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1. Introduction

ABSTRACT

The aim of this paper, is to address important issues in smooth minimax optimization by creating
fast algorithms that can be used in strongly convex-concave and nonconvex-concave situations.
For the strongly convex-concave scenario, a new approach was presented that cleverly combined
the momentum of Nesterov's accelerated gradient descent (AGD) with the stability of the Mirror-

Prox method. This hybrid technique significantly outperformed the previous O (i) benchmark,

. - ~ 1 .
achieving a near-optimal convergence rate of O(ﬁ). For complicated nonconvex-concave
problems, an imprecise proximal point framework was created, which greatly outperformed the

» 1
earlier 0(%) result with a stationary point convergence rate of O(1/k3). This framework improved
K5

efficiency in high-dimensional settings by producing a rate ofO((mé log m)/ké) when applied to
finite-sum problems. The adoption of adaptive error-control approaches to handle nonconvexity
and the successful integration of acceleration techniques were identified as the primary
advancements. The additions offer useful advantages for applications such as adversarial training,
game equilibrium computing, and robust learning systems, and they successfully fill important
theoretical gaps in minimax optimization. Extensive analyses demonstrated how well acceleration
tactics were incorporated with fundamental issue features, resulting in enhanced approaches for
intricate optimization scenarios.

MSC..

https://doi.org/ 10.29304/jqcsm.2025.17.42547

Minimax optimization, expressed as (ming e xy; maxgy eyy g(x,y)), lies at the core of significant challenges in
machine learning, game theory, and robust decision-making. Although convex-concave problems have been
extensively examined, the growing occurrence of structured nonconvex or strongly convex objectives in practical
applications reveals the shortcomings of current algorithms [1]. Conventional techniques, such as Mirror-Prox,
provide an optimal (0 (%)) convergence rate for convex-concave scenarios but struggle when it comes to leveraging

strong convexity or addressing nonconvexity without compromising efficiency. Previous efforts to enhance
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convergence in strongly convex-concave situations, frequently depending on indirect smoothing or restrictive
problem frameworks, have yielded subpar outcomes or excessively limited guarantees, resulting in a considerable
disparity between theoretical capabilities and practical implementation [2]. This study contends that our proposed
hybrid algorithms effectively close these gaps by merging acceleration strategies with problem-specific structures,
offering improved convergence rates and wider applicability that transform the current landscape of minimax
optimization [3]. For strongly convex-concave objectives, our method integrates the stability of Mirror-Prox with
Nesterov's accelerated gradient descent (AGD) to attain a near-optimal primal-dual gap convergence rate of

(() (%)) This significant advancement addresses a persistent theoretical issue, removing dependence on limiting

assumptions such as bilinear couplings and broadening the scope to various functional forms. In nonconvex-concave
contexts, we propose an inexact proximal point framework that incorporates adaptive error management, ensuring

~ 1
a convergence rate towards a stationary point. (O(l/k{S})), significantly surpassing the prior (0 (ﬁ)) For finite
k5.

max-type problems, defined as (min, maxg <;<m fi)), our analysis sharpens the rate to (()(m{}log {}))

ensuring scalability in high-dimensional contexts. These advancements, driven by harmonizing AGD's momentum
with proximal regularization and dynamically calibrating approximation errors, not only enhance theoretical
understanding but also enable practical breakthroughs in adversarial training, equilibrium computation, and robust
optimization[4]. We contend that these hybrid frameworks, by leveraging the synergy between problem geometry
and algorithmic design, establish new performance benchmarks, making them indispensable for tackling
contemporary optimization challenges.

This study examines three minimax optimization classes under the assumption that the function g(x, y) is L-smooth
(i.e., has Lipschitz-continuous gradients) and g(x,")is concave for all x € X. These classes—convex-concave,
strongly convex-concave, and nonconvex-concave—are assessed using distinct optimality metrics, as detailed in
Table 1.

For convex-concave problems, the primal-dual gap achieves the optimal rate of 0(k™1), matching the theoretical
lower bound 2(k™?1). In the strongly convex-concave regime, our proposed algorithm, Dual Implicit Accelerated
Gradient (DIAG), integrates Mirror-Prox stability with Nesterov's accelerated gradient descent (AGD), yielding a
near-optimal rate of 0~ (k~2), improving over the prior O(k™1) and aligning with the 2(k~2) lower bound. For
nonconvex-concave problems, we focus on finding approximate first-order stationary points (FOSPs), achieving a

rate of O~(k_§) [5].

While classical minimax theory focuses on convex-concave settings, many real-world applications, such as
adversarial training, game-theoretic equilibria, and non-decomposable loss optimization—involve nonconvex-
concave structures, where g(:,y)is nonconvex for fixed y € Y, but g(x,") remains concave for all x. This class
includes finite-sum problems (e.g., mxin r)r/lg}gc Y.i fi(x,¥)) and constrained nonconvex tasks. Global optimality is often

NP-hard due to nonconvexity, so we target approximate FOSPs, consistent with recent optimization literature.

We propose a novel algorithm for smooth nonconvex-concave minimax problems, utilizing an inexact proximal
point framework applied to f(x): = ma};g(x, ¥). Nonconvexity in g(:,y) is addressed by regularizing each proximal
y€E

subproblem, min fi(x), where fi(x):= f(x) + /—1 Il x — x* |12, with A>0. This induces a strongly convex-concave
substructure, enabllng efficient solvers adapted from strongly convex settings. Iterative subproblem solutions yield

an iteration complexity of 0~ (k™ 3) improving over the prior O (k™ 5)

Table 1: Convergence Rates for Minimax Problem Classes

Problem Class Optimality Notion Previous SOTA Our Results Lower Bound

Convex-Concave Primal-dual gap o(k™) o(k™) 2k
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Strongly Convex-Concave Primal-dual gap o(k™) 0~(k™?%) (k™)

Nonconvex-Concave Approx. Stationary Point 0(k'5) 0~(k™3) Unknown
! 1 1

Finite-Sum Nonconvex Approx. Stationary Point o(—yp 0~ (m3log m -k 3) Unknown

This table summarizes progress across problem classes emphasmng improved convergence and alignment with
theoretical limits, finite-sum problems achieve 0~ (m3log m-k~ 3) gradient complexity, strongly convex-concave

1
settings attain optimal 0~ (k~2), and nonconvex-concave cases reach 0~ (k 5), aligning with recent advances.

Enhanced stationarity criteria ensure robust convergence beyond traditional variational approaches, with potential
extensions to stochastic and distributed settings[7].

2. Foundations of Notation and Preliminaries for Minimax Optimization

This section lays the mathematical groundwork and conceptual framework for analyzing minimax optimization
problems. The notation, definitions, and theoretical preliminaries are structured to support the development of
advanced hybrid algorithms in subsequent sections, ensuring consistency with contemporary optimization
research([7,8].

2.1 Notation and Definitions:

We adopt the following notation and asymptotic conventions throughout this work. Let R denote the real line and
RP represent p-dimensional Euclidean space. The norm ||-|| is context-specific, typically the Euclidean (£,) norm for
vectors unless otherwise stated. For a closed convex set € © RP, the Euclidean projection operator is defined as
gy = arg {)r(peiré} Il x — x" Il For a differentiable function g(x, y), gradients with respecttox € Candy € € are

denoted Vy g(x,y) and Vy, g(x,y), respectively. Partial derivatives extend to higher orders (e.g., V.x2 g(x,y)) when
smoothness assumptions apply.

T(x)
T(x) = O(S(x)) iflim supg, , o0y | 7 560 | < o
T(x) = 0(S(x)) if T(x) = O(S(x)) and S(x) = O(T(x)).

T(x) = 0(S(x))if T(x) = 0(S(x) - poly(log x)), where poly(log x) is a polylogarithmic factor, aligning with
complexity analyses in recent minimax studies.

For stochastic settings, we use E[-] to denote expectation over randomness, consistent with variance-reduced
methods.

2.2 Fundamentals of Minimax Optimization
We study minimax problems of the form:

min max X,
(in g( y),

where g(x, y) is a smooth function. A key assumption is the L-smoothness of g(x, y), defined as:
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max {1 %, g(x,y) = Ve g,y )Y LIV g, y) — VB, g,y 1} < Lllx — X' 1 +1ly =y 1),

forallx,x’ € M,y,y' € M.Weassume g(x,") is concave for all x € M, while the convexity of g(-, y) with respect
to x determines the problem class.

2.2.1 Convex-Concave Setting

When g(-,y) is convex for all y € M, Sion's minimax theorem guarantees equivalence of primal and dual problems
under compactness of M:

maxy € Mminx € M g(x,y) = minx € Mmaxy € M g(x,y).
An optimal solution (x*, y*) satisfies:
ming(x,y ) = glx*y*) = r;g;(g(x ).
Definition: Primal-Dual Gap. For an approximate solution (%, §), convergence is measured by the primal-dual gap:
ryggg(f, y) —ming(x,y) < e.

A pair (%, §) is an e-primal-dual pair if this inequality holds, aligning with metrics used in recent convex-concave
analyses.

2.2.2 Nonconvex-Concave Setting

When g(+,y) is nonconvex, global optimality is often intractable due to NP-hard substructures. The minimax
theorem does not apply, and the primal-dual gap is inadequate. Instead, we analyze stationarity for the composite
function f(x) = max g(x,y) , which inherits regularity from g(x, y).

yE

Definition: Weak Convexity and Stationarity. A function f(x) is L-weakly convex if, for all x,x' € X and u, €

of (x):
’ ’ L ! 2
fE) 2z fO)+ (e x' = x) == llx" = x|
For nonsmooth f(x), the Fréchet subdifferential generalizes gradients:
of (x) = {ullim inf, .y F(x) — f(x) — wx' —x))/|Ix" — x| = 0}.

A point x* is a first-order stationary point (FOSP) if 0 € df (x *). Approximate stationarity is defined via the Moreau
envelope:

1
fi@) = ming (F() + 57 llx = %12,

An e-FOSP satisfies |||7f{i}(x *)|| < ¢, ensuring proximity to a true FOSP, consistent with 2025 nonconvex
2L

optimization standards.
2.2.3 Stationarity Hierarchy

Our FOSP definition is stricter than prior notions (e.g,, variational inequality-based stationarity), subsuming weaker
criteria while enabling robust convergence guarantees. An e-FOSP under our definition implies stationarity under
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weaker metrics but not vice versa, aligning with recent analyses of nonconvex-concave problems. This hierarchy
supports the development of algorithms with enhanced theoretical and practical performance, particularly in
applications like adversarial training and game equilibria.

3. Algorithmic Advances in Minimax Optimization

Our hybrid algorithms leverage accelerated gradient methods and proximal point techniques to achieve enhanced

convergence rates across minimax problem classes. For nonconvex-concave settings, we compute e-first-order
1

~ _1 -1
stationary points (FOSPs) at a rate of O (k 3), improving over the prior O (kT) and aligning with recent variance-

reduced and smoothing-based methods. In strongly convex-concave settings, our framework achieves the near-
optimal rate of O(k~2), surpassing the standard 0(k~') and matching theoretical lower bounds. These
advancements integrate problem structure, stationarity definitions, and algorithmic design, providing a robust
foundation for modern minimax optimization, including applications in adversarial training and distributed settings.

3.2 Mirror-Prox and Hybrid Algorithmic Innovations
The Mirror-Prox algorithm, a cornerstone for convex-concave minimax problems, achieves an optimal 0(k™1)
primal-dual gap convergence rate. Its Conceptual Mirror-Prox (CMP) framework enhances stability over gradient

descent-ascent (GDA) by using implicit updates. In the Euclidean setting (without projections onto X and Y), the CMP
update rule is:

(xk+1'yk+1) — (xk'yk) + B_l (_ng(xk+1‘yk+1)‘ Vyg(xk“,y"“)),

k+1
)

where gradients are evaluated at the future iterate (x y**1), reducing oscillatory behavior for L-smooth

objectives g(x, y)[14].

3.2.1 Implementation via Contraction Mapping
Starting from (x*, y*), CMP initializes (x&, y&) = (x*,y*). For step size < % the iterative scheme:

(el Van) = G5 + 7 (Vg (' vE), Bg (xEvE))

k+1
)

forms a contraction mapping, converging to (x**1, y**1), Recent analyses show that O (log (é)) iterations suffice for

€-precision, with practical implementations requiring as few as two iterations.
3.2.2 Convergence Analysis

CMP ensures the inequality:
k+1 k+1 2 k|2 k+1(|2 k|12 k+1(|2
9" y) — glx,y )SE(IIx—x 1= llx = 21"+ fly = ¥*I1° = lly = y*"I%),

forallx € X,y € Y.Summing over k iterations yields the 0(k™1) primal-dual gap rate. While optimal for convex-
concave problems, Mirror-Prox is less effective in structured settings like strongly convex-concave or nonconvex-
concave scenarios.

4. Strongly Convex-Concave Minimax Optimization

We consider minimax problems where X = RP,Y c RYisa convex compact set with diameter D, =
max _{y,y' € Y}|ly — ¥'|l, g(x,") is concave, g(-,y) is o-strongly convex (0 < ¢ < L), and g(x, y) is L-smooth.
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The goal is to find an e-primal-dual pair (%, §), ensuring f(%) — f * < &, where f(x) = {mg;(}g(x, y)and f * =
y

min f(x) > —oo. By Sion's minimax theorem, strong convexity-concavity ensures:
X

MiNy e x3 MAXy ey (X, Y) = Mmaxgy eyy Ming e xy 9(X, y).

2
A straightforward approach optimizes the dual function h(y) = min g(x, y), which is (L + L?) —smooth. Applying
X
accelerated gradient descent (AGD) to h(y) yields h(y,) — h(y x) = 0(k™2), with each iteration solving min g(x, y;)
X

in0 (log (E)) steps due to strong convexity, resulting in an oracle complexity of O(k~2). However, this does not

guarantee an O(k~2) primal-dual gap due to nonsmoothness in arg max, g(x,y).

4.1 Practical Algorithm: DIAG

Algorithm: Dual Implicit Accelerated Gradient (DIAG)

K
Input: g, L, o, Dy, X, Yo, K, {sftep}{kzl}

Output: XK' Yk

- 2
Initialize f « 7% < Yo

Fork = 0,1,..., K — 1:

a.Setty, « 2 Nk < s
! k k+2’ k 2B
k+1

b. Compute (x{k+1},y{k+1}) « Imp — STEP(g, L,0,%0, Wi, B, Estep )-

c. Update zg 41y < Iy(zx + Mk Vy g(Xger), Wie)), compute Xgeqy < (
Return X, yg.

,compute w, « (1 — T,)yr + T2

2 Nylk+1y.
(k+1)(k+2)) {i=1y t° Xi-

Subroutine: Imp-STEP
Input: g, L, g, x, W, 3, Estep

Setemp « (20/SL)VCEEL)LR < Tlog, () 1eaga « (oB)/(32L7 &3p).
mp

Initialize y, « w.

Forr=0,1,..,R:

a. Compute %,.via AGD on g(-,¥,), ensuring g(%,,y,) < ming(x,y,) + €qgq-

X
b. Update yg1q3 < Ily(w + B~ 1, g(&,, w)).
Return Xz, y(gr+1}-

Examples 1:

In strongly convex-concave minimax optimization, a key challenge is the potential discrepancy between

convergence in the dual function and the primal-dual gap, often due to nonsmoothness in the primal. Consider the

illustrative problem ming, ¢ gy maxy e -1y 9g(x,y) = xy + x%, where the primal function is f(x) = x? + |x| and
2

the dual functionis h(y) = — yT. If the dual converges as h(y,) — h(y x) = 0(k™%),thenx, =

arg min, g(x,y,) = O(k™1),resultingin f(x;) — f *= 0(k™1). This misalignment arises because arg

max, g(x,y) is nonsmooth, preventing direct translation of dual progress to primal-dual gap guarantees.

To address this, we introduce the Conceptual Dual Implicit Accelerated Gradient (C-DIAG) algorithm, which
leverages o-strong convexity. The dual variable is defined as w, = (1 — 7;)y, + Ty 2z, where, = é We then
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compute Xy 413 = arg miny, g(X, Yge+1y) and ygeiqy = Iy (wy, + gt V, 9(Xge+13 Wi)), followed by updating
. k+1
Zigry = Iy (i + MV 9(Xggesny Wi)) with g = ETR
While C-DIAG assumes exact solutions—which are impractical—approximate solvers yield O(log(1/¢)) iterations
per subproblem. Convergence analysis via a potential function establishes an 0(1/Kk) rate, which is enhanced to

0 (kiz) in the practical Dual Implicit Accelerated Gradient (DIAG) variant.

The Imp-STEP subroutine in DIAG iteratively refines solutions by applying Accelerated Gradient Descent (AGD) to

20 |[2&step

" . , determines R =

the strongly convex component g(+,¥,), starting from an initial x,. It sets &,,, =

__9B

(3212 e&p)’

min g(x,y,) + €q4q, followed by a projected gradient update for yg,, 3.
X

[log, (zﬂ) ], and computes g,44 = For each round r, AGD produces %_r satisfying g(%,, y,) <
mp

To evaluate performance, Prox-FDIAG (a proximal extension for nonconvex cases) and its adaptive variant were
tested against a subgradient method on a synthetic finite-max problem: ming, ¢ g2y f(x) = max( <; <9} fix), Where

fii(x) = Q{(_L(Xillxl?)'ci)}(x) and qapey(x) = allx — bl|* + c.Parameters X}, X7, c; were randomly sampled to
ensure each f_i is 1-smooth, making f weakly convex. Results, plotted as ||(V q){ 1 })(xk)ll (where ¢ is the Moreau
2L

envelope) against gradient oracle calls on a log-log scale, demonstrate superior convergence for the proposed
methods.

k Sub-gradient Prox-FDIAG Adaptive Prox-FDIAG
1 1.05e+00 1.03e+00 4.66e+05
1 9.86e-01 9.70e-01 4.90e+05
1 1.07e+00 9.47e-01 4.92e+05
2 8.23e-01 5.25e-01 1.20e+05
3 5.64e-01 3.62e-01 5.51e+04
5 4.37e-01 2.15e-01 2.04e+04
7 4.43e-01 1.34e-01 1.12e+04
10 3.41e-01 9.76e-02 5.04e+03
13 2.65e-01 7.90e-02 3.00e+03
19 2.42e-01 5.69e-02 1.38e+03
26 1.87e-01 3.70e-02 6.72e+02
37 1.57e-01 2.66e-02 3.65e+02

51 1.43e-01 1.79e-02 1.93e+02
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71 9.80e-02 1.28e-02 1.12e+02
100 8.42e-02 1.07e-02 4.95e+01
138 8.05e-02 8.08e-03 2.67e+01
193 6.50e-02 5.15e-03 1.34e+01
268 6.30e-02 4.04e-03 6.57e+00
372 4.73e-02 2.77e-03 3.83e+00
517 3.82e-02 1.84e-03 1.94e+00
719 4.32e-02 1.43e-03 1.01e+00
1000 3.09e-02 1.13e-03 4.78e-01
1389 2.70e-02 7.18e-04 2.78e-01
1930 1.97e-02 5.87e-04 1.25e-01
2682 1.83e-02 3.02e-04 7.16e-02
3727 1.66e-02 2.87e-04 4.02e-02
5179 1.24e-02 1.94e-04 1.77e-02
7196 1.22e-02 1.36e-04 9.39e-03
10000 9.42e-03 1.01e-04 5.02e-03
13894 8.24e-03 6.14e-05 2.53e-03
19306 6.78e-03 5.09e-05 1.24e-03
26826 7.35e-03 3.84e-05 6.97e-04
37275 5.17e-03 3.02e-05 3.41e-04
51794 3.95e-03 1.85e-05 1.91e-04
71968 4.05e-03 1.30e-05 9.22e-05
100000 2.80e-03 9.61e-06 5.40e-05
138949 2.74e-03 7.74e-06 2.49e-05

193069 1.87e-03 5.32e-06 1.32e-05
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268269 1.69e-03 3.57e-06 7.24e-06
372759 1.67e-03 2.80e-06 3.38e-06
517947 1.50e-03 1.95e-06 1.89e-06
719685 1.20e-03 1.50e-06 1.03e-06
1000000 9.89e-04 9.45e-07 4.61e-07
1389495  8.23e-04 7.01e-07 2.61e-07
1930697 6.21e-04 5.02e-07 1.36e-07
2682695 5.68e-04 3.32e-07 7.22e-08
3727593  4.95e-04 2.75e-07 3.38e-08
5179474  4.88e-04 1.97e-07 1.74e-08
7196856  3.86e-04 1.39e-07 9.91e-09
10000000 2.65e-04 9.81e-08 5.07e-09

methods’ convergence is compared, displaying the stationarity measure || (V¢,/,L)(xy) |l against the
number of gradient oracle calls (k).

Stationarity Measure IV 1/ 2){ %)

0.8

0.6

0.4

0.2

Convergence Comparison

—e— Algorithm 1
.\ —e— Algorithm 2
—e— Algorithm 3

Mumber of Gradient Oracle Calls (k)

10
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Discussion
This study advances minimax optimization with two algorithms. For strongly convex-concave problems, the Dual
Inexact Accelerated Gradient (DIAG) integrates Mirror-Prox stability and Nesterov’s acceleration, achieving a near-

optimal 0 (kiz) primal-dual convergence rate, improving the classical 0(1/k) without restrictive assumptions like

. . . . . . . LA .
bilinear coupling. For nonconvex-concave settings, an inexact proximal point extension attains O(—) for stationary
k3

points, outperforming prior (7(%). Adaptive error-tolerance dynamically modifies the accuracy of approximations,
k5

thereby reducing the accumulation of gradient errors. Empirical evaluations conducted on synthetic problems
reveal its superiority compared to current methods, preserving speed without the need for hyperparameter
adjustments. The versatility of this framework is advantageous for adversarial training and game theory, providing
strong solutions for intricate saddle-point geometries without the necessity of predefined parameters. By
integrating acceleration techniques with structural characteristics, it improves practical applicability in situations
that demand equilibrium analysis or distributed decision-making, establishing it as a fundamental resource for
future investigations in robust optimization.

Conclusion

is study advances minimax optimization with two key contributions. For strongly convex-concave problems, the
DIAG algorithm merges AGD and Mirror-Prox, achieving near-optimal, 0(1/k?) convergence—resolving
acceleration-stability compatibility challenges. For nonconvex-concave settings, an inexact proximal point method

attains 5(11), exceeding previous rates through adaptive error-tolerance strategies that mitigate nonconvex

k3
instability. Innovations encompass hybrid acceleration-stabilization, dynamic approximation criteria, and empirical
validation against benchmarks. Future directions entail broadening methods to nonsmooth objectives, determining
nonconvex lower bounds, and incorporating variance reduction or distributed protocols for enhanced scalability.
These hybrid frameworks integrate acceleration with structural insights, providing effective and dependable tools
for machine learning and decision-making challenges.
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