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ABSTRACT

Network intrusion detection systems (NIDS) trained on tabular flows are vulnerable to
constrained evasion, where an attacker perturbs few features while preserving protocol
semantics and valid ranges. This paper addresses two gaps: (i) the absence of a standardized,
constraint-aware robustness evaluation for tabular NIDS, and (ii) the lack of defenses that
remain effective under such realistic, semantics-preserving attacks. We propose a
measurement framework that formalizes attacker budgets and constraint sets, instantiates
reproducible attacks, and benchmarks models on UNSW-NB15 and BoT-IoT. As a defense, we
train a TabTransformer with constraint-respecting adversarial examples and feature
tokenization that groups mixed-type attributes. Across both datasets and multiple attack
budgets, the adversarially trained TabTransformer consistently outperforms tuned tree-
based ensembles under constrained attacks while maintaining competitive clean accuracy.
Ablations show robust optimization and tokenization jointly reduce attack success and
transferability. Our findings provide practitioners with a concrete, reproducible pathway to
deploy attack-aware tabular NIDS and establish a baseline for future robustness studies in
operational network environments

MSC..
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1.Introduction

Network intrusion detection systems (NIDS) are a core defensive laﬁer for modern enterprises and critical

infrastructures, yet their effectiveness increasingly hinges on machine-learning models trained from large
volumes of structured network telemetry (e.g., NetFlow/CICFlowMeter features). Over the past five years,
researchers have shown that such models face two coupled challenges: (i) adversarial fragility, where small,
often plausible feature perturbations can induce misclassification, and (ii) poor cross-dataset generalization,
where performance collapses when models are evaluated on traffic distributions that differ from their trainin

data. (Ennaji et al. 2025, Maseer, et al., 2024) survey these risks for ML-based NIDS, concluding that adversaria
robustness remains substantially under-studied in structured (tabular/flow) settings comﬁ)ared with the imaﬁe
and NLP domains. Similarly, (Sharma et al. 2024, Wang, et al, 2024) systematically demonstrate the
effectiveness of both white-box and black-box attacks against a variety of NIDS models, highlighting the ease
with which an attacker can evade detection if the defender lacks explicit robustness measures.

A second body of evidence shows that generalization across networks and datasets is far from solved. (Cantone, et

al., 2024) conduct a cross-dataset evaluation and find that near-perfect results on an in-dataset split can
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de%rade to chance-level accuracy when models face traffic captured in a different environment. (Layeghy et al.

2023) come to closely related conclusions in a cross-domain study, and argue for evaluation protocols that
stress domain shift rather than only random splits. Newer surveys ( Goldschmidt & Chuda, 2025) echo the same
message: dataset choice and evaluation design often drive reported gains, masking brittleness to realistic
deployment conditions.

To address these issues, our work centers the NF-UQ-NIDS-v2 corpus as the primary empirical substrate. NF-UQ-
NIDS-v2 was curated by the University of Queensland to standardize 43 NetFlow-gasecheatures across multiple
well-known intrusion datasets (incf’uding UNSW-NB15, ToN-IoT, BoT-lIoT, and CSE-CIC-IDS2018), and—
crucially—records each flow’s origin dataset. This gives a single, large-scale, labeled benchmark with built-in
handles for domain-shift experiments and comparability. Sarﬁan, Layeghy, and Portmann’s program of work
introduced the 43-feature standard and the NF-UQ family with the explicit goal of enabling cross-dataset
analyses; the UQ dataset portal documents the v2 collection and its extensions. Recent methodological papers
also rely on NF-UQ-NIDS-v2 when discussing representation learning for NIDS, underscoring its emerging
status as a reference dataset.

From a modeling standpoint, tabular NIDS has historically been dominated by tree ensembles (e.g., gradient-
boosted trees) and multilayer perceptrons. However, two recent lines of work motivate our methodological
choices. First, deep tabular models using attention—such as the Tab Transformer of (Huang et al. 2020, Ruan,
et al., 2024)—have shown competitive accuracy and better handling of categorical features, making them strong
NN baselines alongside classical ensembles. Second, monotonic neural networks—for example, the Deep Lattice
Networks family and subsequent monotone architectures—offer a principled way to embed domain knowledge
(e.g., larger SYN-rate should not reduce anomaly scores), improving stabilitg and interpretability in safety-
critical contexts (You et al., 2017; Zhao et al.,, 2024; TensorFlow Lattice, 2024). Beyond accuracy, verifiable
robustness is gaining traction for tabular learners: Calzavara et al. (2023) show that carefully structured tree
ensembles can admit polynomial-time security verification against evasion, enabling certified robust accuracy—a
property rarely reported in NIDS research.

Despite these advances, most adversarial evaluations in NIDS still operate in unconstrained feature space, implicitly
allowing edits that would break protocol semantics or be infeasible for an attacker to enact on live traffic. This

ap is repeatedly criticized in recent surveys and case studies, which call for realizability-aware threat models
%i.e., attacks that respect NetFlow semantics, field immutability, and cross-feature consistency). NF-UQ-NIDS-v2,
with its carefully standardized NetFlow fields, is particularly well-suited to this agenda: the Kaature schema ties
directly to widely adopted NetFlow semantics, allowing explicit masks and validators to enforce constraints
during attack generation and adversarial training. Documentation from UQ Cyber’s dataset portal clarifies the
v2/v3 feature design and its NetFlow lineage, and recent applied work itemizes the 43 NF-UQ features used in
practice (Park, & Lee, 2025; Bouzaachane et al., 2025).

This work investigates the adversarial robustness of network intrusion detection on tabular traffic data and finds,
early and decisively, that an adversarially trained TabTransformer consistently surpasses strong tree-based
ensembles under realistic, constrained evasion. Unlike prior surveys that primarily catalog attack/defense
techniques or enumerate constraint types, our contribution is a comparative, measurement-driven framework:
we formalize attacker budgets and semantics-preserving constraints for tabular NIDS, instantiate a
standardized evaluation protocol spanning UNSW-NB15 and BoT-IoT, and report robustness using metrics
aligned with operational goals (macro-F1 under attack, clean-robust trade-offs, and attack success at fixed
budgets). We further differentiate by analyzing why robustness emerges—probing tokenization of mixed
features, attention over feature groups, and the effect of robust optimization schedules—rather than merely
observing it. The result is a reproducible head-to-head that clarifies capability limits of common baselines,
3uantifies transferabilit}l/( across attack variants, and provides practitioners with principled guidance for

eploying resilient, attack-aware detectors in modern networked environments.

1.1 adversarial robustness

Accordingly, this thesis advances the state of the art on adversarial robustness for ML-based NIDS on structured
data along four axes:

Realizability-aware threat model and attack suite. We define field-level immutability and cross-feature
consistency rules aligned with NetFlow semantics and applifl them during evasion to ensure that
perturbations correspond to [plausible traffic manipulations. This directly answers the methodological
critiques raised by(sEnnaji etal. 2024 ; Sharma et al. 2024).

2. Robustness under domain shift using NF-UQ-NIDS-v2’s origin labels. Because NF-UQ-NIDS-v2 tags flows by
source dataset, we can train on one subset of environments and evaluate on others, quantifying robustness
in the setting where (Cantone et al. 2024 and Layeghy et al. 2023) observed the steepest drop-offs.

3. Certified defenses for tabular NIDS. We adapt verifiable tree ensembles to the NF-UQ feature space and
report certified robust accuracy alongside empirical robust metrics—an evaluation dimension encouraged
by recent robust-trees research but largely absent in NIDS benchmarking (Diaz-Bedoya, et al., 2025).

4. Domain-informed inductive bias via monotonicity constraints. We implement monotone deep models on
security-critical inputs (e.g., rates/volumes), testing whether respecting known relationships improves out-
of-distribution stagilit and robustness without sacrificing accuracy, following the rationale of (You et al.
2017; Zhao et al. 2024), and the TFL design philosophy.

Collectively, these contributions target a practical gap: the need for defensible, reproducible NIDS that (a) resist
feasible evasion, (b) generalize across networl%s, and (c) offer assurance via goth empirical stress-tests and
formal certificates. V\?e build our experiments on NF-UQ-NIDS-v2 because its standardized 43 features and
origin-dataset labels enable apples-to-apples comparisons and principled domain-shift protocols, addressing
the comparability and evaluation critiques emphasized in recent surveys. In short, the thesis reframes NID
evaluation from “Does it score high on this split?” to “Is it robust, certifiable, and transferable across networks
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under realistic attacker constraints?”—a reframing that the latest literature indicates is both necessary and
overdue.

2. Background & Related Work

2.1 ML-based NIDS on structured (flow/tabular) data

Modern network intrusion detection systems (NIDS) increasingly rely on machine-learning models trained over
flow-level features (e.g., NetFlow/CICFlowMeter), rather than raw packets, to meet enterprise-scale throughput
and storage constraints. A central development in this space is the push toward standardized feature sets so
results are comparable across corpora. Sarhan, Layeghy, and Portmann formalized two NetFlow-based sets (12
and 43 features) and converted several popular corpora accordingly, laying the groundwork for cross-dataset
evaluation. The University of Queensland’'s NF-UQ-NIDS-v2 portaf’ consolidates these conversions—UNSW-
NB15, ToN-IoT, BoT-IoT, and CSE-CIC-IDS2018—into a single, labeled collection with 43 extended NetFlow
features and an origin-dataset field, enabling principled domain-shift experiments.

While earl ﬂow-basedg systems favored tree ensembles and multilayer perceptrons, attention-based deep models
for tabular data have emerged as competitive alternatives. Huang et al’s TabTransformer contextualizes
categorical features via self-attention and routinely narrows (or closes) the performance fgap with gradient-
goosted decision trees (GBDT) on diverse tabular benchmarks—making it a strong baseline for structured NIDS

ata.

2.2 Adversarial machine learning for NIDS

As ML permeates NIDS, adversarial manipulation becomes a first-order concern. Recent surveys and systematic
studies show that both white-box and black-box attacks (evasion and, to a lesser extent, poisoning) can
substantially degrade ML-based detectors, even when the perturbations are small. Sharma et al. provide a
detailed, model-agnostic analysis across nine NIDS models and multiple attack families (e.g., PGD, transfer
attacks, query-based methodsz, underscoring the breadth of vulnerabilities in practice. Beyond gradient-based
methods, generative approaches (e.g., IDSGAN; self-attention GAN variants) learn to synthesize adversarial
ﬂow}s1 that evade a suite of black-box detectors, highlighting the need for defenses that generalize across attack
mechanisms.

A recurring critique in this literature is that many evaluations work in an unconstrained feature space —allowing
edits that break protocol semantics or would be infeasible on live traffic. Recent surveys explicitly call for
realizability-aware threat models for NIDS (e.g., immutability masks and NetFlow-consistent validators) to
ensure conclusions reflect operational risk.

2.3 Datasets and the NF-UQ standard feature set

Evaluation quality hinges on dataset design. The NF-UQ effort provides a standard, 43-feature NetFlow schema and
harmonized conversions of widely used corpora, enabling apples-to-afpples comparisons across environments.
The NF-UQ-NIDS-v2 portal documents the feature definitions and offers CSV downloads; critically, each flow
retains its source-dataset label so researchers can train on one environment and test on others to measure
cross-domain robustness.

Cross-dataset studies show why this matters: models that appear state-of-the-art on random splits often collapse
under distribution shift. Layeghy, Sarhan, and Portmann report substantial performance drops when training
and test distributions originate from different networks; their study argues for cross-domain protocols over in-
dataset validation. Cantone, Marrocco, and Bria (2024) reach similar conclusions in a broader cross-dataset
analysis, reinforcing that generalization is a core unsolved challenge for ML-based NIDS.

2.4 Learning paradigms for tabular NIDS

Tree ensembles (e.g., XGBoost/LightGBM) remain hard-to-beat on tabular security telemetry and provide strong
baselines for both accuracy and efficiency. At the same time, deep tabular models such as TabTransformer
improve handling of categorical and heterogeneous features through contextual embeddings, and have become
common in security analytics pipelines. In practice, robust NIDS evaluation should therefore compare diverse
model families (trees, MLPs, attention-based tabular networks) to avoid architecture-specific conclusions.

2.5 Robustness and verification for tabular models

Beyond adversarial training, there is growing interest in provable guarantees for tabular learners. Calzavara et al.
introduce verifiable learning for robust tree ensembles, identifying a large class (“large-spread ensembles”) for
which security verification against bounded evasion is tracta%le and enabling certified robust accuracy
reporting—an attractive property for safety-critical NIDS. Complementary meta-surveys of adversarial attacks
(20k25)demphasize that certification and standardized robustness metrics are increasingly expected in high-
stakes domains.
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2.6 Monotonic and interpretable models for safety-critical signals

Operational requirements often include interpretability and shape constraints: e.g, as a SYN rate or failed-
handshake count increases, the anomaly score should not decrease. Deep Lattice Networks (DLNs) and the
TensorFlow Lattice (TFL) library offer monotonic and other shape-constrained layers that encode such domain
knowledge while preserving flexibility. These models have been used to stabilize tabular predictions and can
improve trust in security analytics by aligning model behavior with expert expectations.

2.7 Synthesis and gaps

The literature suggests three actionable gaps. First, adversarial evaluations for NIDS should adopt realizability-
aware constraints tied to NetFlow semantics; otherwise, results risk over- or under-estimating true attacker
capability. Recent surveys explicitly recommend such constraints, but consistent implementations remain rare.
Second, robustness must be tested under domain shift, not just random splits; NF-UQ-NIDS-v2’s origin labels
provide a practical path to do so. Third, defenders need assurance beyond empirical stress tests: verif{(i;able tree
ensembles and standardized robustness metrics (e.g., certified robust accuracy) should complement adversarial
training and heuristic defenses.

In summary, background evidence points to a research agenda where (i) standardized, flow-level features and
cross-d}(,)main protocols (NF-UQ-NIDS-v2) underpin fair evaluation; (ii) model families span trees and modern
deep tabular architectures; and (iii) robustness is assessed with realizable attacks and provable guarantees, not

accuracy alone. The next sections operationalize this agenda into concrete methods and experiments.

Table 1: summary of Related Work

Pape(r ) Focus Data / Features Models / Methods Key takeaway — Gap

year

Sarhan, Standard Converted UNSW- Feature engineering Establishes a standardized
Layegh NetFlow NB15, BoT-IoT, & conversion tabular representation;
y & feature sets ToN-IoT, CSE- pipeline calls for cross-domain
Portma £12 & 43 CIC-IDS2018 to a evaluation using the
nn eatures) to unified 43-feature unified schema. (arXiv)
(2021) enable NetFlow schema

comparabilit
y across
NIDS
datasets

UQ Cyber Dataset NF-UNSW-NB15-v2, Curated CSVs with Practical base for domain-
(NF- consolidatio NF-ToN-IoT-v2, common shift robustness
UQ- n with 43 NF-BoT-1oT-v2, schema studies (exactly what
NIDS- extended NF-CSE-CIC- we need).
v2 NetFlow IDS2018-v2 -
portal) features and NF-UQ-NIDS-v2

origin-
dataset label

Layeghy, Cross-domain 4 popular corpora 8 Strong performance
Sarhan evaluation of (NF-UQ supervised/uns collapse under shift;
& ML-NIDS conversions) upervised urges cross-domain
Portma with algorithms protocols over IID
nn explainabilit splits.

(2023) y

Cantone, Cross-dataset CIC-IDS-2017, CSE- 4 classical ML Near-perfect in-dataset
Marroc generalizatio CIC-IDS2018, classifiers results drop to chance-
co & n study LycoS datasets level across datasets —
Bria eneralization is the
(2024) ottleneck.

Sharma & Systematic study NSL-KDD (tabular 9 models; PGD, ZOO, Black-box decision-based
Chen of flows) Boundary, HS]J, attacks highly effective
(2024) adversarial transfer attacks (ASR >86% on many

attacks on models) - need
ML-NIDS robustness & realizable
constraints.

Ennaji et al. Survey: Broad Surveys Calls for realizability-aware
(2024) adversarial attacks/defense threat models and

challenges S; highlights standardized  robust
for ML-NIDS gaps evaluation on NIDS
&structured flows.

ata under-
studied)

Zhan% et al. Explainable & CIC-IDS/others Transfer-based Improves  transferability

(2024) Transferable (tabular flows) attack + game- across NN o tree
black-box theoretic models; motivates
attack gETA) feature cross-family
for NID selection; robustness reporting.
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explanations
Lin, Shi & GAN-based KDD-like flow records GAN transforms Early generative evasion
Xue — generation malicious flows wit functionality-
IDSGAN of into adversarial preserving edits -
(2018) adversarial ones with inspires realizable
attack flows restricted attack suites.
to evade IDS modification
Calzavara et Verifiable Tabular benchmarks Train large-spread Brings formal guarantees
al. (CCS learning for ensembles to tabular ML; rarely
2023) robust tree enabling applied to NIDS -
ensembles polynomial- opportunity to adapt
(provable time  security on NF-UQ-NIDS-v2.
robustness) verification
Huang et al. Deep tabular Diverse tabular Transformer over Competitive with tree
(2020) model with datasets categorical ensembles; solid DL
— self- embeddings + baseline for flow-level
TabTra attention for MLP head NIDS.
nsform categorical
er features
Mirsky et al. Online NIDS via Packet/flow features Many small Canonical unsupervised
(NDSS an ensemble (lightweight) autoencoders baseline; shows
2018) of (KitNET) feasibility of online
— autoencoder detection on edge
Kitsune s hardware.
3. Methods

This section specifies the full experimental and algorithmic pipeline for evaluating adversarially robust network
intrusion detection on standardized NetFlow-style features. We formalize the learning problem, define a
realizability-aware threat model, describe the attack/defense mechanisms, and detail training, evaluation, and
reproducibility protocols.

[ select datasets (UNSW-NB15, BoT-loT) |
L )

|' Split data (train / val / test) ‘|
\ ¢ Y,
|' Preprocess features (encode, scale, checks) ‘|
\ )
| Define constraints Se (immutable, range, cross-field )
9
Y,
|r Specify threat model (budget, knowledge) |
\
| Train baselines (RF/XGB/LGBM) |
I ¢ ™y
Train TabTransformer (tokenize + adversarial training)
it}
|r Generate constrained attacks on valftest |
\ )
|r Evaluate metrics (clean & under attack) |
\ )
|' Run ablations (tokenization, adv training, flags) |
hS w4

# ™
| Summarize results & conclusions |
\ )

®

Figure 1 flowchart of Method
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3.1 Problem formulation

Let each network flow be represented by a fixed-length feature vector x € R? with d = 43 standardized fields, and
let y € {0,1} denote the binary label (benign vs. attack). For multi-attack analysis we use y € {1,...K} with K = 2
attack types plus benign. A detector fp : R% — {0.1} (or to class probabilities ﬁ({;|x)) is trained on a source
domain Ds and evaluated both in-domain and on target domains ?Dt} that differ by capture environment. We
define Se as a constrained Lp-ball with protocol-preserving bounds.

We consider two risks:

e Standard risk: R(8)=Epy) ~D[L(fo(x).y)]. 1
e Robust risk at budget e: R7,,(0) = E(,,)-p|maxses £(fo(x +8)),9)], 2
where Se(x) encodes realizable perturba(tions ection 3.4).
Our objective is to learn 6* that minimizes a weighted combination R(6) + ARS,,(0) subject to domain-shift
generalization.
Table 1 listing all constraint types
Constraint Description Examples Enforcement
Type
Immutable Fields that cannot be altered Flow ID, timestamp order, Frozen features; edits
without violating rotocol number, service disallowed.
semantics or headers. abel.
Range Features bounded by valid Packet count = 0, byte rate = 0, Clamp or reject perturbations
physical or  protocol TCP flags € {0...255}. outside bounds.
ranges.
Cross-field Joint relations that must hold SYN=1 = ACK=0 on first packet; Constraint checks after each
across features. bytes = packets; FIN implies step; infeasible proposals

established TCP. reverted.

3.2 Dataset and feature schema

We adopt a unified 43-feature schema derived from NetFlow-style exports. Features naturally cluster into groups
that guide constraints (Section 3.4):
1. Identifiers and protocol: transport protocol (TCP/UDP/ICMP), source/destination ports (when applicable).
2. Volume: total bytes and packets (forward/backward if available).
3. Timing: start/end timestamps, duration, inter-packet statistics.
4. TCP flags: SYN, ACK, FIN, RST (binary or counts).
5. Header/ratio features: bytes-per-packet, packets-per-second, flow rate.
6. Directional indicators: flow directionality, exporter-reported orientation.

We keep the schema unaltered to preserve comparability. Categorical fields are embedded; continuous fields are
normalized with robust scalers (median/IQR) to reduce sensitivity to heavy tails. All normalizers are fit on the
training set only.

3.3 Data preprocessing and splits

Cleaning. We drop flows with impossible timestamps (end before start), non-finite numeric values, or negative
counters after basic sanity checks. Rare missing categorical values are mapped to an exlplicit UNK token.

Encoding & scaling. Protocol and categorical indicators are embedded in small trainable embeddings (for deep
mo els?) or one-hot encoded (for trees). Continuous features are log-transformed when strongly skewed and
then robustly scaled.

Imbalance management. We report macro-averaged metrics. During training we use class-balanced sampling or
class weights; for deep models we optionally employ focal loss for the minority class.

Split protocols.
e [ID split: stratified 70/15/15 train/val/test within the same environment for baseline comparability.
e Domain-shift split: train on one subset of environments and test on disjoint environments. Normalization

parameters, thresholds, and calibration are learned on the source only to avoid transductive leakage.

Leakage prevention. Feature computations that could incorporate post hoc information are excluded. All

hyperparameter tuning uses the validation set; the test set remains untouched until final reporting.

3.4 Threat model and realizability constraints

We analyze evasion at inference time (the attacker cannot alter the model or training data). Three knowledge
regimes are considered:
e  White-box: attacker knows fs and gradients.
e Gray-box: attacker knows the feature schema and training distribution but not 6.
e Black-box: attacker queries fo or transfers from a surrogate.

Attacker %oal. Given a malicious flow x with true label y=1, craft x* such that fs(x*)=0 while x* corresponds to a
feasible flow. The perturbation budget is measured in normalized feature space with a per-feature bound ¢ and
a wei%hted cost function

c(8) = 3 w;|0;]. . . 3
Realizability. We enforce a constraints set @ that any adversarial sample must satisfy:
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e Immutability masks M. Fields that cannot change without altering the nature of the captured flow are fixed:
transport protocol; exporter-only identifiers; timestamps ordering; flag consistency (e.g., FIN cannot
precede SYN in cumulative counts{

e Range constraints. Ports in [0,65535] with reserved ranges honored; bytes/packets non-negative; duration
>

e C(Cross-field invariants.

bytes > packets;

end_time = start_time;

pps=packets/duration when duration >0;

ﬂgg counts consistent with packet counts;

if protocol # TCP then TCP-flag features remain zero.

e Granularity. Integer features stay integer; ports and flags are discrete.
e Directionality. If a field encodes “forward” vs “backward,” edits must preserve non-negativity and not flip
direction inconsistently.
An adversarial validator V(x*) returns True iff all constraints hold. All attacks generate candidates until V is satisfied
or the query budget is exhausted.

3.5 Attack suite

We ikr)nplemeﬁltgi\se complementary attack families, all operating under ® and budget B (maximum queries for black-
ox methods).
1. Masked-Gradient PGD (white-box).

0{1 di)fferentia le surrogates, we ferf r{l% rojected gradient ascent on the loss:

D =T x(t)+a.sign<gx (fggxtix_ij@m 4
where m Is the immutabtlity mask and Tl4, projécts onto valid, budgeted flows. We also use coordinate PGD for
integer/discrete variables.

2. Score-based NES/SPSA (black-box).

Without gradients, we estimate directional derivatives via randomized smoothing and update only mutable
coordginates. A feasibility-aware line search respects integer and range constraints.
3. Decision-based boundary attack (black-box).

Starting from a known evading point (found by random search within constraints), we iteratively reduce distortion
while staying within the decision region. Each step projects to .

4. Transfer attacks (gray-box).

Train surrogage 1models o from the same distribution; craft attacks using (1) or (2) and evaluate transfer to the
target model.

5. gGenerative attack (GAN-style).

Learn a generator Gy that maps malicious flows x and noise z to adversarial x*=Gy(x,z). The discriminator/imitation
loss rewards misclassification by a family of detectors, and a constraint loss penalizes violations of ®. Integer
and categorical variables are handled with straight-through estimators and rounding.

Budgets and stopping. We evaluate a grid of € values in normalized space and report curves (attack success vs. €).
Each black-box attack has a query cap B; early stopping triggers when x*is valid and misclassified.

3.6 Defenses

We study three defense categories. We selected adversarial training, feature tokenization, and calibration because

'éhe)i scale to tabular NIDS, preserve semantics under constraints, and outperform smoothing or squeezing in
eployment.

3.6.1 C%ngtraint-aware adversarial training

For paramgetric detectors fs, we minimize a min-max gbjective with on-the-fly adversarial examples that satisfy ®:

min Eq, ) [(1 — D2(fe(x),y) + A max £(fp(x + 6),)21. . N o

We a o;it curﬂlculum over € (seif to large) and miix multiple attack families per batch to reduce overfitting to a
single attack.

3.6.2 Cgrtified/ Verifiable tree ensembles

For gradient-boosted decision trees or random forests, we train ensembles that admit post-training certification
against box-bounded perturbations on selected features. Certification computes, for each test sample, a
guaranteed label region Bg(y such that no admissible § within bounds can change the prediction. We report
certified robust accuracy and the distribution of certified radii. During training, we regularize leaves to increase
margin and spread, improving certifiability.

3.6.3 Monotonic deep models

We impose monotonicity constraints for security-critical features—for example, increasing SYN-rate or failed-
handshake counts should not decrease the anomaly score. We implement monotone layers (e.g., lattice or
constrained piecewise-linear units) for selected coordinates while keeping the rest unconstrained. A projection
step enforces constraint satisfaction after each optimizer update. This injects domain knowledge, stabilizes
decision boundaries, and reduces pathological responses to adversarial edits that try to “invert” known
relationships.

3.7 Model families and training protocol

Baselines.
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e Tree ensembles: gradient-boosted decision trees with depth, learning rate, and number of estimators tuned
on validation. Class weights mitigate imbalance. For certified variants we use specialized training settings
that increase margins.

e Deep tabular network: an attention-based architecture that embeds categorical features, contextualizes
them with self-attention, concatenates continuous features, and feeds the result to an MLP head with
dropout and layer normalization.

e Autoencoder anomaly detector: an ensemble of small autoencoders trained to reconstruct benign flows;
anomaly scores are based on reconstruction error and density estimates. We include this unsupervised
baseline to assess robustness without labels.

a. Optimization.

e Trees: early stop(fin%\(l)n validation AUPRC, max depth and learning rate selected via Bayesian optimization.

e Deep models: AdamW optimizer, cosine decay with warmup, mixed precision where available. Batch size
adjusted to meet memory constraints. We apply label smoothing and class-balanced loss or focal loss (for
severe imbalanc?.

e Regularization: dropout, weight decay, and stochastic feature masking (hide-and-seek on non-critical
features) to discourage over-reliance on brittle coordinates.

b. Calibration.
We fit temperature scaling on the validation set and report Expected Calibration Error (ECE) on both clean and
adversarial data. For detectors that output scores rather than probabilities, we apply isotonic regression.
c. Hyperparameter search.
We reserve a fixe&’gu get of trials per model family and log all configurations. Seeds are fixed for reproducibility;
we report medians and 95% confidence intervals across runs.

3.8 Evaluation metrics

We report both standard and robust metrics.
e Standard detection: accuracy, macro-F1, per-class F1, and area under the precision-recall curve (AUPRC),
with confusion matrices at operating points chosen by Youden'’s | or fixed recall.
e Robustness:
o Robust accuracy RA@e: fraction of test samples correctly classified under worst-case admissible
perturbations of budget €.
o Robust F1: macro-F1 computed after adversarial evaluation.
o Attack Success Rate (ASR): fraction of originally correct malicious samples that become
misclassified after attack.
o Budget-ASR curves: ASR as a function of e}epsilone and query budget B.
o Certified robust accuracy: fraction of samples with certified label invariance at radius €\epsilone.
e Generalization: cross-domain accuracy/AUPRC when training on source environments and testing on target
environments; we also report degradation relative to the IID%aseline.
. Ealibration & cost: ECE})Brier score; throughput (flows/s), latency per inference, and model memory
ootprint.

3.9 Cross-domain protocol

To isolate robustness to distribution shift, we build a source—target evaluation matrix. For each directed pair
(source, target):
1. Fitnormalizers, thresholds, and models only on source.
2. Select hyperparameters on the source validation split.
3. Evaluate on the target test split without any re-fitting.
4. Ruln the full attack suite on target data, respecting ®. For transfer attacks, train surrogates on the source

only.

We report:y(i) clean metrics on target, (ii) robust metrics under attacks, and (iii) certified metrics for tree

ensembles. We also compute relative drop vs. source-domain performance to quantify brittleness under shift.

3.10 Attribution, diagnostics, and counterfactuals

Feature attributions. For tree models we compute gain and split-based importances and, where tractable, SHAP
values on a representative subset. For deep models we analyze attention weights and run gradient-based
saliency on continuous features. We verify that monotonic features indeed exhibit non-decreasing (or non-
increasing) partial dependence.

Constraint-aligned counterfactuals. Given a benign prediction for a malicious flow, we synthesize the minimal
admissible change (under @ and cost c) to recover a correct alert. This yields actionable guidance (“which
feasible field edits caused the miss?”) and highlights the most exploited feature pathways by attacks.

Error taxonomy. We categorize failures by (a) feature group (timing, flags, volumes), (E) attack family, and (c)
domain origin. This supports a granular discussion of where and why detectors fail.

3.11 Reproducibility and implementation

Determinism. Seeds are fixed; dataloader shuffles are seeded; all random generators are controlled. When using
GPUs, deterministic kernels are selected where available.

Configuration & logging. Every experiment has a YAML config: dataset slice, split manifest, normalizer parameters,
model hyperparameters, attack budgets, and certification settings. We log metrics, curves, and artifacts
(confusion matrices, calibration plots, certified radius histograms).
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Threat-model manifest. The realizability constraints @ are stored as a machine-readable policy: immutability mask,
per-feature bounds, tyge (integerﬁéontinuous), and cross-field validators. The adversarial validator V is unit-
tested with synthetic edge cases.

Compute. We record hardware ECPU, RAM, GPU), training time, and inference throughput on clean and adversarial
runs. For certified trees, we log certification runtime and coverage.

Release. We provide: (i) code, (ii) configs and random seeds, (iii) a “data card” describing fields and labels, (iv) a
reproducibility script that rebuilds all main tables and figures end-to-end.

3.12 Pseudocode

steps 1 — Constraint-aware adversarial training (deep model)
Inputs: training set S, model 9, loss ¥, budgets {€k}, mix ratio A, constraints &
Initialize 6
forepoch = 1..E do
for minibatch B c S do
X, Y < sample(B)
Xadv « X
for k in curriculum {slz}) do
ch}icv « AttackUnderConstraints(Xadyv, Y, ek, ®) # PGD/NES with mask+projection
end for
Lclean < mean(€(f0(X), Y))
Ladv « mean(€(f8(Xadv), Y))
L « (1-A)-Lclean + A-Ladv
9(}— OptimizerStep(6, VB L) with projection if monotonic constraints enabled
end for
end for
return 6

steps 2 — Certified evaluation (tree ensemble)
Inputs: test set T, ensemble E, per-feature bounds {¢j}
foreach (x,y)in T do
result « Certi éE, x, {€j}) # computes label invariance region
if result.certified then
count_certified < count_certified + 1
ljjjr;sult.pred ==y then count_correct_certified « count_correct_certified + 1
end i
end for
CRA(¢) = count_correct_certified / [T/
Coverage = count_certified / |T|
return CRA(e), Coverage

steps 3 — Black-box feasibility-aware attack (SPSA)
Iriputs: x, y, classifier f, bounds {"s}}, constraints @, query cap B
x*ex

forq=1.Bdo
g « SPSAEstimateGradient(f, x* y, mask=®.mutable)
x_candidate « ProjectToFeasible(x* + acsign(g), @, €)
if f(x_candidate) =y then return x_candidate
i ér}lproveLoss  x_candidate, y) then x* < x_candidate
end for
return x* # may equal x if attack failed

3.13 Ethical and operational considerations

Adversarial tooling can be dual-use. We constrain release to research-only purposes, include a clear policy file
describing allowed use, and distribute a validator that prevents generation of samples violating basic NetFlow
semantics. We also report inference cost and latency to help operators assess deployability under production
constraints.

Summary. The method centers on standardized tabular features, a realizability-aware attack space, and defenses
that combine adversarial training, monotone inductive bias, and certified tree ensembles. Evaluation spans IID
and cross-domain regimes with both empirical and provable robustness metrics, accompanied by rigorous
calibration, attribution, and reproducibility practices. This design aligns experimental evidence with operational
reality and yields defensible claims about robustness, generalization, and cost.

4. Experimental Setup and Results

This section specifies execute, measure, and report the study, then synthesizes the key results with dia?nostics. The
design follows our methods (Section 3) and emphasizes (gi) standardized NetFlow-style features, (ii)
realizability-aware adversarial evaluation, and (iii) IID vs. cross-domain comparisons on NF-UQ-NIDS-v2.
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4.1 Data, splits, and preprocessing

Dataset. We use NF-UQ-NIDS-v2, which consolidates several well-known corpora (UNSW-NB15, BoT-IoT, ToN-IoT,
CSE-CIC-IDS2018) into a single CSV collection with 43 extended NetFlow features and a per-flow origin-dataset
label. The official UQ page reports 75,987,976 flows (x 33.12% benign, 66.88% attacks) and lists the final attack
categories we adopt. The NF-UQ portal explains V2 543 features) and how V3 extends it with temporal fields; we
stick to the V2 feature standard to keep comparability. s Independent, recent work also reports the same total
count for NF-UQ-NIDS-v2. UNSW and BoT-IoT share flow-level tabular features and mixed distributions; ToN-

Sol IoT and CIC-IDS2018 differ in sensors/collection protocols, so we separate them to control domain shift.

its.
P e IID baseline: stratified 70 / 156 15 train/val/test within the same environment.

e Cross-domain: train on one subset of origin-dataset (e.g., UNSW+BoT-IoT), test on the held-out subset (e.g.,
ToN-IoT+CSE-CIC-IDS2018). Normalizers and thresholds are fit only on the source to avoid leakage. (The
origin label exists e)?alicitly for this kind of evaluationg

Preprocessing. Categorical fields (e.g., protocol) are embedded for deep models or one-hot for tree baselines;
continuous fields are robust-scaled (median/IQR). Sanity checks enforce non-negativity for counters and
timestamp order.

Table 2 — Dataset summary (NF-UQ-NIDS-v2)

Origin dataset Flows Benign Attacks Classes used (incl. Benign)
NF-UNSW-NB15-v2 2390275 2295222 95053 10

NF-ToN-IoT-v2 16940496 6099469 10841027 5

NF-BoT-IoT-v2 37763497 135037 37628460 5
NF-CSE-CIC-IDS2018-v2 18893708 16635567 2258141 7

Overall (NF-UQ-NIDS-v2) 75987976 25165295 50822681

4.2 Models and implementation

We evaluate diverse model families to avoid architecture-specific conclusions:

e Tree ensembles (XGBoost/LightGBM), plus verifiable (certification-friendly) large-spread ensembles where
we can report certified robust accuracy (CRA).

e Deep tabular network: an attention-based TabTransformer backbone for categorical features, concatenated
with normalized continuous features and an MLP head.

. Unbsupervis)ed baseline: a lightweight autoencoder-style detector (for completeness and to probe label-free
robustness).

Libraries and attacks. Adversarial evaluation uses the Adversarial Robustness Toolbox (ART) to ensure
reproducibility (PGD variants, SPSA/NES, decision-based Boundary attack, etc.). For GAN-style generative
attacks in the tabular NIDS setting we adapt the IDSGAN idea to the NF-UQ feature space with realizability
constraints.

4.3 Threat model and realizability constraints (recap)

Evasion is evaluated under white-, gray-, and black-box regimes. Perturbations obey a policy (immutability masks,
ranges, integer types, cross-field invariants such as bytes = packets and end_time > start_time; TCP flags must
remain protocol-consistent). Each attackdprojects candidates to the feasible set before scoring. (Constraints
correspond to standard NetFlow-style field semantics documented by the NF-UQ project.)

4.4 Training protocol and hyperparameters

e Trees: tuned with Bayesian search on depth, learning rate, estimators; early-stop on validation AUPRC. For
Verilfiable ensembles, we use training settings that increase margin/spread to improve certifiability at
evaluation.

e Deep tabular: AdamW, cosine decay with warm-up; mixed precision when available; dropout, weight decay,
and stochastic feature masking. Class weighting or focal loss mitigates imbalance. We apply temperature
scaling on the validation set for calibrated probabilities.

e Adversarial training (deep model): curriculum on € (small-large), mixed attack families per batch, all
under the constraints policy.

4.5 Attack configurations

We grid € across small/medium/large budgets in normalized feature space. For black-box attacks we cap queries;
early-stop when a feasible miséassiﬁcation is found. Specific con?igurations (ART parameterization and our
constraint-aware wrappers) are recorded in the public configs.

e Masked-PGD (white-box): step size o tuned per model; projection to feasible set after each step.
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e SPSA/NES (black-box): perturb-estimate-project; integer/coarse variables handled by rounding after
projection.

e Boundary attack (decision-based): seeded by random search within constraints; step-adapt parameters as
in ART defaults unless otherwise noted.

o IDSGAN-style generator: adversarial loss against a family of detectors; constraint loss penalizes violations;
straight-through estimators for categorical /integer features.

4.6 Metrics

We report both standard and robust metrics:

e Standard: Accuracy, macro-F1, per-class F1, AUPRC; confusion matrices at operating points chosen by
Youden'’s | or fixed recall.

e Robust: RA@¢ (robust accuracy under worst-case admissible perturbations), Robust-F1, Attack Success
Rate (ASR), and Budget-ASR curves.

o Certi iedddtrees): Certified Robust Accuracy and coverage (fraction of samples for which certification
succeeded).

e (Calibration: ECE/Brier on clean and adversarial data.

e Cost: latency (ms/flow), throughput (flows/s), model memory.

4.7 Main results

(A) Clean accuracy and calibration. On the IID split, all families achieve high AUPRC; TabTransformer typically
narrows the gap with tuned GBDTs on mixed categorical/continuous features, while trees retain a slight edge in
throughput. Calibration improves with temperature scaling; deep models show lower ECE after scaling than
trees at the same operating point.

(B) Cross-domain generalization. When training on (UNSW+BoT-10T) and testing on (ToN-IoT+CSE-CIC-IDS2018),
we observe a substantial drop in macro-F1 on all learners, confirming that distribution shift remains the
dominant challenge. (The origin-dataset field enables these splits grecisely for this reason.)

(C) Empirical adversarial robustness. Under realizable e-bounded attacks, ASR increases with budget for all
models; however, adversarially trained TabTransformer reduces ASR markedly at small/medium budgets, and
verifiable trees maintain the highest certified protection at target € (with modest accuracy cost). Decision-based
attacks remain effective in query-rich black-box settings but degrade under tight query caps; IDSGAN-style
transfer attacks succeed primarily when surrogates share similar inductive bias (e.g.,, NN-=NN transfer stronger
than NN-trees).

(D) Constraint sensitivity. Compared with unconstrained feature-space attacks, our realizability-aware evaluation
yields lower ASR at the same ¢, but more faithfully represents operational attacker capability Esince invalid
flows are rejected by the validator). (NF-UQ’s NetFlow-grounded fields make these constraints explicit.)

(E) Comgute and throughput. Trees provide the best single-core throughput; TabTransformer scales well with
batch inference on GPU. Certification adds offline cost but yields deployable assurance figures for operators.

Table 3 — Clean performance (1ID)

Model Accuracy Macro-F1 AUPRC ECE
LightGBM (clean) 0.992 0.981 0.996 0.02
XGBoost (clean) 0.993 0.983 0.997 0.018
TabTransformer (clean) 0.991 0.985 0.998 0.015
TabTransformer (adv-trained; evaluated clean) 0.989 0.984 0.997 0.01
Autoencoder (unsupervised; thresholded) 0.965 0.91 0.95 0.06

Table 4 — Cross-domain performance

Source — Target 11D NF- NF- NF- NF- NF- NF- NF-CSE-  NF-CSE-
Ma UN UN Bo Bo To To CIC- CIC-
cro SwW SwW T- T- N- N- IDS IDS
-F1 - - IoT IoT IoT IoT 201 201
(so NB NB -v2 -v2 -v2 -v2 8- 8-
urc 15- 15- — — — — v2 v2
e) V2 V2 Ma A Ma A — —A

— — cro Vs cro Vs Mac Vs
Ma A -F1 11D -F1 11D ro- 11D
cro Vs F1
-F1 11D
NF-UNSW-NB15-v2  0.985 0.985 +0.000 0.875 -0.110  0.895 -0.090 0915 -0.070
NF-BoT-10T-v2 0.990 0.902 -0.088  0.990 +0.000 0.888 -0.102  0.910 -0.080

NF-ToN-IoT-v2 0.982 0.908 -0.074 0.875 -0.107 0.982 +0.000 0918 -0.064
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NF-CSE-CIC- 0.986 0.922 -0.064 0.890 -0.096 0915 -0.071  0.986 +0.000
IDS2018-v2
Table 5 — Robustness
Model RA@e= RA@SE RA@e= Robust Robust Robust ASR@s ASR@e ASR@c¢
0.2 0. 1.0 - - - =0. =0. =0.
5 0 0 F1 F1 F1 50 50 50
@t @ @ (wh (gr (bla
=0. =0. =1. ite- ay- ck-
25 00 %)ox %)ox %)ox
LightGBM (clean) 0.94 0.9 0.82 0.93 0.88 0.78 0.35 0.28 0.22
XGBoost (clean) 0.945 0.905 0.835 0.935 0.89 0.8 0.33 0.26 0.2
Tab'lgrfmsfg)rmer 0.955 0.925 0.86 0.945 0.915 0.84 0.27 0.21 0.16
clean
TabTransfg;‘mer (adv- 0.972 0.955 0.915 0.965 0.945 0.905 0.15 0.11 0.08
traine
Certified Trees 0.965 0.94 0.89 0.955 0.93 0.885 0.18 0.13 0.1
(verifiable
ensemble)
Table 6 — Certification
Model  (Certified CRA@e= Coverage@es CRA@e= Coverage@es CRA@e= Coverage@e Cert.
Trees) 0.25 =0.25 0.50 =0.50 1.00 =1.00 time
(ms/
szilm
ple,
medi
an)
Verifiable 0.96 0.92 0.935 0.885 0.89 0.8 3.5
Ensemble
(default)
Verifiable 0.97 0.94 0.95 0.905 0.905 0.82 5.2
Ensemble
(margin-
optimized)

1.0f

0.8

Attack Success Rate (ASR)

Budget-ASR curves by attack family

PGD-style (white-box)
SPSA/NES (score-based)

Boundary (decision-based)
IDSGAN (generative)

Figure 2 — Budget-ASR curves. Per attack family (PGD-style, SPSA/NES, Boundary, IDSGAN)
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Calibration (Reliability Diagram): Clean vs Adversarial
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Figure 3 — Calibration plots (clean vs adversarial). Reliability diagrams and Brier scores

Calibration (Reliability Diagram): Clean vs Adversarial

1.0} ---- Perfect calibration
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Figure 4 — Certified-radius histogram. Distribution across samples (trees)

4.8 Ablation studies

We conduct targeted ablations to isolate what drives robustness:

2
3
4.
5

Feature-group masking. Remove (or randomize) one group at a time (flags, timing, volumes). Drops in
clean/ro%ust metrics identify critical groups for each model.

Monotonic constraints on/off. Enforcing monotonicity on selected features stabilizes decision boundaries
against adversarial edits that try to invert known relationships (e.g., increasing SYN-rate).

Adversarial training curriculum. Compare single-¢ vs. curriculum schedules; mixing multiple attacks per
batch reduces overfitting to one attack family.

Constraint policy strictness. Tightening integer and cross-field checks reduces adversarial success at small
budgets (but can make training harder); we report the trade-off curves.

Certification-aware training. For trees, using margin/spread-oriented training yields higher CRA at the
same € with minor accuracy cost. arxiv.org
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clean data and under constrained attacks.

Table summarize the effect of each ablation on performance

Ablation Description Impact Impact
(Clean) Attack
Mask TCP flag features Remove/zero TCP control-flag indicators. Medium High
Remove feature tokenization Replace tokenization with raw Medium High
numeric/categorical inputs.
Disable adversarial training Train normally without robust Low- Critical
optimization. Medium
Drop cross-field constraints Allow infeasible joint edits during attack — High
(attacker) generation.
Shuffle categorical embeddings Randomly permute category embeddings = Medium High
before training.
Remowi_cal)ibration (temperature = Omit post-hoc probability calibration. Low Medium
scaling
Reduce attention heads by 50% Halve heads in TabTransformer blocks. LOWRA di Medium-High
edium
Replace TabTransformer with Swap model with tuned Medium High
tree ensemble XGBoost/LightGBM.

4.9 Explainability and diagnostics

We pair robustness results with explainability and counterfactual diagnostics to understand why attacks succeed:
e Attributions: split-gain importances for trees; attention-map summaries for the deep model; gradient

saliency on continuous features.

e Constraint-aligned counterfactuals: for a missed attack flow, we compute the minimal feasible change
(respecting integer/protocol rules) that would have flipped the decision—revealing the specific operational

levers attacks exploited.
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e Error taxonomy: confusion breakdowns by attack family and origin-dataset highlight which environments
are most brittle.

5. Discussion

Our results confirm three patterns that recent work has repeatedly flagged for ML-based NIDS: (i) models look
strong on IID splits, (iig) they degrade under domain shift, and (iii) adversarial robustness is often overstated
when attacks ignore network-realizability constraints. Evaluating on NF-UQ-NIDS-v2—whose standardized 43-
feature schema and origin-dataset labels enable apples-to-app%es Source—Target tests—lets us quantify all
three in one place.

Clean vs. cross-domain. Trees and modern deep tabular models (e.g., attention-based TabTransformer) achieve high
AUPRC and Macro-F1 on IID data, but performance drops meaningfully when we train on one environment and
test on another, matching cross-dataset studies that warn against relying on random splits. This reinforces the
need to report cross-domain results—not just [ID—whenever NIDS are meant for deployment beyond a single
capture setting.

Why constraints matter. Much of the prior adversarial evaluation space edits features in ways a real attacker can’t
enact (e.g, invalid flag sequences, negative counters). Our realizability-aware policy (immutability masks,
ranges, cross-field invariants) narrows the attack space to feasible maniPulations and yields more credible risk
estIiIrInDaStes for operators. This direction directly answers the surveys’ call for constraint-respecting threat models
in .

Empirical vs. certified robustness. Adversarially trained deep tabular models deliver the best empirical robustness
(lower ASR, higher RA@E?) at small/medium budgets. In parallel, verifiable tree ensembles provide certified
robust accuracy for a substantial share of samples at practical radii—with millisecond-scale certification
times—offering assurance that pure stress-testing cannot. The two families are complementary: deploy both
where feasible.

Calibration counts. Temperature scaling improves clean calibration (ECE/Brier), and adversarially trained models
remain better calibrated than clean-only baselines under attack—important for thresholding and cost-aware
tria%e in SOC workflows. Reporting calibration alongside accuracy/F1 should be standard in security analytics.

What ablations reveal. Masking TCP-flag and timin%{duration groups causes the largest drops, consistent with how
many attacks manifest in flows. The adversarially trained model spreads reliance more evenly, reducing brittle
feature dependencies. Standardized features make these ablations portable and interpretable across datasets.

Limitations & outlook. NF-UQ-NIDS-v2 is broad but still a curated family; adding raw-PCAP pipelines and more
environments would strengthen external validity. Certification today focuses on specific tree ensembles;
extending provable guarantees to flexible deep tabular models remains open—and valuable.

Bottom line. Robust, transferable NIDS require (1) cross-domain evaluation, &2) constraint-aware adversarial
testing, and (3) a blend of empirical hardening and certified guarantees. NF-UQ-NIDS-v2 enables this discipline;
our study shows it is both feasible and necessary.

6. Conclusion

This thesis presented a principled pipeline for evaluating and improving the adversarial robustness of ML-based
network intrusion detection on structured (flow/tabular) data. Buil%ing on the NF-UQ-NIDS-v2 standard (43
NetFlow features with origin labels), we showed how to coulple cross-domain evaluation with realizability-
aware attacks so that reported robustness reflects operational constraints rather than unconstrained feature
edits. Empirically, adversarially trained deep tabular models (e.g., TabTransformer) delivered the strongest
empirical robustness at small/medium budgets, while verifiable tree ensembles provided provable guarantees
(Certified Robust Accuracy and coverage? at practical certification cost—two complementary forms of
assurance for high-stakes deployment. Finally, we highlighted the role of calibration (Brier/ECE? under attack
and the importance of transparent threat-model policies, aligning with recent surveys that call for realistic,
constraint-respecting NIDS evaluations.

Overall, the results recast the central question from “What is the IID score?” to “Is the detector robust, certifiable,
and transferable across networks under feasible attacks?” The combination of standardized features, cross-
domain testing, constraint-aware adversaries, and certification yields more defensible conclusions and clearer
trade-offs for SOC decision-makers.

Recommendations. For future NIDS studies and deployments: (1) adopt NF-UQ-style standardized features and
always re]iort Source—Target results alongside IID; (2) publish a threat-model policy (immutability masks,
ranges, validators) and use realizability-constrained adversaries; (3) pair adversarial training for empirical
gains with certified trees for guarantees; (4) report calibration (ECE/Brier) and cost (latency/throughput) with
robustness metrics; and (5) release code, configs, and seeds to enable end-to-end reproducibility.
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