gradient-
weighted Class Activation Mapping (Grad-CAM) has been one of the most widely used techniques to visualize the 
regions of chest X-ray images that contribute the most to the model's decision . By generating heatmaps over the 
input images, Grad-CAM allows clinicians and researchers to confirm whether the model is paying attention to 
pathologically meaningful areas of the lung, such as infiltrates or ground-glass opacities . Other visualization 
techniques, such as saliency maps and Layer-wise Relevance Propagation (LRP), have been explored, although Grad-
CAM is by far the most commonly utilized due to its efficacy and simplicity [50]. Beyond Grad-CAM, other 
explainability methods such as Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive 
exPlanations (SHAP), and Integrated Gradients have been explored in CXR classification. These techniques provide 
complementary perspectives on model decision-making and further enhance clinical trust by allowing radiologists 
to validate algorithmic focus against medical knowledge. Figure 3 Grad-CAM visualizations for representative CXR 
images across four classes: Viral Pneumonia, Normal, Bacterial Pneumonia, and COVID-19. The second column 
shows enhanced Grad-CAM maps, while the third column overlays heatmaps onto the original images. These 
visualizations highlight that the model attends to clinically relevant lung regions, enhancing interpretability and 
trust in diagnostic predictions. 
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Figure 3. Grad-CAM visualizations for representative CXR images 

6.2 Attention-based Interpretabil ity   

There have been recent advances in attention mechanisms, like Convolutional Block Attention Module 
(CBAM) and Squeeze-and-Excitation (SE) blocks, that suggest new approaches to enhancing 
interpretability . These modules allow the network to selectively prioritize the most informative spatial 
or channel-wise features, giving insight into which anatomical structures guided the decision-making 
process. Furthermore, transformer-based architectures inherently generate attention maps, which can 
highlight global dependencies between lung regions, making them a valuable tool for classification and 
interpretability [51].  

6.3 Clinic ian Trust and Transparency   

For deep learning models to be integrated into clinical workflows, interpretability must result in trust and 
transparency . Attention mechanisms and visualization tools bridge the gap between black-box AI 
systems and clinical decision-making by providing intuitive model prediction explanations. It is 
important to build clinician trust since physicians must ensure whether model attention aligns with 
medical knowledge before the clinical adoption of AI-supported diagnostic tools. Lastly, explainability not 
only promotes accountability and ethical AI research but also strengthens the possibilities for effective 
deployment in real healthcare systems [52]. 

7.  Challenges and Limitations  
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Given the sensitive nature of medical imaging, privacy and ethical considerations are critical. Data de-
identification, patient consent, and institutional data-sharing agreements are vital to ensure compliance 
with regulations such as HIPAA and GDPR. Furthermore, dataset biases—such as unequal representation 
across age, gender, or ethnicity—must be acknowledged to prevent inequitable performance in real-
world clinical practice. 

7.1 Dataset Imbalance 

One of the most persistent challenges in chest X-ray (CXR) classification is dataset imbalance, where 
certain classes (e.g., normal cases) significantly outnumber others (e.g., COVID-19 or rare pneumonia 
types). This imbalance often biases models toward the majority class, reducing sensitivity in detecting 
minority conditions [53]. Various solutions, such as oversampling, synthetic data generation using GANs, 
and class-weighted loss functions, have been proposed, but imbalance remains a critical limitation in real-
world applications [54]. 

7.2 Doma in Adaptat ion  and Gen eralization  

Deep learning models frequently suffer from performance degradation when tested on external datasets 
collected from different hospitals, imaging devices, or patient populations [55]. This lack of generalization 
highlights the domain adaptation problem, where models overfit to the training distribution but fail to 
transfer effectively to unseen clinical environments [56]. Approaches such as transfer learning, domain 
adversarial training, and federated learning are being explored to address this issue, but achieving robust 
generalization remains an open challenge [57]. 

7.3 Computational Costs and Scalabil ity  

Training state-of-the-art CNNs, transformers, or hybrid architectures on large-scale medical datasets 
requires significant computational resources, including high-end GPUs and large memory capacities [58]. 
Such requirements pose barriers for deployment in resource-limited healthcare systems, especially in 
developing regions. Scalability issues also emerge when attempting to process vast repositories of CXR 
images in real time, necessitating research into lightweight architectures and efficient inference 
techniques [59]. 

7.4 Ethical and Regulatory Considerations  

Beyond technical limitations, ethical and regulatory challenges play a major role in the adoption of AI-
based diagnostic tools. Issues of patient privacy, informed consent, and compliance with regulations such 
as HIPAA and GDPR must be addressed [60]. Furthermore, the black-box nature of many deep learning 
models raises accountability concerns in case of diagnostic errors. Regulatory approval processes 
demand rigorous validation and explainability to ensure safe integration into clinical practice, making 
this one of the most complex challenges in medical AI [61]. Table 3: Summary of key challenges and 
limitations in deep learning for CXR classification, with potential mitigation strategies. Table 4: 
Comparison of emerging methodologies (Federated Learning, Semi-supervised Learning, Vision 
Transformers, Self-supervised Learning) and their potential for CXR classification. 

Table 3: Summary of key challenges and limitations in deep learning for CXR classification 
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Challenge Description Potential Mitigation Strategies 

Dataset Imbalance Certain diseases 

underrepresented 

Data augmentation, re-

sampling, synthetic data 

Domain Adaptation Models fail to generalize 

across institutions 

Transfer learning, domain 

adaptation techniques 

Computational Costs High training and inference 

requirements 

Model compression, efficient 

architectures 

Ethical Issues Bias, fairness, privacy 

concerns 

Federated learning, 

explainability, regulatory 

frameworks 

Table 4: Comparison of emerging methodologies 

Methodology Description Potential for CXR Classification 

Federated Learning Training across 

decentralized data without 

sharing raw data 

Preserves privacy, multi-

institutional learning 

Semi-supervised Learning Uses small labeled + large 

unlabeled datasets 

Reduces annotation costs, 

improves generalization 

Vision Transformers Attention-based 

architectures 

Capture long-range 

dependencies, promising 

accuracy 

Self-supervised Learning Learns representations 

from unlabeled data 

Effective in limited label 

scenarios 

 

8. Conclusion and Future Perspectives  

Deep learning has revolutionized the field of chest X-ray (CXR) analysis by offering powerful tools for 
automated disease detection, classification, and clinical decision support. Over the past decade, models 
such as convolutional neural networks, transfer learning frameworks, attention-enhanced architectures, 
and hybrid CNN-transformer approaches have demonstrated state-of-the-art performance in identifying 
conditions like COVID-19, bacterial pneumonia, viral pneumonia, and other thoracic diseases. The 
integration of interpretability techniques such as Grad-CAM and attention-based mechanisms has further 
strengthened the potential of these systems by enabling clinicians to better understand and trust model 
predictions. 

Despite these advancements, significant challenges remain. Dataset imbalance, limited generalizability 
across domains, and high computational costs hinder the robustness and scalability of deep learning 
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models in real-world clinical settings. Moreover, ethical and regulatory considerations continue to shape 
the trajectory of AI in healthcare, as transparency, accountability, and patient privacy are essential for 
clinical adoption. 

Looking forward, the future of deep learning in CXR analysis will likely be defined by several key 
directions. First, larger and more diverse datasets, possibly enabled through global collaborations and 
federated learning frameworks, will improve model generalization across heterogeneous populations. 
Second, lightweight and efficient model architectures will make AI solutions more accessible in resource-
limited environments, expanding their global impact. Third, the integration of multimodal data—such as 
combining radiographic findings with clinical, laboratory, or genomic information—may enable more 
comprehensive and precise diagnostics. Finally, explainable AI and human–AI collaboration will be 
crucial in building trust and ensuring the ethical use of deep learning in healthcare. 

In conclusion, while challenges persist, the trajectory of research and innovation suggests that deep 
learning will continue to transform chest X-ray interpretation and clinical diagnostics. By addressing 
current limitations and embracing interdisciplinary collaboration, the field can move closer to achieving 
reliable, transparent, and equitable AI-driven healthcare solutions that benefit patients worldwide. 
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