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A B S T R A C T 

Drones are increasingly being used in search and rescue operations due to their ease of use, 
wide coverage, and cost. Therefore, this research has faced challenges, including identifying 
human figures in aerial photographs, as these figures may be small and unclear, and are also 
affected by several factors, such as darkness or bad weather conditions, such as fog and dust, 
or because of debris resulting from disasters. One of the most important areas of research 
currently in vogue is the integration of drones with cloud computing systems and attackable 
devices. This integration leads to increased efficiency in emergency response. Furthermore, 

small, lightweight, and power-efficient embedded devices such as the Jetson Nano are 
powered by advanced portable AI systems that offer real-time analysis with the necessary 
precision and speed. This is an encouraging development in the field of application. In the 
field of computer vision, advancements have been made in detection models, such as the 
introduction of context enrichment modules to enhance the accuracy of small target 
detection. Efforts have also been made to create new databases, such as thermal imaging of 
partially occluded individuals, which contributes to filling a clear gap in available resources. 
In the field of multi-sensing, thermal and optical imaging are combined using transformer 
techniques to overcome the limitations of traditional convolutional networks, and acoustic 
sensing is used to identify human cries and characteristic signals in disaster environments. 
The novelty of these studies lies in the construction of new databases that support 
challenging rescue scenarios, the optimization of lightweight models to suit capacity-limited 
devices, and the potential for integrating drones with multiple sensing and communication 
channels (optical, thermal, acoustic, and wearable devices). These contributions also form the 
basis for developing practical frameworks that support future surveillance and search and 
rescue missions. 

https://doi.org/10.29304/jqcsm.2025.17.42549 

1. Introduction 

This section describes many parts, such as the problem background, limitations of traditional solutions 
and their causes, the proposed solution, and the scope and objective of the review. 
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1.1 Problem Background 

Recent years have witnessed a significant increase in the use of drones in search and rescue missions, as 
well as security operations, due to their efficiency in comprehensive aerial photography and the ability to 
access open and complex areas[1] . Despite these advantages, the task of detecting missing persons in 
drone images remains difficult due to the small size of the target in aerial images, the multiple shooting 
angles, and the height of the aircraft [2], [3]. Furthermore, some studies have addressed the fact that 
variations in lighting conditions and occlusion are an obstacle to the accuracy of traditional models.[4].  

1.2 Limitations of traditional solutions and their causes 

Manual inspection of aerial images is time-consuming and does not achieve real-time results [5], [6]. 
Classic methods based on manual features, such as SVM or HOG, are ineffective for crowded scenes and 
small targets. [6], [7], [8]. Because they are not designed to handle differences in elevation and spatial 
resolution, models based on convolutional neural networks (CNNs) have limited results.[9], [10]. 

1.3 Proposed Solution 

The integration of AI algorithms with autonomous aerial vehicles like drones to detect missing 
individuals in intricate surroundings is necessary. Drones, along with smart watches and bracelets, can 
augment the life-saving mechanism of the drones by sending out SOS signals and linking the wearer to 
monitoring systems, thus forming a hybrid network of drones and real-time data analysis of computer 
vision.  [10], [11]. 

1.4 Research gap  

Most previous studies addressed a specific problem or case, such as detecting people using drones using 
visual images, or detecting people using drones using thermal images. One of the studies may include the 
role of wearable devices in supporting search and rescue operations, but there is a very clear gap, which 
is the absence of building an integrated system that combines these cases, such as integrating detection 
using visual and thermal images together, in addition to wearable device data, to be processed between 
the edge and the cloud, and then tested in a realistic environment under different environmental 
conditions. 

1.5 Scope and Objective of the Review 

This review aims to analyze the latest research from 2020 to 2025 related to smart drone systems for 
search and rescue operations. This review focuses on: 

 Artificial intelligence techniques for detecting missing persons 

 Integration or linkage between drones and wearable devices 

 Future trends in developing hybrid models that combine visual and thermal data  

The scope involves an evaluation of the current models’ strengths and weaknesses, focusing on the gaps 
in the literature.  

2. Unmanned Aerial Vehicles (UAVs)  

One of the most important technologies of this era is the unmanned aerial vehicle, which is of great 
importance in search and rescue operations. It is also distinguished by its high ability to collect 
multimedia data in real time, in addition to its ability to reach locations of great danger, and also difficult 
for rescue teams to reach. 

 Quadcopters (Multirotor UAVs): This type is the most widely used in search and rescue 
research. It has advantages, including ease of vertical take-off and landing, and also the ability to 
fly in narrow and rugged areas[12] . 
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 Fixed-Wing UAVs: Fixed-wing aircraft capable of covering large areas quickly. They require a 
runway or launch/landing mechanism. They are useful for searching large areas such as 
deserts[13]. 

 Hybrid UAVs (VTOL Fixed-Wing): Hybrid drones combine the skills of multi-rotor vertical take-
off and landing aircraft and fixed-wing aircraft, and they are characterized by speed and longer 
range.[14]. 

 Nano / Small Drones: To search closed and narrow spaces, such as buildings after disasters, 
small-sized aircraft are used[15]. 

 Multi-UAV Systems (Drone Swarms): A group of drones working in coordination (data is shared 
via cloud) to cover a wide area very quickly[16]. 

3. Related Work 

3.1 Missing Persons Detection Systems Using Unmanned Aerial Vehicles (UAVs)  

Detection of missing persons using unmanned aerial vehicles (UAVs) is one of the most interesting 
applications in recent years, as these systems can cover large areas and can reach areas that are difficult 
for human rescue teams to reach[16]Introduced the CloudTrack system, which relies on open-vocabulary 
tracking using verbal descriptions of missing persons, such as clothing color, instead of relying solely on 
pre-trained data. This system is distinguished by integrating vision-language models with cloud 
processing capabilities to overcome the hardware limitations on board the UAV. To tackle the problem of 
small-object detection in intricate aerial scenes, [17]Subsequently created an integrated framework 
based on enhancements to the YOLOv5 and YOLOv8 algorithms. By pre-training on VisDrone and then 
refining on the Heridal dataset, which was created especially for SAR operations, the researchers used a 
transfer learning technique. YOLOv5s-PBFPN-Deconvolution, the improved model, obtained a mAP@50  

of 0.802 and was able to run on a Jetson Nano at a rate of 1–2 frames per second, confirming its real-time 
applicability to support civil protection authorities.  In terms of computer vision, the study by [18]. By 
relying on several algorithms such as CNN, YOLOv4, and Faster R-CNN, and also improving the system for 
detecting aerial images captured by drone streams, this process showed high-accuracy results in different 
environments, which provides a promising approach for search and rescue operations. From a practical 
perspective, the study by [4]presented a real-world field experiment in a rugged wilderness environment, 
where the YOLOv8 model was combined with the HEDAC (Heat Equation-Driven Area Coverage) 
algorithm to intelligently guide drones in covering the area and increasing the likelihood of locating 
missing persons. The experiment involved more than 78 volunteers and demonstrated that combining 
intelligent control with computer vision can significantly improve the effectiveness of search operations. 
In addition, a newly released dataset (POP Dataset, 2025) contains thermal images of partially occluded 
individuals behind trees or in complex environments. This dataset has proven effective in training 
detection models such as YOLOv5 and YOLOv8 to improve performance even with occlusion levels of up 
to 70%. This represents a significant advancement for realistic scenarios where a person may not be fully 
visible. [19]. 

3.2 Smart Wearable. 

Smart wearable devices have recently gained attention as valuable complements to UAV-based 
search-and-rescue (SAR) systems.  

Proposed a collaborative architecture where drones interact with wearable IoT devices carried by first 
responders. Their study emphasized network performance parameters such as delay, throughput, and 
load, demonstrating that wearable sensors (e.g., smart watches and biometric devices) can provide real-
time information about responders’ location, health status, and motion, thereby improving coordination 
and situational awareness during disaster missions. [20]. 

On the other hand, TagTeam, a wearable-assisted guidance paradigm for implicit human–drone teaming, 
was presented by Jayarajah et al. in 2022. Their prototype achieved high synchronization between human 
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movements and drone responses by enabling drones to infer human attention and intent through the use 
of gadgets like motion sensors, earables, and smart glasses (HoloLens 2). In SAR operations, this implicit 
guidance mechanism improves cooperative visual scanning and lowers communication overhead [21]. 

3.3 Onboard Artificial Intelligence Models 

One of the most important trends in drone research is running AI algorithms directly onboard the drone, 
without relying entirely on cloud servers. This trend aims to reduce response time, promoting the drone's 
operational autonomy, and achieve processing power in settings without constant network connectivity. 

In order to run computer vision algorithms directly on the UAV, Bhavishya et al. (2021) presented a 
system based on the NVIDIA Jetson Xavier NX.  This improved UAV autonomy during search and rescue 
operations by proving that real-time processing is feasible without totally depending on cloud servers. 
[22].  

A model that uses aerial image sequences rather than individual static images was created by Kundid 
Vasić & Papić (2022).  They increased the accuracy of human detection in SAR scenarios and decreased 
false positives by using the displacement vector [23].  Hoang (2023) combined an Internet of Things-
based surveillance system with artificial intelligence techniques (YOLOv8 and Cascade Classifier).  The 
model was created to identify fires, dangerous objects, and people. A hybrid approach between onboard 
AI and external IoT communication was demonstrated by the direct onboard execution of certain control 
and navigation functions, such as the PID controller. [24]. In order to improve small-object detection in 
intricate aerial images, Alhawsawi et al. (2024) suggested an improved YOLOv8 architecture by including 
a Context Enrichment Module (CEM). The model is appropriate for real-time SAR applications because it 
was created for effective deployment on Edge/Onboard devices. [25]. Using UAVs fitted with YOLOv8 
integrated into the HEDAC motion control algorithm, Dumenčić et al. (2025) carried out practical field 
tests in challenging conditions. The study demonstrated the dependability of onboard AI models under 
realistic SAR conditions by validating that onboard detection results can directly influence UAV flight 
decisions in real time. [4]. 

3.4 The deployment of edge computing architectures and lightweight AI models across multi-UAV 
systems was the main focus of Peña Queralta et al. (2025, AutoSOS Project).  Distributing 
onboard processing between UAVs and rescue boats was intended to improve maritime search 
and rescue operations dependability and response times [26]. 

3.5 Integrated System Architecture – UAV–Cloud Communication 

Building integrated system architectures for search and rescue (SAR) operations that integrate cloud 
computing and unmanned aerial vehicles (UAVs) has received more attention in recent years. This 
integration allows for faster and more secure transfer of information between drones, ground control 
stations, and field teams. This integration also provides real-time analysis of the data, which can then be 
combined and disseminated, making decision-making faster. [27]. In this context, Alsamhi et al. (2021) 
proposed such a system through edge intelligence for the integration of multiple UAVs and wearable 
devices. The environmental and biometric data sensed through the UAVs are transmitted first to edge 
nodes and then to the cloud. The data is processed and then sent to SAR teams in the form of alarms or 
intelligent insights. This enables the right situational awareness and coordination by creating a single 
lane for the flow of data: UAV → Edge Node → Cloud → Rescue Team.[20]. Hoang (2023) also emphasized 
integration through the Internet of Things (IoT) and artificial intelligence (e.g., YOLOv8 and Cascade 
Classifier) for real-time observation. The UAVs are equipped with pyroelectric and flame detectors for 
data sensing and conduct some processing onboard in this context. The results are then sent to the local 
workstation connected through Wi-Fi (ESP32 microcontroller) to the cloud. This architecture ensures the 
ability of the system to detect and respond to threats relatively more swiftly by facilitating the sharing of 
alarms and monitoring data in real-time with security personnel or rescue teams. [24]. Song et al. (2025) 
developed the POP Dataset, a thermal infrared dataset for the detection of people who are partly occluded 
extensively, from the dataset angle. Sophisticated models such as YOLO and DINO are trained using 
thermal photos captured by UAVs and uploaded onto cloud storage. The models are then installed onto 
unmanned aerial vehicles (UAVs) for deployment in SAR complex environments after being taught. This 
demonstrates how the cloud acts as the single central hub for warehousing the data and central model 
training and deployment of intelligent algorithms onto UAVs at scale. [19]. One such hybrid complex 
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solution includes the AutoSOS Project (Peña Queralta et al., 2025). UAVs in the ongoing maritime SAR 
system employ onboard lightweight AI models for conducting preliminary detection. The results are then 
transmitted via multi-hop communication to a rescue vessel acting as a mobile cloud node, where deeper 
verification and analysis occur before the information is sent to the rescue team. Table 1 compares the 
various studies involved in this research in terms of the objective, technology used, and dataset, as well as 
the best method, the proposed method, and the best results. Table 1 summarizes the studies used and 
compares the major issues from the literature review. 
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Table 1 Compares Key Literature Review Concerns. 

Ref Aim Technology Used Dataset Best Way Strengths Weaknesses 
Best 

performance 

[18] 

The major goal is to 
create an automated 

system that uses UAVs 
and computer vision to 
find missing people in 

SAR missions.. 

CNNs were used for 
person detection with 
Faster R-CNN, YOLO, 
and SSD, using image 

preprocessing and 
evaluated via Precision, 

Recall, F1-score, and 
mAP. 

Stanford Drone 
Dataset &VEDAI 

Dataset 

YOLOv4: Real-
Time Search and 

Rescue 
• Balances speed 

and accuracy. 

YOLOv4: Fastest, High-
Real-Time Accuracy 

• Faster R-CNN for 
precision 
• SSD balances speed 
and accuracy. 

YOLOv4 vs R-
CNN: 

• Fast but 
inaccurate on 
small targets. 
• Faster R-CNN is 
exact but sluggish. 
• SSD is middling. 
• Dataset 
diversity impacts 
performance. 

SSD Performance 
• Moderate. 
• Faster R-CNN for 
precision. 
• YOLOv4 for 
speed and 
accuracy. 

 

[25] 

The goal of this research 
is to use drone-captured 

images to improve the 
accuracy of people 

counting in complex 
scenes with noise and 

small targets. 
 

YOLOv8 

& context Enrichment 
Module, SPPF(Spatial 

Pyramid Pooling) 

VisDrone-
CC2020 dataset 

YOLOv8 
& context 

Enrichment 
Module 

"Excellence in Small 
Targets and Complex 

Backgrounds" 
• Counts, identifies, 
performs well. 
 • Differentiates 
individuals from 
complex backgrounds. 

Error in detecting 
small targets, 

increased 
computational 
complexity and 
model size, and 
longer inference 

time. 

best performance 
mAP@50=82.10 
mAP@70=76.23 

MAE=25.42 
MSE=34.73 

[4] 

Testing a system for 
using drones to look for 
and find missing people 
in a real-world natural 

setting 

Heat equation driven 
area coverage(HEDAC) 

& Model Predictive 
Control (MPC) 

Computer vision is used 
to detect people, train 

the model, and then 
retrain it using 

collected raw data. 

Collect these 
models together. 
(HEDAC + MPC  + 

YOLOv8 ) 

A new dataset has 
been created and 
made available. 

Motion Control and 
Detection Methods 
• Collect methods. 
• Test frames in real 
time. 
• Generate public 
dataset. 

 
 

Camera and 
environmental 

changes 
significantly affect 

performance. 
Difficulty 

detecting very 
small targets. No 

real-time 
processing. 

 

The retrained 
model achieved 
higher accuracy 
compared to the 
regular YOLOv8. 
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Ref Aim Technology Used Dataset Best Way Strengths Weaknesses 
Best 

performance 

[22] 

The project aims to 
develop an NVIDIA 
Jetson Xavier NX-

powered drone device 
to analyze real-time 
video for identifying 

power grid hazards and 
assisting maintenance 

teams. 
 

The technology uses 
Edge Computing on 
the drone to analyze 

data locally and 
instantly. AI models 

are trained on the cloud 
and then deployed and 

run on the device. 
 
 
 
 

The researchers 
used images and 
videos from DJI 

drones for 
training and 
experiments. 

Running artificial 
intelligence 

directly on the 
drone using 

Jetson Xavier NX 
with TensorRT to 

achieve high 
speed and 
accuracy 

The project's strengths 
are its real-time 

onboard processing 
and high accuracy 
with TensorRT, all 

made flexible by using 
DJI drones. 

The project is 
limited by the 

drone's onboard 
power and 
processing, 

requires updates 
from the cloud, 

and is not 
versatile for other 

uses. 

The Jetson Xavier 
NX with 

TensorRT is the 
best technology 
for its balance of 

power and 
efficiency, while 
the DJI Matrice 
300 is the best 

drone for the task. 

[28] 

The objective is to 
create an AI drone 

system that can detect 
and track humans in 

real-time for 
surveillance, security, 
and rescue missions. 

 

The system uses YOLO 
and Deep SORT with 

CNNs to detect and 
track people in real 
time from a drone, 
using OpenCV and 

TensorFlow/Keras for 
processing. 

 

The system was 
trained on 

PASCAL VOC, 
COCO, and MOT 
datasets, along 

with drone-
collected data. 

 

The best method 
combines 

YOLOv4/v5 and 
Deep SORT for a 
balance of speed 

and accuracy. 
 

The system is strong 
due to its real-time 

operation, high 
accuracy, and ability 

to run on low-
resource devices. 

 

The system is 
weak in poor 

lighting, requires 
high computing 
power, and can 

have false 
positives, 

especially in 
complex 

environments. 
 

The system's 
YOLO + Deep 
SORT model 

achieved the best 
performance with 

90% mAP and 
86% tracking 

accuracy. 
 

[24] 

The research aims to 
develop a drone-based 
system using computer 
vision to detect people 
in search and rescue 

missions. 
 

The study used deep 
learning with YOLOv4 
and Faster R-CNN for 

object detection, 
enhancing performance 

through transfer 
learning and data 

augmentation. 

The study used 
the Stanford 

Drone Dataset, 
VEDAI Dataset, 

and a custom 
drone dataset. 

The best 
approach is using 
YOLOv4, which 
balances speed 
and accuracy, 

making it ideal for 
real-time field 
applications. 

The project's strengths 
are its immediate 

response capability, 
use of diverse data, 

and a balance of speed 
and accuracy. 

 

The system is 
affected by poor 
weather, high 

resource 
consumption, 
and a need for 

powerful 
hardware. 

 

 

YOLOv4 offered 
the best real-time 

performance, 
while Faster R-

CNN was slower, 
despite being 
slightly more 

accurate. 
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Ref Aim Technology Used Dataset Best Way Strengths Weaknesses 
Best 

performance 

[17] 

The goal is to use 
multimodal fusion of 

visual and thermal 
drone images to 
develop a new 

framework for accurate 
object detection in 

challenging conditions. 
 

The system uses CNNs 
to combine visual and 

thermal data with 
Attention Mechanisms 

for accurate detection 
of objects at different 

angles. 
 

The model was 
trained on the 

Drone Vehicle 
dataset, which 
has visual and 
thermal drone 

images. 

The best method 
is a model that 

uses multimodal 
fusion with 

Attention and a 
CNN backbone to 

balance 
efficiency and 

accuracy. 

The system is more 
accurate by 

combining visual and 
thermal images, 

performing better in 
poor weather and 

having a lower error 
rate. 

The framework is 
weak due to its 

reliance on 
aligned data, the 

need for a 
powerful GPU, 

and poor 
performance in 

cluttered scenes. 
 

Drone Vehicle 
Model 
Performance 

• Outperformed 
Faster R-CNN and 
YOLOv3/YOLOv5 
with higher mAP. 

[27] 

The VIP-Det framework 
uses a Vision 

Transformer to 
combine visual and 
thermal drone data, 

improving object 
detection in bad 

conditions. 
 

The system uses a 
Vision Transformer 

(ViT) to combine visual 
and thermal data, with 
Prompt-Based Fusion 

for better object 
detection. 

 

The model was 
trained on the 

Drone Vehicle 
dataset, which 
has visual and 
thermal drone 

images. 
 

The best method 
uses VIP-Det, 

which combines 
Vision 

Transformer 
with Prompt-

Based Fusion for 
efficient data 
integration. 

The strengths are 
fewer parameters, 

efficient data fusion, 
strong performance in 

difficult 
environments, and a 

significant 
improvement in mAP. 

 

The framework 
has a slight 

performance 
edge, needs a 

powerful GPU for 
training, and 
relies on pre-
aligned data. 

 

VIP-Det achieved 
the best 

performance with 
an mAP of 75.5% 

on the 
DroneVehicle 

dataset, 
outperforming 

other methods like 
C2Former and 

TSFADet. 
 

[29] 

The research aims to 
enhance search and 

rescue (SAR) missions 
by using a thermal 
camera-equipped 

drone and AI to locate 
missing persons, even in 
difficult environments. 

 

The system uses 
YOLOv5 to detect 

objects in thermal video 
and the Kalman Filter 

to track them, 
improving accuracy 
with Bounding Box 

Gating and Track 
Association. 

The system was 
trained on a 

custom thermal 
dataset and 

tested on three 
thermal videos 

from a DJI 
Inspire 2 drone. 

 

The best method 
combines 

YOLOv5x and the 
Kalman Filter 
with Bounding 
Box Gating and 

Track 
Association to 

achieve the 
highest 

performance. 

The system is strong 
because of its high 

accuracy, 
performance in 

difficult conditions, 
and low data 

consumption. 
 

The system's 
weaknesses are a 
limited dataset 

and track 
breakage due to 
the drone's speed 

and 
environmental 

factors. 
 

YOLOv5x 
performed well, 
with a Recall of 
0.862 to 0.992 

and perfect 
Precision (1.0). It 
also achieved high 

scores for both 
Total Track Life 

and Track Purity. 
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Ref Aim Technology Used Dataset Best Way Strengths Weaknesses 
Best 

performance 

[33] 

Utilizing Drone 
Processing for Military 

Vehicle Detection 
• Quick, secure, offline 
vehicle classification. 

Raspberry Pi 4 Military 
Vehicle Detection 
System 

• Utilizes YOLOv5 and 
EfficientNet-b0. 
• Uses DeblurGAN v2 
for blur removal. 

System trained 
on 6,999 military 

vehicle images 
from Kaggle and 

ImageNet. 

 
 
 
 
YOLOv5 Upgrade: 
Optimizes 
Accuracy and 
Speed 
• Utilizes 
EfficientNet-b0 
and 
DeblurGANv2. 
 

The system offers low 
latency, high 

accuracy (88%), and 
data security. It also 

runs on low-cost 
devices. 

Project 
Weakness: 
Raspberry Pi's 
Power 
Limitations 
• Poor 
performance with 
small objects 
• Small dataset. 

The enhanced 
YOLOv5 model 

was the best, 
achieving 88% 

accuracy. 

[35] 

The project aims to 
develop a real-time 

drone detection system 
that can distinguish 
drones from birds to 
improve security in 

sensitive areas. 

 

The researchers used 
YOLOv5 and CNN for 
real-time detection, 

with a GPS tracker and 
Telegram API for 
location and alerts. 

 

A custom dataset 
was created 

using 12,700 
drone images 
and 5,300 bird 

images. 

The best 
approach is to use 
YOLOv5 with an 

A9G GPS Tracker 
on the system, as 

it achieves the 
best balance of 

speed, accuracy, 
and practicality. 

The system is highly 
accurate (96.2% 

precision, 95% mAP) 
and fast with YOLOv5. 

It's a practical, low-
cost solution that 

sends instant alerts via 
Telegram. 

The system is 
limited by its 

inability to work 
at night and 

fixed camera 
coverage, and it 

has poor 
tracking in areas 

with weak 
cellular signals. 

Based on the 
metrics (95.5% 
accuracy, 96.2% 
precision, 95% 

mAP), the 
YOLOv5 + GPS 

tracking system 
performed the 

best. 
 

[36] 

The research aims to 
replace traditional 
surveillance with a 

smart drone system 
that can dynamically 
monitor and track 

people in real time. 
 

The study uses the 
TIMT algorithm with 
Dlib and OpenPose to 
track and recognize 

faces and body poses, 
while Equidistant 

Tracking maintains a 
fixed distance. 

 

The study used a 
custom dataset 

from local 
experiments, 

with 40 tests of 
humans in 
different 

conditions, 
instead of using 

public databases. 

The best method 
is to combine 

Dlib and 
OpenPose within 

the TIMT 
Algorithm for 
high-accuracy, 

fast-response face 
and pose 
detection. 

 

The system is a smart, 
mobile alternative to 

fixed cameras, offering 
high accuracy and a 
fast response time 

even with changes in 
lighting. 

 

The system's 
weaknesses 
include low 

accuracy at wide 
angles and long 

distances, and its 
performance is 

affected by 
transmission 

delays and low 
light. 

The system 
showed high 

accuracy in both 
face detection 

and pose 
recognition, with 

a fast response 
time. 
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Ref Aim Technology Used Dataset Best Way Strengths Weaknesses 
Best 

performance 

[38] 

The main goal is to 
create a low-cost drone 
with AI and computer 
vision for near-real-

time search and 
rescue. 

 

The system uses 
YOLOv4-tiny and 

OpenCV on a 
Raspberry Pi 4 for on-
board object detection. 

 

The model was 
trained using the 

COCO Dataset 
and local field 

images. 
 

Fine-tuning 
YOLOv4-tiny for 
Local Pics" 

• Balances 
accuracy, speed, 
low costs. 

The project's strengths 
are its low cost, near-
real-time detection 
for quick response, 

and scalability. 

The system is 
limited by low 
accuracy, poor 
performance in 

bad lighting, and 
weak processing 

from the 
Raspberry Pi. 
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Low Cost 

 

 

 

 

 

 

 

 

 

 

 

 

NOMENCLATURE



Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 155–173 
 
 
 
 
 
 
 
 
 
 
 
 

 

∗Corresponding author Noof Ali Khashusha 

Email addresses: master.student2410@qu.edu.iq 

Communicated by ‘sub etitor’ 

4.  Research Gap Identification 

1. Multi-Drone Edge Intelligence and SAR Smart Wearable  

The research here focuses on improving the network performance between the drone and 

wearable devices, but the research did not address how to integrate advanced computer vision 

algorithms, such as YOLO, CNNs, to actually detect people.[20].  

2. Enhanced YOLOv8 Crowd Counting 

The model is developed to detect crowds in aerial images, but this research does not cover direct 

use in search and rescue missions when people are scattered or obscured, nor does it include 

dealing with difficult environmental conditions, nor does it include field testing on an actual drone, 

because the focus was experimental on VisDrone data only.[25]. 

3. POP Infrared Dataset 

This research presented the first thermal dataset of partially invisible people. This research did 

not present a complete rescue framework, and experiments were limited to general detection 

networks (YOLO, RTMDet) without custom algorithm modification, and also did not include the 

operational level.[19]. 

4. Experimental Validation of UAV SAR in Wilderness 

The experiment is excellent in a field environment, but it did not address the overall autonomy of 

the drone (it relied on the YOLOv8 + HEDAC model for research), nor did it discuss the fact that 

there are diverse climatic conditions, such as snow and forests, nor did it address the integration 

of wearable devices or communication channels. [4]. 

5. Auto SOS Multi-UAV Maritime SAR  

He emphasized the importance of marine rescue, whether by ships or drones, but this research has 

not been implemented practically, except for a preliminary concept, and it is also dedicated to the 

marine field only, not including land or urban rescue, and it did not address the battery and 

payload limitations of small drones in a long marine path.[26].  



12 Noof Ali Khashusha et al., , Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 155–173

 

6. AI-based Drone Assisted Human Rescue 

The use of human sounds (screams, distress signals) to detect missing persons has been 

developed, but there are significant difficulties in distinguishing between noise and screams that 

have not been fully addressed. Also, battery life and processing power when using microphones 

and AI forms on board the drone are not adequately addressed.[39]. 

7. TagTeam Wearable-Assisted Human-Drone Teams 

The research focused on indirect communication between humans and drones using wearable 

devices, but did not investigate the energy consumption and safety of wearables, nor did it 

demonstrate the integration of person detection algorithms with human-derived signals.[21]. 

8. Improving Person Detection with Displacement Vector 

The research confirmed the reduction of false positives using sequential images, but the system 

was not tested under large realistic SAR conditions and did not integrate multiple sensors such as 

temperature or IoT[23]. 

9. Thermal Image Tracking for SAR  

The research was based on Kalman + YOLO for thermal tracking, but the research was affected by 

the short tracking time in difficult environments and did not collect multi-sensor information 

(visible + thermal) to improve accuracy[29]. 

10. Transponder (wi-fi &LoRa) 

The system is only presented with a preliminary evaluation in forests. There are no large real-

world experiments or comparisons with other location determination methods (GPS/5G) and 

Integration with vision detection algorithms is not addressed[17]. 

 

11. visible-thermal Object detection with Transformers 

The VIP-Det proposal is based on Transformers, but it has not been tested in SAR experiments or 

on limited power devices such as the Jetson Nano. The research focuses on theoretical 

performance and datasets[29].  

12. Real-Time SAR with YOLO (Small-Object Detection) 

Despite the improved performance on the Heridal dataset and its operation on the Jetson Nano, 

the research did not test multi-sensor integration (thermal + visual) and did not test power issues 

on long missions[27]. 

13. Autonomous Human Identification  

It was tested on the TensorFlow network for human recognition, but the research was not tested 

in emergency conditions (fires/night) and did not test additional sensors such as thermal 

imaging[30].  

14. Dual-Stage UAV Processing (Edge +cloud) 
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Not tested in field SAR. Faced with the challenges of relying on a fixed internet connection (Wi-

Fi/4G) which is unreliable in disaster areas[28]. 

15. Autonomous SAR Drone (Libya) 

He emphasized the use of YOLOv4-tiny + Raspberry Pi but did not compare with newer algorithms 

(YOLOv5/8), nor did he provide large field experiments outside of local environments[31].  

16. Object Detection from UAV Thermal Infrared Images 

Focus on YOLO with TIR (infrared) imagery but not comprehensive due to lack of public parameter 

dataset, which limits generalizability in multiple SAR scenarios[32]. 

17. CloudTrack (open-vocabulary Tracking)  

It is based on verbal descriptions (such as the color of a shirt), but requires a strong connection to 

the cloud, which limits its use in environments with weak connectivity, and it has not been tested 

in real SAR missions[33]. 

18. Autonomous SAR & Fire Detection Drone 

It was based on Bayesian path planning + RestNet for recognition, but had difficulties organizing 

multiple aircraft and was not tested in highly realistic SAR conditions.[23] 

19. Enhancing Hajj & Umrah with AI 

A comprehensive evaluation of AI techniques in crowd management, but not specifically focused 

on detecting missing persons by aircraft or SAR[34]. 

20. Automatic Person Detection with CNNs 

Although a number of algorithms (YOLO, Faster R-CNN) were compared, the study was limited to 

the VisDrone and SARDbuild datasets only, and was not tested in real conditions with elements 

such as weather or terrain.[18].  

21. Drone Detection & Surveillance (Anti-Drone) 

The research here focused on detecting unauthorized aircraft using (GPS + YOLOv5) and did not 

focus on searching for missing persons or supporting SAR. [35] 

22. Dynamic Monitoring & Tracking  

OpenPose+ Face Recognition is used for surveillance, but it is more geared towards security and 

surveillance in residential complexes and has not been tested for SAR missions.[36].  

23. Drone & Remote Sensing for Missing People (Italy) 

It did not provide a scientific system or a new algorithm, but rather focused on Italian regulations 

and experiments[37]. 

 

5. Challenges and Future Direction 
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5.1 Technical Challenges 

5.1.1 Power and Battery Life 

 Most studies confirm that the limited power of a drone limits its flight time and ability 

to perform search and rescue missions for extended periods[20], [26].  

 The thermal camera and various sensors drain more power, which adds another 

burden to the battery[29].  

 Putting complex AI models on devices like the Raspberry Pi or Nano increases power 

consumption and heat[17], [33].  

5.1.2 Communication and Networking 

 Communication is unsatisfactory when there is an environmental disaster and the 

infrastructure is prone to failure, like in the case of drones and surface teams[20], [38].  

 In some segments of the flight (especially in the case of covering large or rough 

terrains), the absence of a reliable wireless connection may result in data throughput 

failure[26], [28].  

 The integration of multiple networks like 5G/4G, LoRa, and multi-hop connections 

among drones is still a scientific problem[28], [38]. 

5.1.3 System accuracy and person recognition  

 The small size of the target in aerial photographs leads to a decrease in detection 

accuracy, especially when the aircraft is at high altitude[17], [23].  

 Conditions such as environmental darkness, fog, and smoke, as well as obstacles to the 

line of sight, severely detract from the capabilities of computer vision[19], [27], [29]. 

 Visionim was developed on the YOLO or CNN models and still requires enhancements 

to aid its use with the fully and partially sighted[17], [19]. 

 The increase in false positives continues to be a problem and adversely impacts the 

confidence in the system [23]. 

5.2 Future Direction 

5.2.1 Improved energy consumption  

Developing higher-capacity batteries or field wireless charging systems and relying on 

lightweight AI algorithms to reduce resource consumption[17], [26].  

5.2.2 More flexible networks 

Using multi-drone mesh networks for greater coverage [26], [38] and reducing 

connectivity loss, as well as combining 5G, LoRa, and satellites to provide uninterrupted 

connectivity in disasters [38], and designing smart communication protocols that balance 

energy consumption with the need for instant data transmission [20] 
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5.2.3 Better detection and tracking accuracy 

Preparing hybrid models that combine thermal and visual data using techniques such as 

Transformers or Prompt Tuning, in addition to creating modern datasets such as the POP 

dataset, which is useful in observing partially obscured victims under rubble and trees[19], 

[27]. 

5.2.4 Combining different components 

Integrating drones, sensors, and wearables (smart watches) to improve positioning 

accuracy[20], [21]  and also splitting tasks between on-board analysis and analysis in cloud 

servers to reduce latency[28]. 

6. Conclusion 

This review has shown that drones have become a fundamental pillar in the field of security 

surveillance and search and rescue operations, due to their potential to provide capabilities in 

collecting data in real time and accessing difficult and dangerous environments present significant 

challenges. Moreover, there are still clear obstacles hampering the transition of these theoretical 

capabilities into practical applications. The primary issues include limited energy, battery life, weak 

communication in harsh conditions such as disasters, as well as low detection accuracy and tracking 

difficulties when targets are small or environmental obstacles like fog and smoke are present. To 

overcome these challenges, previous research has explored several practical approaches. These 

involve improving energy solutions, such as providing high-density batteries or employing field 

wireless charging systems, and designing lighter, less resource-intensive algorithms. In terms of 

communication, comprehensive solutions include building resilient networks through collaboration 

between aircraft and integrating technologies like 5G, LoRa, and satellites to ensure continuous 

connectivity under all conditions. Regarding detection accuracy, it is believed that hybrid models 

combining thermal and visual images, based on transformers and contextual learning methods, will 

greatly enhance the quality of results—especially when using advanced databases tailored for partial 

concealment scenarios. Additionally, integrating aircraft with wearable devices and field sensors will 

provide more comprehensive data, while distributing the processing burden between edge systems 

and the cloud, in order to reduce response time and improve performance efficiency. 
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