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A B S T R A C T 

The aim of this paper, is to address important issues in smooth minimax optimization by creating 
fast algorithms that can be used in strongly convex-concave and nonconvex-concave situations. 
For the strongly convex-concave scenario, a new approach was presented that cleverly combined 
the momentum of Nesterov's accelerated gradient descent (AGD) with the stability of the Mirror-

Prox method. This hybrid technique significantly outperformed the previous 𝑶 (
𝟏

𝒌
) benchmark, 

achieving a near-optimal convergence rate of Õ(
𝟏

𝒌𝟐
) . For complicated nonconvex-concave 

problems, an imprecise proximal point framework was created, which greatly outperformed the 

earlier 𝑶(
𝟏

𝒌
𝟏
𝟓

) result with a stationary point convergence rate of Õ(𝟏/𝒌
𝟏

𝟑). This framework improved 

efficiency in high-dimensional settings by producing a rate of 𝑶((𝒎
𝟏

𝟑 log m)/𝒌
𝟏

𝟑) when applied to 
finite-sum problems. The adoption of adaptive error-control approaches to handle nonconvexity 
and the successful integration of acceleration techniques were identified as the primary 
advancements. The additions offer useful advantages for applications such as adversarial training, 
game equilibrium computing, and robust learning systems, and they successfully fill important 
theoretical gaps in minimax optimization. Extensive analyses demonstrated how well acceleration 
tactics were incorporated with fundamental issue features, resulting in enhanced approaches for 
intricate optimization scenarios. 
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1. Introduction  

Minimax optimization, expressed as (𝑚𝑖𝑛{𝑥 ∈ 𝑋} 𝑚𝑎𝑥{𝑦 ∈ 𝑌} 𝑔(𝑥, 𝑦)), lies at the core of significant challenges in 

machine learning, game theory, and robust decision-making. Although convex-concave problems have been 
extensively examined, the growing occurrence of structured nonconvex or strongly convex objectives in practical 
applications reveals the shortcomings of current algorithms [1]. Conventional techniques, such as Mirror-Prox, 

provide an optimal (𝑂̃(
1

𝑘
)) convergence rate for convex-concave scenarios but struggle when it comes to leveraging 

strong convexity or addressing nonconvexity without compromising efficiency. Previous efforts to enhance 
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convergence in strongly convex-concave situations, frequently depending on indirect smoothing or restrictive 
problem frameworks, have yielded subpar outcomes or excessively limited guarantees, resulting in a considerable 
disparity between theoretical capabilities and practical implementation [2]. This study contends that our proposed 
hybrid algorithms effectively close these gaps by merging acceleration strategies with problem-specific structures, 
offering improved convergence rates and wider applicability that transform the current landscape of minimax 
optimization [3]. For strongly convex-concave objectives, our method integrates the stability of Mirror-Prox with 
Nesterov's accelerated gradient descent (AGD) to attain a near-optimal primal-dual gap convergence rate of   

(Õ (
1

𝑘2)). This significant advancement addresses a persistent theoretical issue, removing dependence on limiting 

assumptions such as bilinear couplings and broadening the scope to various functional forms. In nonconvex-concave 
contexts, we propose an inexact proximal point framework that incorporates adaptive error management, ensuring 

a convergence rate towards a stationary point.(Õ(1/𝑘{
1

3
})), significantly surpassing the prior (𝑂 (

1

𝑘
{
1
5

}
)). For finite 

max-type problems, defined as (𝑚𝑖𝑛𝑥  𝑚𝑎𝑥{1 ≤ 𝑖 ≤ 𝑚} 𝑓𝑖(𝑥)), our analysis sharpens the rate to (Õ(𝑚{
1

3
} 𝑙𝑜𝑔 

𝑚

𝑘
{
1
3

}
)), 

ensuring scalability in high-dimensional contexts. These advancements, driven by harmonizing AGD's momentum 
with proximal regularization and dynamically calibrating approximation errors, not only enhance theoretical 
understanding but also enable practical breakthroughs in adversarial training, equilibrium computation, and robust 
optimization[4]. We contend that these hybrid frameworks, by leveraging the synergy between problem geometry 
and algorithmic design, establish new performance benchmarks, making them indispensable for tackling 
contemporary optimization challenges. 

This study examines three minimax optimization classes under the assumption that the function 𝑔(𝑥, 𝑦) is L-smooth 
(i.e., has Lipschitz-continuous gradients) and 𝑔(𝑥,⋅) is concave for all 𝑥 ∈ 𝑋. These classes—convex-concave, 
strongly convex-concave, and nonconvex-concave—are assessed using distinct optimality metrics, as detailed in 
Table 1.  

For convex-concave problems, the primal-dual gap achieves the optimal rate of 𝑂(𝑘−1), matching the theoretical 
lower bound 𝛺(𝑘−1). In the strongly convex-concave regime, our proposed algorithm, Dual Implicit Accelerated 
Gradient (DIAG), integrates Mirror-Prox stability with Nesterov's accelerated gradient descent (AGD), yielding a 
near-optimal rate of 𝑂~(𝑘−2), improving over the prior 𝑂(𝑘−1) and aligning with the 𝛺(𝑘−2) lower bound. For 
nonconvex-concave problems, we focus on finding approximate first-order stationary points (FOSPs), achieving a 

rate of 𝑂~(𝑘−
1

3)[5]. 

While classical minimax theory focuses on convex-concave settings, many real-world applications, such as 
adversarial training, game-theoretic equilibria, and non-decomposable loss optimization—involve nonconvex-
concave structures, where 𝑔(⋅, 𝑦) is nonconvex for fixed 𝑦 ∈ 𝑌, but 𝑔(𝑥,⋅) remains concave for all x. This class 
includes finite-sum problems (e.g., min

𝑥
𝑚𝑎𝑥
𝑦∈𝑌

∑ 𝑓𝑖(𝑥, 𝑦)𝑖 ) and constrained nonconvex tasks. Global optimality is often 

NP-hard due to nonconvexity, so we target approximate FOSPs, consistent with recent optimization literature. 

We propose a novel algorithm for smooth nonconvex-concave minimax problems, utilizing an inexact proximal 
point framework applied to 𝑓(𝑥): = max

𝑦∈𝑌
𝑔(𝑥, 𝑦). Nonconvexity in 𝑔(⋅, 𝑦) is addressed by regularizing each proximal 

subproblem, min
𝑥

𝑓𝜆(𝑥), where 𝑓𝜆(𝑥): = 𝑓(𝑥) +
𝜆

2
∥ 𝑥 − 𝑥𝑘 ∥2, with λ>0. This induces a strongly convex-concave 

substructure, enabling efficient solvers adapted from strongly convex settings. Iterative subproblem solutions yield 

an iteration complexity of 𝑂~(𝑘−
1

3), improving over the prior 𝑂(𝑘−
1

5).  

Table 1: Convergence Rates for Minimax Problem Classes 

Problem Class Optimality Notion Previous SOTA Our Results Lower Bound 

Convex-Concave Primal-dual gap 𝑶(𝒌−𝟏)  𝑶(𝒌−𝟏) 𝜴(𝒌−𝟏) 
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Strongly Convex-Concave Primal-dual gap 𝑶(𝒌−𝟏) 𝑶~(𝒌−𝟐) 𝜴(𝒌−𝟐) 

Nonconvex-Concave Approx. Stationary Point 𝑶(𝒌−
𝟏

𝟓) 𝑶~(𝒌−
𝟏

𝟑) Unknown 

Finite-Sum Nonconvex Approx. Stationary Point 𝑶(
𝒎𝟏

𝟒𝒌−
𝟏

𝟒

) 𝑶~(𝒎
𝟏

𝟑𝒍𝒐𝒈 𝒎 ⋅ 𝒌−
𝟏

𝟑) Unknown 

This table summarizes progress across problem classes, emphasizing improved convergence and alignment with 

theoretical limits, finite-sum problems achieve 𝑂~(𝑚
1

3𝑙𝑜𝑔 𝑚 ⋅ 𝑘−
1

3) gradient complexity, strongly convex-concave 

settings attain optimal 𝑂~(𝑘−2), and nonconvex-concave cases reach 𝑂~ (𝑘−
1

3), aligning with recent advances. 

Enhanced stationarity criteria ensure robust convergence beyond traditional variational approaches, with potential 
extensions to stochastic and distributed settings[7]. 

 

2.  Foundations of Notation and Preliminaries for Minimax Optimization 

This section lays the mathematical groundwork and conceptual framework for analyzing minimax optimization 
problems. The notation, definitions, and theoretical preliminaries are structured to support the development of 
advanced hybrid algorithms in subsequent sections, ensuring consistency with contemporary optimization 
research[7,8]. 

2.1 Notation and Definitions: 
We adopt the following notation and asymptotic conventions throughout this work. Let ℝ denote the real line and 
ℝp represent p-dimensional Euclidean space. The norm ∥⋅∥ is context-specific, typically the Euclidean (ℓ2) norm for 
vectors unless otherwise stated. For a closed convex set ℭ ⊆  ℝp, the Euclidean projection operator is defined as 
Πℭ(x)  =  arg min

{x′∈ ℭ}
∥ x −  x′ ∥ . For a differentiable function g(x, y), gradients with respect to x ∈  ℭ and y ∈  ℭ are 

denoted ∇x g(x, y) and ∇y g(x, y), respectively. Partial derivatives extend to higher orders (e. g. , ∇xx2 g(x, y)) when 

smoothness assumptions apply. 

T(x)  =  O(S(x)) if lim sup{x → ∞} |
T(x)

S(x)
|  <  ∞. 

T(x)  =  Θ(S(x)) if T(x)  =  O(S(x)) and S(x)  =  O(T(x)). 

T(x)  =  Õ(S(x)) if T(x)  =  O(S(x)  ⋅ poly(log x)), where poly(log x) is a polylogarithmic factor, aligning with 
complexity analyses in recent minimax studies. 

For stochastic settings, we use E[⋅] to denote expectation over randomness, consistent with variance-reduced 
methods. 

 

2.2 Fundamentals of Minimax Optimization 

We study minimax problems of the form: 

min
{𝑥 ∈ ℳ}

𝑚𝑎𝑥
{𝑦 ∈ ℳ}

𝑔(𝑥, 𝑦) , 

where g(x, y) is a smooth function. A key assumption is the L-smoothness of 𝑔(𝑥, 𝑦), defined as: 
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𝑚𝑎𝑥 { ∥ 𝛻𝑥 𝑔(𝑥, 𝑦)  −  𝛻𝑥  𝑔(𝑥′, 𝑦′) ∥, ∥ 𝛻𝑦 𝑔(𝑥, 𝑦)  −  𝛻𝑦 𝑔(𝑥′, 𝑦′) ∥ }  ≤  𝐿 (∥ 𝑥 −  𝑥′ ∥  + ∥ 𝑦 −  𝑦′ ∥), 

for all 𝑥, 𝑥′ ∈  ℳ, 𝑦, 𝑦′ ∈  ℳ. We assume 𝑔(𝑥,⋅) is concave for all 𝑥 ∈  ℳ, while the convexity of g(⋅, y) with respect 
to x determines the problem class. 

2.2.1 Convex-Concave Setting 

When 𝑔(·, 𝑦) is convex for all y ∈ M, Sion's minimax theorem guarantees equivalence of primal and dual problems 
under compactness of M: 

𝑚𝑎𝑥 𝑦 ∈ 𝑀 𝑚𝑖𝑛 𝑥 ∈ 𝑀 𝑔(𝑥, 𝑦)  =  𝑚𝑖𝑛 𝑥 ∈ 𝑀 𝑚𝑎𝑥 𝑦 ∈ 𝑀 𝑔(𝑥, 𝑦). 

An optimal solution (x*, y*) satisfies: 

min
𝑥∈𝑀

𝑔(𝑥, 𝑦 ∗) =  𝑔(𝑥 ∗, 𝑦 ∗) = max
𝑦∈𝑀

𝑔(𝑥 ∗, 𝑦). 

Definition: Primal-Dual Gap. For an approximate solution (x̂, ŷ), convergence is measured by the primal-dual gap: 

max
 𝑦∈𝑀

𝑔(𝑥̂, 𝑦) − min
𝑥∈𝑀

𝑔(𝑥, ŷ) ≤  𝜀. 

A pair (x̂, ŷ) is an ε-primal-dual pair if this inequality holds, aligning with metrics used in recent convex-concave 
analyses. 

2.2.2 Nonconvex-Concave Setting 

When 𝑔(·, 𝑦) is nonconvex, global optimality is often intractable due to NP-hard substructures. The minimax 
theorem does not apply, and the primal-dual gap is inadequate. Instead, we analyze stationarity for the composite 
function 𝑓(𝑥) = max

 𝑦∈𝑌
𝑔(𝑥, 𝑦) , which inherits regularity from 𝑔(𝑥, 𝑦). 

Definition: Weak Convexity and Stationarity. A function f(x) is L-weakly convex if, for all 𝑥, 𝑥′ ∈  𝑋 𝑎𝑛𝑑 𝑢𝑥  ∈
 𝜕𝑓(𝑥): 

𝑓(𝑥′) ≥  𝑓(𝑥) +  〈𝑢𝑥, 𝑥′ −  𝑥〉 −
𝐿

2
 ‖𝑥′ −  𝑥‖2. 

For nonsmooth f(x), the Fréchet subdifferential generalizes gradients: 

𝜕𝑓(𝑥)  =  {𝑢 |lim 𝑖𝑛𝑓{ 𝑥′→ 𝑥 } (𝑓(𝑥′)  −  𝑓(𝑥)  −  〈𝑢, 𝑥′ −  𝑥〉) / ‖𝑥′ −  𝑥‖  ≥  0}. 

A point x* is a first-order stationary point (FOSP) if 0 ∈  𝜕𝑓(𝑥 ∗). Approximate stationarity is defined via the Moreau 
envelope: 

𝑓𝜆(𝑥)  =  𝑚𝑖𝑛{ 𝑥′} {𝑓(𝑥′) +
1

2𝜆
 ‖𝑥 −  𝑥′‖2}. 

An ε-FOSP satisfies ‖𝛻𝑓
{

1

2𝐿
}
(𝑥 ∗)‖  ≤  𝜀, ensuring proximity to a true FOSP, consistent with 2025 nonconvex 

optimization standards. 

2.2.3 Stationarity Hierarchy 

Our FOSP definition is stricter than prior notions (e.g., variational inequality-based stationarity), subsuming weaker 
criteria while enabling robust convergence guarantees. An ε-FOSP under our definition implies stationarity under 
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weaker metrics but not vice versa, aligning with recent analyses of nonconvex-concave problems. This hierarchy 
supports the development of algorithms with enhanced theoretical and practical performance, particularly in 
applications like adversarial training and game equilibria. 

3. Algorithmic Advances in Minimax Optimization 

Our hybrid algorithms leverage accelerated gradient methods and proximal point techniques to achieve enhanced 
convergence rates across minimax problem classes. For nonconvex-concave settings, we compute ε-first-order 

stationary points (FOSPs) at a rate of Õ (𝑘−
1

3), improving over the prior 𝑂 (
𝑘−1

5
) and aligning with recent variance-

reduced and smoothing-based methods. In strongly convex-concave settings, our framework achieves the near-
optimal rate of Õ(𝑘−2), surpassing the standard 𝑂(𝑘−1) and matching theoretical lower bounds. These 
advancements integrate problem structure, stationarity definitions, and algorithmic design, providing a robust 
foundation for modern minimax optimization, including applications in adversarial training and distributed settings. 

3.2  Mirror-Prox and Hybrid Algorithmic Innovations 

The Mirror-Prox algorithm, a cornerstone for convex-concave minimax problems, achieves an optimal 𝑂(𝑘−1) 
primal-dual gap convergence rate. Its Conceptual Mirror-Prox (CMP) framework enhances stability over gradient 
descent-ascent (GDA) by using implicit updates. In the Euclidean setting (without projections onto X and Y), the CMP 
update rule is: 

(𝑥𝑘+1, 𝑦𝑘+1) =  (𝑥𝑘, 𝑦𝑘) +  𝛽−1 (−𝛻𝑥𝑔(𝑥𝑘+1, 𝑦𝑘+1), 𝛻𝑦𝑔(𝑥𝑘+1, 𝑦𝑘+1)), 

where gradients are evaluated at the future iterate (𝑥𝑘+1, 𝑦𝑘+1), reducing oscillatory behavior for L-smooth 
objectives g(x, y)[14]. 

3.2.1 Implementation via Contraction Mapping 

Starting from (𝑥𝑘 , 𝑦𝑘), CMP initializes (𝑥0
𝑘 , 𝑦0

𝑘) =  (𝑥𝑘, 𝑦𝑘). For step size 𝛽 <
1

𝐿
, the iterative scheme: 

(𝑥{𝑖+1}
𝑘 , 𝑦{𝑖+1}

𝑘 ) =  (𝑥𝑘, 𝑦𝑘) + 𝛽−1 (−𝛻𝑥𝑔(𝑥𝑖
𝑘, 𝑦𝑖

𝑘), 𝛻𝑦𝑔(𝑥𝑖
𝑘, 𝑦𝑖

𝑘)), 

forms a contraction mapping, converging to (𝑥𝑘+1, 𝑦𝑘+1). Recent analyses show that 𝑂 (log (
1

𝜀
)) iterations suffice for 

ε-precision, with practical implementations requiring as few as two iterations. 

3.2.2 Convergence Analysis 

CMP ensures the inequality: 

𝑔(𝑥𝑘+1, 𝑦) −  𝑔(𝑥, 𝑦𝑘+1) ≤
2

𝛽
( ‖𝑥 − 𝑥𝑘‖2 −  ‖𝑥 −  𝑥𝑘+1‖2 + ‖𝑦 − 𝑦𝑘‖2 − ‖𝑦 − 𝑦𝑘+1‖2), 

for all 𝑥 ∈  𝑋, 𝑦 ∈  𝑌. Summing over k iterations yields the 𝑂(𝑘−1) primal-dual gap rate. While optimal for convex-
concave problems, Mirror-Prox is less effective in structured settings like strongly convex-concave or nonconvex-
concave scenarios. 

 

4. Strongly Convex-Concave Minimax Optimization 

We consider minimax problems where 𝑋 =  ℝ𝑝, 𝑌 ⊂  ℝ𝑞  is a convex compact set with diameter 𝐷𝑌  =
 max _{𝑦, 𝑦′ ∈  𝑌} ‖𝑦 −  𝑦′‖, 𝑔(𝑥,·) is concave, 𝑔(·, 𝑦) is σ-strongly convex (0 <  𝜎 ≤  𝐿), and g(x, y) is L-smooth. 
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The goal is to find an ε-primal-dual pair (x̂, ŷ), ensuring 𝑓(𝑥̂) −  𝑓 ∗ ≤  𝜀, where 𝑓(𝑥) = max
{𝑦 ∈ 𝑌}

𝑔(𝑥, 𝑦) and 𝑓 ∗ =

min
𝑥

𝑓(𝑥) >  −∞. By Sion's minimax theorem, strong convexity-concavity ensures: 

𝑚𝑖𝑛{𝑥 ∈ 𝑋}  𝑚𝑎𝑥{𝑦 ∈ 𝑌} 𝑔(𝑥, 𝑦)  =  𝑚𝑎𝑥{𝑦 ∈ 𝑌} 𝑚𝑖𝑛{𝑥 ∈ 𝑋} 𝑔(𝑥, 𝑦). 

A straightforward approach optimizes the dual function ℎ(𝑦) = min
𝑥

𝑔(𝑥, 𝑦), which is (𝐿 +
𝐿2

𝜎
) −smooth. Applying 

accelerated gradient descent (AGD) to h(y) yields ℎ(𝑦𝑘) −  ℎ(𝑦 ∗) =  𝑂(𝑘−2), with each iteration solving min
𝑥

𝑔(𝑥, 𝑦𝑘) 

in 𝑂 (log (
1

𝜀
)) steps due to strong convexity, resulting in an oracle complexity of Õ(𝑘−2). However, this does not 

guarantee an Õ(𝑘−2) primal-dual gap due to nonsmoothness in 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦 𝑔(𝑥, 𝑦). 

4.1  Practical Algorithm: DIAG 
 

Algorithm: Dual Implicit Accelerated Gradient (DIAG) 

Input: 𝑔, 𝐿, 𝜎, 𝐷𝑌 , 𝑥0, 𝑦0 , 𝐾, {𝜀𝑠𝑡𝑒𝑝
𝑘 }

{ 𝑘=1 }

𝐾
 

Output: 𝑥̄𝐾 , 𝑦𝐾  

Initialize 𝛽 ←
2

𝐿𝜎
, 𝑧0 ←  𝑦0. 

For 𝑘 =  0, 1, . . . , 𝐾 − 1: 

a. Set 𝜏𝑘 ←
2

𝑘+2
, 𝜂𝑘 ←

𝑘+1

2𝛽
, compute 𝑤𝑘 ←  (1 − 𝜏𝑘)𝑦𝑘 +  𝜏𝑘𝑧𝑘 . 

b. Compute (𝑥{𝑘+1}, 𝑦{𝑘+1}) ←  𝐼𝑚𝑝 − 𝑆𝑇𝐸𝑃(𝑔, 𝐿, 𝜎, 𝑥0, 𝑤𝑘 , 𝛽, 𝜀𝑠𝑡𝑒𝑝
𝑘+1). 

c. Update 𝑧{𝑘+1}  ←  𝛱𝑌(𝑧𝑘  +  𝜂𝑘 𝛻𝑦 𝑔(𝑥{𝑘+1}, 𝑤𝑘)), 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑥̄{𝑘+1}  ←  (
2

(𝑘+1)(𝑘+2)
) 𝛴{ 𝑖=1 }

{ 𝑘+1 } 𝑖 ⋅  𝑥𝑖 . 

Return 𝑥̄𝐾 , 𝑦𝐾 . 

Subroutine: Imp-STEP 
Input: 𝑔, 𝐿, 𝜎, 𝑥0, 𝑤, 𝛽, 𝜀𝑠𝑡𝑒𝑝 

Set 𝜀_𝑚𝑝 ←  (2𝜎/5𝐿) √(
2𝜀𝑠𝑡𝑒𝑝

𝐿
), 𝑅 ←  ⌈log2 (

2𝐷𝑌

𝜀𝑚𝑝
) ⌉, 𝜀𝑎𝑔𝑑  ←  (𝜎𝛽)/(32𝐿2 𝜀𝑚𝑝

2 ). 

Initialize 𝑦0  ←  𝑤. 
For r = 0, 1, ..., R: 
a. Compute 𝑥̂𝑟via AGD on 𝑔(·, 𝑦𝑟), ensuring 𝑔(𝑥̂𝑟 , 𝑦𝑟) ≤ min

𝑥
𝑔(𝑥, 𝑦𝑟) + 𝜀𝑎𝑔𝑑 . 

b. Update 𝑦{𝑟+1}  ←  𝛱𝑌(𝑤 +  𝛽−1 𝛻𝑦 𝑔(𝑥̂𝑟 , 𝑤)). 

Return 𝑥̂𝑅 , 𝑦{𝑅+1}. 

Examples 1: 

In strongly convex-concave minimax optimization, a key challenge is the potential discrepancy between 
convergence in the dual function and the primal-dual gap, often due to nonsmoothness in the primal. Consider the 
illustrative problem 𝑚𝑖𝑛{𝑥 ∈ ℝ} 𝑚𝑎𝑥{𝑦 ∈ [−1,1]} 𝑔(𝑥, 𝑦)  =  𝑥𝑦 + 𝑥2, where the primal function is 𝑓(𝑥)  =  𝑥2  +  |𝑥| and 

the dual function is ℎ(𝑦) =  −
𝑦2

4
. If the dual converges as ℎ(𝑦𝑘) −  ℎ(𝑦 ∗) =  𝛩(𝑘−2), then 𝑥𝑘  =

 𝑎𝑟𝑔 𝑚𝑖𝑛𝑥 𝑔(𝑥, 𝑦𝑘)  =  𝛩(𝑘−1), resulting in 𝑓(𝑥𝑘)  −  𝑓 ∗ =  𝛩(𝑘−1). This misalignment arises because arg 
𝑚𝑎𝑥𝑦  𝑔(𝑥, 𝑦) is nonsmooth, preventing direct translation of dual progress to primal-dual gap guarantees. 

To address this, we introduce the Conceptual Dual Implicit Accelerated Gradient (C-DIAG) algorithm, which 

leverages σ-strong convexity. The dual variable is defined as 𝑤𝑘  =  (1 −  𝜏𝑘)𝑦𝑘  +  𝜏𝑘  𝑧𝑘 , where 𝜏𝑘  =
2

𝑘+2
. We then 
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compute 𝑥{𝑘+1}  =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑥  𝑔(𝑥, 𝑦{𝑘+1}) and 𝑦{𝑘+1}  =  𝛱𝑌  (𝑤𝑘  +  𝛽−1 𝛻𝑦 𝑔(𝑥{𝑘+1}, 𝑤𝑘)), followed by updating 

𝑧{𝑘+1}  =  𝛱𝑌  (𝑧𝑘  +  𝜂𝑘 𝛻𝑦  𝑔(𝑥{𝑘+1}, 𝑤𝑘)) with 𝜂𝑘  =
𝑘+1

2𝛽
.  

While C-DIAG assumes exact solutions—which are impractical—approximate solvers yield O(log(1/ε)) iterations 
per subproblem. Convergence analysis via a potential function establishes an O(1/k) rate, which is enhanced to 

Õ (
1

𝑘2) in the practical Dual Implicit Accelerated Gradient (DIAG) variant. 

The Imp-STEP subroutine in DIAG iteratively refines solutions by applying Accelerated Gradient Descent (AGD) to 

the strongly convex component 𝑔(·, 𝑦𝑟), starting from an initial 𝑥0. It sets 𝜀𝑚𝑝 =
2𝜎

5𝐿
√

2𝜀𝑠𝑡𝑒𝑝

𝐿
, determines 𝑅 =

 ⌈log2(
2𝐷𝑌

𝜀𝑚𝑝
) ⌉, and computes 𝜀𝑎𝑔𝑑 =  

𝜎 𝛽

(32 𝐿2 𝜀𝑚𝑝
2 )

. For each round r, AGD produces x̂_r satisfying 𝑔(𝑥̂𝑟 , 𝑦𝑟) ≤

min
𝑥

𝑔(𝑥, 𝑦𝑟) +  𝜀𝑎𝑔𝑑 , followed by a projected gradient update for 𝑦{𝑟+1}. 

To evaluate performance, Prox-FDIAG (a proximal extension for nonconvex cases) and its adaptive variant were 
tested against a subgradient method on a synthetic finite-max problem: 𝑚𝑖𝑛{𝑥 ∈ ℝ2} 𝑓(𝑥)  =  𝑚𝑎𝑥{1 ≤ 𝑖 ≤ 9} 𝑓𝑖(𝑥), where 

𝑓_𝑖(𝑥)  =  𝑞{(−1,(𝑋𝑖
1,𝑋𝑖

2),𝑐𝑖)}(𝑥) and 𝑞{(𝑎,𝑏,𝑐)}(𝑥)  =  𝑎 ‖𝑥 −  𝑏‖2  +  𝑐. Parameters 𝑋𝑖
1, 𝑋𝑖

2, 𝑐𝑖  were randomly sampled to 

ensure each f_i is 1-smooth, making f weakly convex. Results, plotted as ‖(𝛻 𝜑
{

1

2𝐿
}
)(𝑥𝑘)‖ (where φ is the Moreau 

envelope) against gradient oracle calls on a log-log scale, demonstrate superior convergence for the proposed 
methods. 

 

k Sub-gradient Prox-FDIAG Adaptive Prox-FDIAG 

1 1.05e+00 1.03e+00 4.66e+05 

1 9.86e-01 9.70e-01 4.90e+05 

1 1.07e+00 9.47e-01 4.92e+05 

2 8.23e-01 5.25e-01 1.20e+05 

3 5.64e-01 3.62e-01 5.51e+04 

5 4.37e-01 2.15e-01 2.04e+04 

7 4.43e-01 1.34e-01 1.12e+04 

10 3.41e-01 9.76e-02 5.04e+03 

13 2.65e-01 7.90e-02 3.00e+03 

19 2.42e-01 5.69e-02 1.38e+03 

26 1.87e-01 3.70e-02 6.72e+02 

37 1.57e-01 2.66e-02 3.65e+02 

51 1.43e-01 1.79e-02 1.93e+02 
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71 9.80e-02 1.28e-02 1.12e+02 

100 8.42e-02 1.07e-02 4.95e+01 

138 8.05e-02 8.08e-03 2.67e+01 

193 6.50e-02 5.15e-03 1.34e+01 

268 6.30e-02 4.04e-03 6.57e+00 

372 4.73e-02 2.77e-03 3.83e+00 

517 3.82e-02 1.84e-03 1.94e+00 

719 4.32e-02 1.43e-03 1.01e+00 

1000 3.09e-02 1.13e-03 4.78e-01 

1389 2.70e-02 7.18e-04 2.78e-01 

1930 1.97e-02 5.87e-04 1.25e-01 

2682 1.83e-02 3.02e-04 7.16e-02 

3727 1.66e-02 2.87e-04 4.02e-02 

5179 1.24e-02 1.94e-04 1.77e-02 

7196 1.22e-02 1.36e-04 9.39e-03 

10000 9.42e-03 1.01e-04 5.02e-03 

13894 8.24e-03 6.14e-05 2.53e-03 

19306 6.78e-03 5.09e-05 1.24e-03 

26826 7.35e-03 3.84e-05 6.97e-04 

37275 5.17e-03 3.02e-05 3.41e-04 

51794 3.95e-03 1.85e-05 1.91e-04 

71968 4.05e-03 1.30e-05 9.22e-05 

100000 2.80e-03 9.61e-06 5.40e-05 

138949 2.74e-03 7.74e-06 2.49e-05 

193069 1.87e-03 5.32e-06 1.32e-05 
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268269 1.69e-03 3.57e-06 7.24e-06 

372759 1.67e-03 2.80e-06 3.38e-06 

517947 1.50e-03 1.95e-06 1.89e-06 

719685 1.20e-03 1.50e-06 1.03e-06 

1000000 9.89e-04 9.45e-07 4.61e-07 

1389495 8.23e-04 7.01e-07 2.61e-07 

1930697 6.21e-04 5.02e-07 1.36e-07 

2682695 5.68e-04 3.32e-07 7.22e-08 

3727593 4.95e-04 2.75e-07 3.38e-08 

5179474 4.88e-04 1.97e-07 1.74e-08 

7196856 3.86e-04 1.39e-07 9.91e-09 

10000000 2.65e-04 9.81e-08 5.07e-09 

methods' convergence is compared, displaying the stationarity measure ∥ (𝜵𝝋₁/₂𝑳)(𝒙ₖ) ∥ against the 
number of gradient oracle calls (k). 
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Discussion 
This study advances minimax optimization with two algorithms. For strongly convex-concave problems, the Dual 
Inexact Accelerated Gradient (DIAG) integrates Mirror-Prox stability and Nesterov’s acceleration, achieving a near-

optimal 𝑂̃(
1

𝑘2)  primal-dual convergence rate, improving the classical 𝑂̃(1/𝑘)  without restrictive assumptions like 

bilinear coupling. For nonconvex-concave settings, an inexact proximal point extension attains 𝑂̃(
1

𝑘
1
3

)  for stationary 

points, outperforming prior 𝑂̃(
1

𝑘
1
5

). Adaptive error-tolerance dynamically modifies the accuracy of approximations, 

thereby reducing the accumulation of gradient errors. Empirical evaluations conducted on synthetic problems 
reveal its superiority compared to current methods, preserving speed without the need for hyperparameter 
adjustments. The versatility of this framework is advantageous for adversarial training and game theory, providing 
strong solutions for intricate saddle-point geometries without the necessity of predefined parameters. By 
integrating acceleration techniques with structural characteristics, it improves practical applicability in situations 
that demand equilibrium analysis or distributed decision-making, establishing it as a fundamental resource for 
future investigations in robust optimization. 

Conclusion 
is study advances minimax optimization with two key contributions. For strongly convex-concave problems, the 
DIAG algorithm merges AGD and Mirror-Prox, achieving near-optimal, 𝑂̃(1/𝑘2) convergence—resolving 
acceleration-stability compatibility challenges. For nonconvex-concave settings, an inexact proximal point method 

attains 𝑂̃(
1

𝑘
1
3

), exceeding previous rates through adaptive error-tolerance strategies that mitigate nonconvex 

instability. Innovations encompass hybrid acceleration-stabilization, dynamic approximation criteria, and empirical 
validation against benchmarks. Future directions entail broadening methods to nonsmooth objectives, determining 
nonconvex lower bounds, and incorporating variance reduction or distributed protocols for enhanced scalability. 
These hybrid frameworks integrate acceleration with structural insights, providing effective and dependable tools 
for machine learning and decision-making challenges. 
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