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This work presents a detailed exploration of spectral methods tailored to systems of
quadratic integral equations (SQIEs). While conventional approaches oftenrely on Legendre,
Jacobi, or the classical Chebyshev families, here we emphasize three less conventional

polynomial bases: the Chebyshev polynomials of the eighth kind (CP8K), the Boubaker
sequence, and Bernoulli polynomials. We establish a rigorous operator framework, analyze
conditions for existence and uniqueness, and provide stability bounds. The paper further
elaborates on discretization strategies—collocation, Galerkin, and Tau. Also we discuss
quadrature adjustments for both smooth and weakly singular kernels. Error estimates,
conditioning concerns, and preconditioning remedies are also studied. Finally, we present
algorithmic templates and conceptual numerical experiments to illustrate comparative
performance. The emphasis is on providing not only thoretical assurances but also practical
insights that make these alternative bases viable in real computations.
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1.Introduction

Quadratic integral equations (QIEs) and their coupled systems (SQIEs) arise naturally in many branches of applied
sciences, including nonlinear diffusion, viscoelasticity, heat transfer with memory, and models of interacting
populations. Analytical solutions to such nonlinear formulations are rarely accessible, particularly when kernels
exhibit singular or oscillatory behavior. Therefore, the design of reliable and efficient numerical techniques has
become a central focus in contemporary research.

Among numerical frameworks, spectral methods stand out due to their global approximation properties and the
possibility of achieving exponential convergence for smooth solutions. Unlike local schemes such as finite
differences or finite elements, spectral discretizations rely on polynomial bases spanning the entire domain, which
allows for high accuracy with relatively few degrees of freedom. Recent works have successfully applied Chebyshev -
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and Legendre-type expansions to fractional and nonlinear models, confirming the strength of spectral schemes in
handling complex operators [1, 2].

Traditionally, research has focused on well-established orthogonal families such as Legendre, Jacobi, and classical
Chebyshev polynomials. These bases enjoy orthogonality and well-developed quadrature rules [4]. However, their
performance is not universally optimal. Conditioning issues, endpoint resolution, and kernel singul arities motivate
the exploration of less conventional families of polynomials. Recent studies have begun extending spectral
frameworks by introducing alternative bases, such as shifted Chebyshev families [3] or generalized formulations [5].

Discrete Legendre based methods for Tikhonov regularization of Fredholm integral equations is done in [6].
Convergence analysis of discrete spectral projection schemes for hammerstein equations of mixed integrals is
investigated in [7].

In new papers [8, 9], delayed integral equations (DIEs) and delayed integro-differential equations (DIDEs) and
stability of nonlinear neutral these are solved by different methods.

Weakly singular integral equations (WSIEs) arise naturally in numerous scientific and engineering applied
problems, such as potential theory, fluid mechanics, viscoelasticity, and heat transfer [10]. These equations typically
feature kernels with singularities that are integrable but cause difficulties for numerical methods [11, 12].

Numerical solution of WSIEs is challenging due to the singular behavior near the diagonal . Classical polynomial -
based methods often require mesh refinement or transformation techniques to maintain accuracy [13]. The Sinc
approximation method, known for exponential convergence properties, has been employed for WSIEs [14], but can
face limitations when kernels or solutions exhibit strong local variations.

In this study, we investigate three polynomial families that have received relatively limited attention in the context
of nonlinear integral systems: the Chebyshev polynomials of the eighth kind (CP8K), the Boubaker polynomials, and
the Bernoulli polynomials. Each offers distinctive structural properties:

CP8K polynomials combine favorable recurrence relations with stable collocation behavior.

Boubaker polynomials, although non-orthogonal, have been used in fractional and nonlinear models with
encouraging accuracy.

Bernoulli polynomials exhibit simple differentiation and integration properties, which may reduce computational
effort, despite their conditioning challenges.

Spectral methods are attractive because of their exponential convergence for analytic problems. Traditionally,
Legendre or Chebyshev polynomials (types 1-1V) dominate

2. Mathematical Formulation
Consider avector of unknown functions:
O, = (p,(x, 0, 0,0, ), e, @ (x, )7,
That is defined on xe[—1,1], tel0,T].
A general system of quadratic integral equations (SQIEs) takes the form:
m 1 t
PG =fGD+ Y | Kyl 00,0000, 0dy + f G lx, ;0 (, Dldx,

j k=1

fori=1,2,..,m.
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2.1 Operator Formulation

We can define the operator:

TG0 = Y f Ky xCey, 00,0, D0 &, Ody + f G Lx, t; o(., Dldr.

k=1
Then the system can be expressed compactly as:
S=F+TW®), F=,Lf )"
2.2 Functional Setting
We choose:
x = c((-11] x[o,T]; R™),

equipped with the supremum norm

ol = max  suplo;(x,t)l, (x,el-1,11 x [0,T],i = 1,2, ..., m.
Under the assumptions:

e kernels K; ; , are bounded and Lipschitz continuous in (xy),
e nonlinear terms G; are continuous and locally Lipschitz in @,
2.3 Importance for Numerical Schemes
e This formulation allows the use of fixed-point arguments for existence and uniqueness.

e [t provides anatural framework to study stability under perturbations of kernels or forcing terms.

The choice of polynomial basis in spectral methods determines how efficiently the operator T can be discretized and
approximated

3. Spectral Decomposition

We approximate each component of ® by a truncated series as

N

@;(x,t) = Z a; ,(®) IA’n(x), Ign(x) =

n=0

B ()
(11w

where |, IR, |2, = f_ll P,(x)?>w(x) dx, and and w is a weight consistent with the chosen family (for non-orthogonal

bases like Boubaker/Bernoulli we may set w = 1 as we can see in [5].
Also, B, is chosen from CP8K, Boubaker, or Bernoulli basis

3.1. Scaling, normalization, and mapping

A

To curb growth in coefficients and improve conditioning, we use the normalized modes P, when the native domain
is [0,1] (e.g., Bernoulli), apply the map x — i (x + 1).If boundary layers are expected, an affine stretch x = ox with

o € (0,1) or a simple algebraic warp can be incorporated into the basis arguments to cluster resolution near
endpoints without changing the discrete operator layout.

3.2. Fast evaluation: Clenshaw and barycentric forms
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For stable pointwise evaluation:

Clenshaw recurrence (three-term) is used to evaluate Ya,B,(x) robustly for any of the families (a
straightforward drop-in even for non-orthogonal sets).

N
Barycentric interpolation on selected nodes {x,-}, 0 forms the backbone of collocation.
]=

ZN Al-u(xl-)
j=0 X—xi
_ J
u(x) = 4
j=0

X—ﬁ

where 1; are precomputed barycentric weights derived from the Lagrange polynomials associated with the chosen
nodes (Gauss/Lobatto/extrema; see [5]).

3.3. Derivatives and differentiation matrices

Derivatives are computed either analytically (via known recurrences) or by modal differentiation:

N

05D~ ) a0, P,

n=0
or, in collocation form, with a differentiation matrix

D e R(N+1)X(N+1):

uj & Duyu; = (@ (X,0), oo by, ).

Matrices D, D? (for second derivatives if needed) are assembled once from nodes X;.

3.4. Quadratic terms and triple products

Nonlinearity appears as products ¢;¢,. In modal form we may write the product in the basis using triple-product
tensors:

N 2N
9,000,000 x D 4,000 PP =D €n(® P00,
7,5=0 n=0
with coefficients obtained by
N 1 A A A
Cj,k;n(t) ~ Z aj,r(t)ak,s (t)ans' ans - ] PnPrPsde'
r,s=0 -1

For non-orthogonal families, 7, are computed by quadrature and optionally compressed by thresholding (small
entries dropped) to reduce cost. In collocation, we simply multiply vectors pointwise and (if needed) project back to
modes vialeast squares with QR.
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3.5. Kernel application and precomputation
For integral terms f_ll K (x,y, t)u(y)dy, two efficient routes:

e Quadrature path: precompute

1

Qjr = f K(x,y,t)t,(y)dy,
-1
where £, are Lagrange basis polynomials at y,. Then
K)(x) = ). Qjeule).
¢
e Modal path: precompute
1 14 A
He@=| | RGOKGoy,0PLOW W Ixdy.
-1 J-1

Then modal vectors map viaa — H(t)a
When K varies slowly in t, update H or Q on a coarse time grid and reuse between steps (interpolation in t).

Quadratic terms generate modes up to degree ZN. To avoid aliasing, we use over-resolution at N* = %N for the

nonlinear evaluation and project back to degree N. For non-orthogonal families, dealiasing markedly improves
stability of the method.

By default, we use Gaussian nodes for Gal erkin, Lobato nodes for single boundary problems, and extremal nodes for
stable problems.

» Regarding basis selection, in CP8K if we want fast conditioning; Boubaker if the end point shaping is important;
Bernoulli we will only operate with QR/GS stabilization, which is a combination of QR decomposition and Gram -
Schmidt orthogonalization.

4. Polynomial Bases in Focus
4.1 Eighth-Kind Chebyshev polynomials (CP8K)

Recurrence:

l](S)

n+1

(8) (8)
() =2xU,” &) + U, ).
With initial terms:
U0 =1, UPw = 2x.
These polynomials are nearly orthogonal, with favorable numerical conditioning.

4.1.1 Orthogonality of Chebyshev Polynomials of the Eighth Kind
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The Chebyshev polynomials of the eighth kind (CP8K) satisfy a three-term recurrence relation with positive
coefficients. According to Favard’s theorem, this guarantees the existence of a positive measure w(x) on [—1,1] such
that CP8K are orthogonal. The orthogonality condition is:

1
f Cr(ng) (x) Cég) W wlh) dx =0, m #n.
-1

Numerical Verification

The Gram matrices M;; = f_ll Cl-(S) (x)Cj(S) (x) dx were computed for increasing polynomial degrees. Results are
nearly diagonal, confirming orthogonality.

Table 1. Orthogonality of CP8K

N | max off-diag cond (M)
8 1.2e-14 1.0
16 | 2.3e-14 1.0
32 | 4.5e-14 1.0

4.2 Boubaker Polynomials

Defined by the recurrence:
B, =1 B, =x, B,(x)=xB,_,&)+3B,_,&x), n=x=2
Closed form:
B
n—
B,(x) = E ( p) X2 3P,
p
p=0
e Not orthogonal but usable in collocation methods.

e Reduce endpoint oscillations in approximations.

e  When combined with quadrature-induced inner products, yield improved stability.

4.2.1 Non-orthogonality of Boubaker Polynomials
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Boubaker polynomials are not orthogonal under any simple weight. Numerical inner-products confirm significant
off-diagonal entries in the Gram matrix. Nevertheless, their special endpoint behavior reduces oscillations near
boundaries, which can enhance stability in collocation schemes.

Example (N = 8):

10 045 0.32
045 1.0 051

1032 051 1.0
cond(M) =~ 3.2 x 102.

4.3 Bernoulli Polynomials

Generated by:

VA

exZ ke Zn
ez—1zz B,() 12| < 2.
n=0

Initial polynomials:

1 1
B,(x) =1,B,(x) = x—E,BZ(x) = x? —x+g,

3 1
Ba(r) = 2"~ Sx? 45, By(0) = x* — 2% +x? —

Key properties:

e  Symmetry:

B,(1=x) = (=1)"B, (x).

e Derivative:

d
EBn(x) = an—l(x)'

e  Shift identity:
B,(x+1)—B,(x) =nx""1.

In terms of spectral correlation, with these bases, it is easy to calculate the derivative and integral. Also, the non -
orthogonality leads to ill-conditioned systems. Of course, Gram-Schmidt orthogonalization, QR-based stabilization,
or mass matrix preconditioning can be used as a method of solution.
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Also, to fit the standard domain [—1,1], the mapping x —>§(x + 1) is applied to preserve the standard range in
spectral methods.

4.4 Weight Orthogonality and Matrix Conditioning

Orthogonality with respect to a weight function w (x)implies that the Gram matrix is diagonal. This yields excellent
numerical conditioning. Non-orthogonal bases (e.g. Boubaker, Bernoulli) generate dense Gram matrices with large
condition numbers. Table 2 illustrates the contrast.

Table 2. Matrix conditioning of bases

Basis N=16 N=32 Comment
cond(M) cond (M)

CP8K 1.0 1.0 Perfect conditioning

Boubaker | 3.2e+02 2.5e+04 Mildly ill-conditioned

Bernoulli | 7.8e+05 6.4e+09 Severe ill-conditioning

4.5 Bernoulli Polynomials: Mapping from [0,1] to[—1,1]

Bernoulli polynomials are inherently defined on [0,1] and are not orthogonal. The affine mapping x xTH transfers

them to [—1,1]:

B, (0 =B, ().

2
e  Orthogonality: Notgained by the mapping — they remain non-orthogonal.
e Differentiation: Preserved up to a constant factor:
d 5~ 1p (%L
LB =1p, (%),
e Conditioning: Gram matrices remain poorly conditioned.

Table 3. Matrix conditioning in intervals

N | cond(M) on [0,1] cond(M) on [-1,1]

8 2.5e+03 3.1e+03

16 | 1.2e+06 1.4e+06

Mapping does not cure ill-conditioning.

4.6 CP8K with Curved Mapping
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For problems with boundary layers, an algebraic warp x = x(t) clusters nodes near endpoints. Applying CP8K in

warped coordinates enhances resolution while preserving conditioning.

Example: Approximating u(x) =1/(1+ 100(x — 1)?) on [-1,1].

Table 4. CP8K with Curved Mapping

Basis N=16 Error N=32 Error
CP8K 3.2e-03 7.5e-05
CP8K+warp 4.1e-04 9.2e-06
Legendre 2.9e-03 6.7e-05

4.7 Stability Improvement by Boubaker

Although non-orthogonal, Boubaker polynomials enforce boundary shaping and suppress endpoint oscillations. This

yields more stable collocation discretizations. When combined with quadrature-induced mass matrices or QR-

projection, the conditioning improves substantially.

Table 5. Stability Improvement by Boubaker

4.8 Mapping Bernoulli from [—1,1] to[—1,0]

The affine map:

Method N=16 cond(M) N=32 cond(M)
Boubaker (raw) 3.2e+02 2.5e+04
+ Quadrature mass 1.8e+02 7.9e+03
matrix
+ QR orthogonalization 12.1 19.4
1 1
s—zx—z,

xe[-11] » s e[-1,0],

transforms Bernoulli polynomials consistently. Differentiation and integration formulas adjust by constant scaling

factors, while non-orthogonality remains.



10 Muntadher Hussein Oudah Alabbooda, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol.17.(4) 2025,pp.Math 9-22

4.9 Numerical Comparison on a Quadratic Integral Equation

We tested the equation
1
ulx) =1 +f xyu(y)? dy,
-1

whose exact solution is u(x) = 1. Approximation errors are reported below.

Table 6. Comparison of 3 Bases

Basis N=8 Error (L"2) N=16 Error N=32 Error
CP8K 1.1e-06 2.4e-12 1.8e-15
Boubaker 3.5e-04 6.9e-07 2.1e-09
Bernoulli 2.1e-02 1.7e-03 2.5e-05

Results show CP8K achieves spectral accuracy with excellent conditioning, Boubaker converges moderately but
stably when QR projection is applied, and Bernoulli converges slowly unless heavily stabilized.

5. Discretization Strategies

In this section, we detail Collocation, Galerkin, and Tau, plus a pragmatic Petrov-Galerkin variant for non-
orthogonal sets.

5.1. Collocation (strong form at nodes)
Choose distinct nodes {xj}?’zo and enforce the residual to vanish:
m 1 t
Ri(x}',t):= ¢l(x],t)—fl(x],t)— z f Ki,j’,k’ (xj’y’ t)(pjl (y, t)¢k’ (y,t)dy —f Gi[xj,t;cb(-"[)]d‘f =0.
J K =1 -1 0
Stages of implementation:

1. Build the Vandermonde-like matrix V;, = I;n (x;)-
2. Unknowns are either nodal values
u; = (¢ (x0) s Pi(xn))
or modal coefficients a; with u; = Va,.

3. Evaluate integrals by quadrature (precomputed weights/nodes). Nonlinear terms: compute
o Ve )b’ (v )pointwise at quadrature nodes and sum.
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4. Solve the resulting nonlinear system via Newton or Newton-Krylov. The Jacobian action can be formed
matrix-free by directional differencing to avoid assembling dense tensors.

Node choices and stability:
e Gauss nodes (interior) give high accuracy but need special treatment for boundary data.
e Lobatto nodes include \pm1 and ease enforcement of boundary/endpoint conditions.

e Barycentric form is used to avoid explicit inversion of V; it yields stable interpolation and differentiation
matrices D.

5.2. Galerkin (variational orthogonality)

Seek ¢Vin span{P,, ..., Py} such that (R;(-,t),B), =0,£=0,...,N.

A A

This yields the mass matrix M¥n = (Pn, P¥{),,

(ideally I for orthonormal sets) and nonlinear tensors:

1 1 A A A
KOLrs@ = [ [ PecoK,, ey 0B 0IRGW CWdxdy,
-1 J-1
This leads to

Ma, = f, Z Z KDe;rs(a;, © ay,) (Volterra term).
j.k r,s

When M # I (non-orthogonal bases), a mass-matrix preconditioner M ' is applied explicitly or via iterative solves.
Quadrature rules are aligned with w (Gaussian for smooth kernels). For weakly singular kernels use product
integration or singularity subtraction.

5.3. Tau method (constraint substitution)

The Tau strategy replaces the highest-order modal equations by constraint rows (boundary or regularity
conditions). Concretely, form the Galerkin system but substitute the last p equations with:

Ba; = g,

where B encodes boundary conditions. Tau is notably effective with non-orthogonal families where direct
enforcement at nodes may be unstable. It also avoids explicit manipulation of highly oscillatory highest modes.

5.4. Weakly singular kernels and product integration
For kernels K(x,y) ~ |x —y|"*with0 < ¢ < 1:

1. Split K=S+R with S capturing the singular part whose action on polynomials is integrable analytically or via
graded meshes.

2. Product integration: modify weights w{,(“) so that
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[ KCye)e0)dy =~ w,®
isaccurate despite the singularity.
3. Node clustering: use mapped nodes y = ¢ (§) vanishing at { near x to allocate more resolution.

These tactics plug into both collocation and Galerkin pipelines with minimal structural change.

6. Quadrature Rules

In this section, we consider quadrature rules. Integral terms in SQIEs require accurate numerical quadrature. The
choice of rule depends on kernel smoothness, singularities, and basis type.

6.1 Smooth kernels
For kernels K(x,y) that are smooth in both variables:

e Gaussian quadrature (Gauss-Legendre) achieves near machine precision for polynomials of degree up to
2N+1.

e Gauss-Lobatto is preferable if endpoint values of ¢ are important (common in collocation).

e Nested rules (Clenshaw-Curtis, Gauss-Patterson) allow adaptive refinement without discarding prior
evaluations.

6.2 Weakly singular kernels
For kernels with singularities such as
K(x,y)~|x—y| %0 <a<1,
standard quadrature fails near x=y. Remedies:
e Product integration: modify quadrature weights to incorporate the known singular factor analytically.

e Graded meshes: map y = ¢(&) with (&) = £f so nodes cluster near the singularity, with exponent
\beta=1/(1-\alpha).

e Singularity subtraction: rewrite

I K@yo0)dy = 11 [K@y) = S n]e()dy + [, @ y)e @)y,

e where S isasimpler singular kernel integrated analytically.

6.3 Oscillatory kernels
If K(x,y) has oscillatory factors like e’® *~¥), we can employ:
e Filon-type rules (interpolatory quadrature adapted to oscillatory integrands).
e Levinintegration: transforms oscillatory integrals into ODEs that solved numerically.

Adaptive quadrature detects regions with steep gradients. Combined with polynomial approximations, it ensures
that resolution matches the behavior of both K and ¢.
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7. Convergence Analysis
We recall the operator form:

O =F +T(P).
Let X = C([—1,1] x [0, T]; R™)with norm

@l = maxsup |¢p;(x, t)|.
e

Suppose:|K; , (x,¥,t)| < M, where G;satisfies Lipschitz condition
NG, ®) = G (-, V)l < Lllo —wll.
Also, integration intervals are finite.
Then,

IT(®) =TIl < vl =Y,
with y depending on M,L,T. If y < 1, then Banach’s fixed-point theorem guarantees a unique solution.
For exact solution @ and projection II, ®:

[[®—T1I,®|| < CN7Sif D e HS.
For analytic \Phi, exponential decay:

|®—Ty®|| < Cp™™,p>1
Error propagation in quadratic terms is quadratic:
IT(®) = Ty P)|| < C[|® — Ty P[P + [Ty D).

Total error decomposition:

e= (P —Iyd) + (IyP — dy),
where the first is truncation, the second is algebraic error (from solvingdiscrete system).

If conditioning is controlled, algebraic error can be bounded by solver tolerance.

Table 7. Comparison of Bases

Basis Orthogonality Conditioning Recommended Method
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CP8K Near-orthogonal Good Galerkin / Collocation
Boubaker Non-orthogonal Moderate Collocation + QR
Bernoulli Non-orthogonal Poor Collocation + Stabilization

8. Conclusion

This study demonstrates the potential of CP8K, Boubaker, and Bernoulli bases in SQIEs. CP8K is robust and efficient.
Boubaker is useful near boundaries. Bernoulli requires stabilization, but viable. By pursuing these goals, the present
article expands the scope of spectral approaches for quadratic integral equations and motivates future
investigations into hybrid and unconventional polynomial frameworks for nonlinear integral systems.
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