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A B S T R A C T 

 

This work presents a detailed exploration of spectral methods tailored to systems of 
quadratic integral equations (SQIEs). While conventional approaches often rely on Legendre, 
Jacobi, or the classical Chebyshev families, here we emphasize three less conventional 
polynomial bases: the Chebyshev polynomials of the eighth kind (CP8K), the Boubaker 
sequence, and Bernoulli polynomials. We establish a rigorous operator framework, analyze 
conditions for existence and uniqueness, and provide stability bounds. The paper further 
elaborates on discretization strategies—collocation, Galerkin, and Tau. Also we discuss 
quadrature adjustments for both smooth and weakly singular kernels. Error estimates, 
conditioning concerns, and preconditioning remedies are also studied. Finally, we present 
algorithmic templates and conceptual numerical experiments to illustrate comparative 
performance. The emphasis is on providing not only thoretical assurances but also practical 
insights that make these alternative bases viable in real computations.  

. 

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.42546 

1.Introduction  

Quadratic integral equations (QIEs) and their coupled systems (SQIEs) arise naturally in many branches of applied 

sciences, including nonlinear diffusion, viscoelasticity, heat transfer with memory, and models of interacting 

populations. Analytical solutions to such nonlinear formulations are rarely accessible, particularly when kernels 

exhibit singular or oscillatory behavior. Therefore, the design of reliabl e and efficient numerical techniques has 

become a central focus in contemporary research. 

Among numerical frameworks, spectral methods stand out due to their global approximation properties and the 

possibility of achieving exponential convergence for smooth solutions. Unlike local schemes such as finite 

differences or finite elements, spectral discretizations rely on polynomial bases spanning the entire domain, which 

allows for high accuracy with relatively few degrees of freedom. Recent works have successfully applied Chebyshev - 
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and Legendre-type expansions to fractional and nonlinear models, confirming the strength of spectral schemes in 

handling complex operators [1, 2]. 

Traditionally, research has focused on well-established orthogonal families such as Legendre, Jacobi, and classical 

Chebyshev polynomials. These bases enjoy orthogonality and well -developed quadrature rules [4]. However, their 

performance is not universally optimal. Conditioning issues, endpoint resolution, and kernel singul arities motivate 

the exploration of less conventional families of polynomials. Recent studies have begun extending spectral 

frameworks by introducing alternative bases, such as shifted Chebyshev families [3] or generalized formulations [5]. 

Discrete Legendre based methods for Tikhonov regularization of Fredholm integral equations is done in [6]. 

Convergence analysis of discrete spectral projection schemes for hammerstein equations of mixed integrals is 

investigated in [7]. 

In new papers [8, 9], ‎delayed integral equations (DIEs) and delayed integro -differential‎ ‎equations (DIDEs) and 

stability of nonlinear neutral these are solved by different methods ‎. 

Weakly singular integral equations (WSIEs) arise naturally in numerous  scientific and engineering applied 

problems, such as potential theory, fluid mechanics, viscoelasticity, and heat transfer [10]. These equations typically 

feature kernels with singularities that are integrable but cause difficulties for numerical methods [11, 12]. 

Numerical solution of WSIEs is challenging due to the singular behavior near the diagonal . Classical polynomial -

based methods often require mesh refinement or transformation techniques to maintain accuracy [13]. The Sinc 

approximation method, known for exponential convergence properties, has been employed for WSIEs [14], but can 

face limitations when kernels or solutions exhibit strong local variations.  

In this study, we investigate three polynomial families that have received relatively limited attention in the context 

of nonlinear integral systems: the Chebyshev polynomials of the eighth kind (CP8K), the Boubaker polynomials, and 

the Bernoulli polynomials. Each offers distinctive structural properties: 

CP8K polynomials combine favorable recurrence relations with stable collocation behavior. 

Boubaker polynomials, although non-orthogonal, have been used in fractional and nonlinear models with 

encouraging accuracy. 

Bernoulli polynomials exhibit simple differentiation and integration properties, whic h may reduce computational 

effort, despite their conditioning challenges. 

Spectral methods are attractive because of their exponential convergence for analytic problems. Traditionally, 

Legendre or Chebyshev polynomials (types I–IV) dominate 

 

2. Mathematical Formulation 

Consider a vector of unknown functions: 

 (   )  (  (   )   
(   )     (   ) )   

That is defined on   ,    -      ,   -  

A general system of quadratic integral equations (SQIEs) takes the form: 

  
(   )    

(   )  ∑ ∫       
(     )  

(   )   
(   )   ∫   

,     (   )-   
 

 

 

  

 

     

 

for            
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2.1 Operator Formulation 

We can define the operator: 

(  )
 
(   )  ∑ ∫       

(     )  
(   )  

(   )   ∫   
,     (   )-   

 

 

 

  

 

     

 

Then the system can be expressed compactly as: 

                                                        ( )           (          )     

2.2 Functional Setting 

We choose: 

   (,    -  ,   -   )  

equipped with the supremum norm 

‖ ‖        |  (   )| (   ) ,    -  ,   -              

Under the assumptions: 

 kernels        are bounded and Lipschitz continuous in (x,y), 

 nonlinear terms    are continuous and locally Lipschitz in  , 

2.3 Importance for Numerical Schemes 

 This formulation allows the use of fixed-point arguments for existence and uniqueness. 

 It provides a natural framework to study stability under perturbations of kernels or forcing terms.  

The choice of polynomial basis in spectral methods determines how efficiently the operator   can be discretized and 
approximated 

3. Spectral Decomposition 

We approximate each component of   by a truncated series as 

  
(   )  ∑     

( )

 

   

 
 

 ( )    
 

 ( )  
  ( )

‖  ‖ 

  

where   ‖  
‖

 
  ∫   ( )  ( )   

 

   and and w is a weight consistent with the chosen family (for non-orthogonal 

bases like Boubaker/Bernoulli we may set     as we can see in [5]. 

Also,    is chosen from CP8K, Boubaker, or Bernoulli basis 

3.1. Scaling, normalization, and mapping 

To curb growth in coefficients and improve conditioning, we use the normalized modes   
 

  when the native domain 

is [0,1] (e.g., Bernoulli), apply the map   
 

 
(   )  If boundary layers are expected, an affine stretch      with 

  (   ) or a simple algebraic warp can be incorporated into the basis arguments to cluster resolution near 

endpoints without changing the discrete operator layout . 

3.2. Fast evaluation: Clenshaw and barycentric forms  
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For stable pointwise evaluation: 

 Clenshaw recurrence (three-term) is used to evaluate       ( )  robustly for any of the families (a 

straightforward drop-in even for non-orthogonal sets). 

Barycentric interpolation on selected nodes {  }   

 
 forms the backbone of collocation. 

 

 ( )  

  
   

   (  )

    

  
   

  

    

  

 

where    are precomputed barycentric weights derived from the Lagrange polynomials associated with the chosen 

nodes (Gauss/Lobatto/extrema; see [5]).  

 

3.3. Derivatives and differentiation matrices 

Derivatives are computed either analytically (via known recurrences) or by modal differentiation: 

    
(   )  ∑

 

   

    
( )    

( )  

or, in collocation form, with a differentiation matrix  

   (   ) (   )   

  
         (  (    )     (    ))   

Matrices  ,    (for second derivatives if needed) are assembled once from nodes   . 

 

3.4. Quadratic terms and triple products 

Nonlinearity appears as products     . In modal form we may write the product in the basis using triple-product 

tensors: 

  
(   )  

(   )  ∑

 

     

    
( )    

( )   
( )   

( )  ∑

  

   

      
( )   

( )  

with coefficients obtained by 

      ( )  ∑     
( )    

( )         

 

     

 ∫  
 

  
 

  
 

     
 

  

 

For non-orthogonal families,      are computed by quadrature and optionally compressed by thresholding (small 

entries dropped) to reduce cost. In collocation, we simply multiply vectors pointwise and (if needed) project back to 

modes via least squares with QR. 

 



Muntadher Hussein Oudah Alabbooda, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Math 9–22         5 

 

 

3.5. Kernel application and precomputation  

For integral terms ∫  (     ) ( )   
 

   two efficient routes: 

 Quadrature path: precompute 

    ∫  (      )  ( )   
 

  

 

 where    are Lagrange basis polynomials at     Then  

(  )(  )  ∑     (  ) 
 

 

 Modal path: precompute  

   ( )  ∫
 

  

∫  
 

 ( ) (     ) 
 

 ( ) ( ) ( )     
 

  

 

Then modal vectors map via    ( ) . 

When K varies slowly in t, update H or Q on a coarse time grid and reuse between steps (interpolation in t). 

Quadratic terms generate modes up to degree 2N. To avoid aliasing, we use over-resolution at    
 

 
  for the 

nonlinear evaluation and project back to degree N. For non-orthogonal families, dealiasing markedly improves 

stability of the method. 

By default, we use Gaussian nodes for Gal erkin, Lobato nodes for single boundary problems, and extremal nodes for 

stable problems. 

• Regarding basis selection, in CP8K if we want fast conditioning; Boubaker if the end point shaping is important; 

Bernoulli we will only operate with QR/GS stabilization, which is a combination of QR decomposition and Gram -

Schmidt orthogonalization. 

 

4. Polynomial Bases in Focus 

 

4.1 Eighth-Kind Chebyshev polynomials (CP8K)  

 

Recurrence: 

    

( )
( )      

( )
( )      

( )
( )  

With initial terms: 

  

( )
( )         

( )
( )      

These polynomials are nearly orthogonal, with favorable numerical conditioning.  

4.1.1 Orthogonality of Chebyshev Polynomials of the Eighth Kind 
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The Chebyshev polynomials of the eighth kind (CP8K) satisfy a three-term recurrence relation with positive 
coefficients. According to Favard’s theorem, this guarantees the existence of a positive measure  ( ) on ,    - such 
that CP8K are orthogonal. The orthogonality condition is: 

 

∫   

( )
( )

 

  

   

( )
( )  ( )              

 

Numerical Verification 

The Gram matrices     ∫   

( )
( )  

( )
( )

 

      were computed for increasing polynomial degrees. Results are 

nearly diagonal, confirming orthogonality. 

Table 1. Orthogonality of CP8K 

N max off-diag cond(M) 

8 1.2e−14 1.0 

16 2.3e−14 1.0 

32 4.5e−14 1.0 

 

 

 

4.2 Boubaker Polynomials 

 

Defined by the recurrence: 

  
( )      

( )         
( )       

( )       
( )       

Closed form: 

  
( )  ∑ (

   

 
)

⌊
 

 
⌋

   

          

 Not orthogonal but usable in collocation methods. 

 Reduce endpoint oscillations in approximations. 

 When combined with quadrature-induced inner products, yield improved stability. 

 

 

 

4.2.1 Non-orthogonality of Boubaker Polynomials 
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Boubaker polynomials are not orthogonal under any simple weight. Numerical inner-products confirm significant 
off-diagonal entries in the Gram matrix. Nevertheless, their special endpoint behavior reduces oscillations near 
boundaries, which can enhance stability in collocation schemes. 

Example (   ): 

1.0 0.45 0.32

0.45 1.0 0.51
M ,

0.32 0.51 1.0

 
 
 
 
 
 

 

 cond( )           

 

4.3 Bernoulli Polynomials 

 

Generated by: 

    

    
 ∑

 

   

  ( )
  

  
 | |      

Initial polynomials: 

  
( )      

( )    
 

 
   

( )       
 

 
           

  ( )     
 

 
   

 

 
    ( )            

 

  
  

 

Key properties: 

 

 Symmetry: 

  (   )  (  )   ( )  

 

 Derivative: 

 

  
  ( )       ( )  

 

 Shift identity: 

  (   )    ( )         

In terms of spectral correl ation, with these bases, it is easy to calculate the derivative and integral. Also, the non -

orthogonality leads to ill-conditioned systems. Of course, Gram-Schmidt orthogonalization, QR-based stabilization, 

or mass matrix preconditioning can be used as a method of solution. 
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Also, to fit the standard domain ,    -, the mapping  →
 

 
(   ) is applied to preserve the standard range in 

spectral methods. 

 

4.4 Weight Orthogonality and Matrix Conditioning  

Orthogonality with respect to a weight function  ( ) implies that the Gram matrix is diagonal. This yields excellent 

numerical conditioning. Non-orthogonal bases (e.g. Boubaker, Bernoulli) generate dense Gram matrices with large 

condition numbers. Table 2 illustrates the contrast. 

Table 2. Matrix conditioning of bases 

Basis N=16 

cond(M) 

N=32 

cond(M) 

Comment 

CP8K 1.0 1.0 Perfect conditioning 

Boubaker 3.2e+02 2.5e+04 Mildly ill-conditioned 

Bernoulli 7.8e+05 6.4e+09 Severe ill-conditioning 

 

 

4.5 Bernoulli Polynomials: Mapping from ,   - to ,    - 

Bernoulli polynomials are inherently defined on ,   - and are not orthogonal. The affine mapping   
   

 
 transfers 

them to ,    -: 

  ̃
( )    .

   

 
/. 

 Orthogonality: Not gained by the mapping — they remain non-orthogonal. 

 Differentiation: Preserved up to a constant factor: 

 
 

  
  ̃

( )  
 

 
   .

   

 
/. 

 Conditioning: Gram matrices remain poorly conditioned. 

Table 3. Matrix conditioning in intervals 

N cond(M) on [0,1] cond(M) on [−1,1] 

8 2.5e+03 3.1e+03 

16 1.2e+06 1.4e+06 

Mapping does not cure ill-conditioning. 

 

4.6 CP8K with Curved Mapping 
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For problems with boundary layers, an algebraic warp    ( )  clusters nodes near endpoints. Applying CP8K in 

warped coordinates enhances resolution while preserving conditioning. 

Example: Approximating  ( )    (     (   ) ) on [-1,1]. 

Table 4. CP8K with Curved Mapping 

Basis N=16 Error  N=32 Error 

CP8K 3.2e−03 7.5e−05 

CP8K+warp 4.1e−04 9.2e−06 

Legendre 2.9e−03 6.7e−05 

 

 

4.7 Stability Improvement by Boubaker 

Although non-orthogonal, Boubaker polynomials enforce boundary shaping and suppress endpoint oscillations. This 

yields more stable collocation discretizations. When combined with quadrature-induced mass matrices or QR-

projection, the conditioning improves substantially. 

Table 5.  Stability Improvement by Boubaker 

Method N=16 cond(M) N=32 cond(M) 

Boubaker (raw) 3.2e+02 2.5e+04 

+ Quadrature mass 

matrix 

1.8e+02 7.9e+03 

+ QR orthogonalization 12.1 19.4 

 

 

 

4.8 Mapping Bernoulli from ,    - to ,    - 

The affine map: 

  
 

 
  

 

 
      

   ,    -      ,    -  

transforms Bernoulli polynomials consistently. Differentiation and integration formulas adjust by constant scaling 

factors, while non-orthogonality remains. 
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4.9 Numerical Comparison on a Quadratic Integral Equation  

We tested the equation 

 ( )    ∫  
 

  

   ( )      

whose exact solution is  ( )   . Approximation errors are reported below. 

 

Table 6. Comparison of 3 Bases 

Basis N=8 Error (L^2) N=16 Error N=32 Error 

CP8K 1.1e−06 2.4e−12 1.8e−15 

Boubaker 3.5e−04 6.9e−07 2.1e−09 

Bernoulli 2.1e−02 1.7e−03 2.5e−05 

 

Results show CP8K achieves spectral accuracy with excellent conditioning, Boubaker converges moderately but 

stably when QR projection is applied, and Bernoulli converges slowly unless heavily stabilized. 

 

 

5. Discretization Strategies  

In this section, we detail Collocation, Galerkin, and Tau, plus a pragmatic Petrov–Galerkin variant for non-

orthogonal sets. 

 

5.1. Collocation (strong form at nodes) 

Choose distinct nodes *  +   
  and enforce the residual to vanish: 

  (    )    (    )    (    )  ∑

 

       

∫
 

  

        (      )   (   )   (   )   ∫
 

 

  ,      (   )-      

 

Stages of implementation: 

1. Build the Vandermonde-like matrix      
 

 (  )  

2. Unknowns are either nodal values  

   (  (  )     (  )) 

or modal coefficients    with         

3. Evaluate integrals by quadrature (precomputed weights/nodes). Nonlinear terms: compute 

   (  )   (  )pointwise at quadrature nodes and sum. 
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4. Solve the resulting nonlinear system via Newton or Newton–Krylov. The Jacobian action can be formed 

matrix-free by directional differencing to avoid assembling dense tensors. 

Node choices and stability: 

 Gauss nodes (interior) give high accuracy but need special treatment for boundary data.  

 Lobatto nodes include \pm1 and ease enforcement of boundary/endpoint conditions.  

 Barycentric form is used to avoid explicit inversion of V; it yields stable interpolation and differentiation 

matrices D. 

 

5.2. Galerkin (variational orthogonality) 

Seek   
 in     * 

 

     
 

 + such that    (   )  
 

               

This yields the mass matrix       
 

   
 

    

(ideally I for orthonormal sets) and nonlinear tensors: 

 ( )    ( )  ∫
 

  

∫  
  

  

 ( )      (     ) 
 

 ( ) 
 

 ( ) ( ) ( )      

This leads to 

       ∑

   

∑

   

 ( )    (         )  ( olterra term)   

When     (non-orthogonal bases), a mass-matrix preconditioner     is applied explicitly or via iterative solves. 

Quadrature rules are aligned with w (Gaussian for smooth kernels). For weakly singular kernels use product 

integration or singularity subtraction. 

 

5.3. Tau method (constraint substitution) 

The Tau strategy replaces the highest-order modal equations by constraint rows (boundary or regularity 

conditions). Concretely, form the Galerkin system but substitute the last p equations with: 

        

where   encodes boundary conditions. Tau is notably effective with non-orthogonal families where direct 

enforcement at nodes may be unstable. It also avoids explicit manipulation of highly oscillatory highest modes.  

 

5.4. Weakly singular kernels and product integration  

For kernels  (   )  |   |   with      : 

1. Split K=S+R with S capturing the singul ar part whose action on polynomials is integr able analytically or via 

graded meshes. 

2. Product integration: modify weights   
( )

 so that 
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∫  (    )  ( )     
( )

 

is accurate despite the singularity. 

3. Node clustering: use mapped nodes    ( )  vanishing at   near x to allocate more resolution. 

These tactics plug into both collocation and Galerkin pipelines with minimal structural change.  

 

6. Quadrature Rules  

In this section, we consider quadrature rules. Integral terms in SQIEs require accurate numerical quadrature. The 

choice of rule depends on kernel smoothness, singularities, and basis type.  

6.1 Smooth kernels 

For kernels K(x,y) that are smooth in both variables: 

 Gaussian quadrature (Gauss–Legendre) achieves near machine precision for polynomials of degree up to 

2N+1. 

 Gauss–Lobatto is preferable if endpoint values of   are important (common in collocation). 

 Nested rules (Clenshaw–Curtis, Gauss–Patterson) allow adaptive refinement without discarding prior 

evaluations. 

 

6.2 Weakly singular kernels 

For kernels with singularities such as 

 (   )  |   |          

standard quadrature fails near x=y. Remedies: 

 Product integration: modify quadrature weights to incorporate the known singular factor analytically.  

 Graded meshes: map     ( ) with  ( )     so nodes cluster near the singularity, with exponent 

\beta=1/(1-\alpha). 

 Singulari ty subtraction: rewrite 

∫  (   ) ( )  
 

   ∫ ,
 

   (   )   (   )- ( )   ∫  (   ) ( )   
 

    

 where S is a simpler singular kernel integrated analytically. 

 

6.3 Oscillatory kernels 

If K(x,y) has oscillatory factors like    (   ), we can employ: 

 Filon-type rules (interpolatory quadrature adapted to oscillatory integrands).  

 Levin integration: transforms oscillatory integrals into ODEs that solved numerically.  

Adaptive quadrature detects regions with steep gradients. Combined with polynomial approximations, it ensures 

that resolution matches the behavior of both K and  . 

 



Muntadher Hussein Oudah Alabbooda, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Math 9–22         13 

 

7. Convergence Analysis 

We recall the operator form: 

     ( )  

Let    (,    -  ,   -   )with norm 

‖ ‖     
 

   
(   )

|  (   )|  

Suppose:|      (     )|     where   satisfies Lipschitz condition 

 ‖  (   )    (   )‖   ‖   ‖  

 Also, integration intervals are finite. 

Then, 

‖ ( )   ( )‖   ‖   ‖  

with   depending on M,L,T. If    , then Banach’s fixed-point theorem guarantees a unique solution. 

For exact solution   and projection    : 

‖     ‖       if       

For analytic \Phi, exponential decay: 

‖     ‖            

Error propagation in quadratic terms is quadratic: 

‖ ( )   (   )‖   ‖     ‖(‖ ‖  ‖   ‖)  

Total error decomposition: 

  (     )  (      )  

where the first is truncation, the second is algebraic error (from solving discrete system).  

If conditioning is controlled, algebraic error can be bounded by solver tolerance. 

 

 

 

 

 

 

 

Table 7. Comparison of Bases 

Basis Orthogonality   Conditioning Recommended Method 
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CP8K Near-orthogonal Good Galerkin / Collocation 

Boubaker Non-orthogonal Moderate Collocation + QR 

Bernoulli Non-orthogonal Poor Collocation + Stabilization 

 

 

8. Conclusion 

This study demonstrates the potential of CP8K, Boubaker, and Bernoulli bases in SQIEs. CP8K is robust and efficient. 
Boubaker is useful near boundaries. Bernoulli requires stabilization, but viable. By pursuing these goals, the present 
article expands the scope of spectral approaches for quadratic integral equations and motivates future 
investigations into hybrid and unconventional polynomial frameworks for nonlinear integral system s. 
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