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A B S T R A C T 

Network intrusion detection systems (NIDS) trained on tabular flows are vulnerable to 
constrained evasion, where an attacker perturbs few features while preserving protocol 
semantics and valid ranges. This paper addresses two gaps: (i) the absence of a standardized, 
constraint-aware robustness evaluation for tabular NIDS, and (ii) the lack of defenses that 
remain effective under such realistic, semantics-preserving attacks. We propose a 
measurement framework that formalizes attacker budgets and constraint sets, instantiates 
reproducible attacks, and benchmarks models on UNSW-NB15 and BoT-IoT. As a defense, we 
train a TabTransformer with constraint-respecting adversarial examples and feature 
tokenization that groups mixed-type attributes. Across both datasets and multiple attack 
budgets, the adversarially trained TabTransformer consistently outperforms tuned tree-
based ensembles under constrained attacks while maintaining competitive clean accuracy. 
Ablations show robust optimization and tokenization jointly reduce attack success and 
transferability. Our findings provide practitioners with a concrete, reproducible pathway to 
deploy attack-aware tabular NIDS and establish a baseline for future robustness studies in 
operational network environments 

 

MSC.. 

https://doi.org/ 10.29304/jqcsm.2025.17.42554.

 

1.Introduction  

Network intrusion detection systems (NIDS) are a core defensive layer for modern enterprises and critical 
infrastructures, yet their effectiveness increasingly hinges on machine-learning models trained from large 
volumes of structured network telemetry (e.g., NetFlow/CICFlowMeter features). Over the past five years, 
researchers have shown that such models face two coupled challenges: (i) adversarial fragility, where small, 
often plausible feature perturbations can induce misclassification, and (ii) poor cross-dataset generalization, 
where performance collapses when models are evaluated on traffic distributions that differ from their training 
data. (Ennaji et al. 2025, Maseer, et al., 2024) survey these risks for ML-based NIDS, concluding that adversarial 
robustness remains substantially under-studied in structured (tabular/flow) settings compared with the image 
and NLP domains. Similarly, (Sharma et al. 2024, Wang, et al., 2024) systematically demonstrate the 
effectiveness of both white-box and black-box attacks against a variety of NIDS models, highlighting the ease 
with which an attacker can evade detection if the defender lacks explicit robustness measures.  

A second body of evidence shows that generalization across networks and datasets is far from solved. (Cantone, et 
al., 2024) conduct a cross-dataset evaluation and find that near-perfect results on an in-dataset split can 
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degrade to chance-level accuracy when models face traffic captured in a different environment. (Layeghy et al. 
2023) come to closely related conclusions in a cross-domain study, and argue for evaluation protocols that 
stress domain shift rather than only random splits.  Newer surveys ( Goldschmidt & Chudá, 2025) echo the same 
message: dataset choice and evaluation design often drive reported gains, masking brittleness to realistic 
deployment conditions.  

To address these issues, our work centers the NF-UQ-NIDS-v2 corpus as the primary empirical substrate. NF-UQ-
NIDS-v2 was curated by the University of Queensland to standardize 43 NetFlow-based features across multiple 
well-known intrusion datasets (including UNSW-NB15, ToN-IoT, BoT-IoT, and CSE-CIC-IDS2018), and—
crucially—records each flow’s origin dataset. This gives a single, large-scale, labeled benchmark with built-in 
handles for domain-shift experiments and comparability. Sarhan, Layeghy, and Portmann’s program of work 
introduced the 43-feature standard and the NF-UQ family with the explicit goal of enabling cross-dataset 
analyses; the UQ dataset portal documents the v2 collection and its extensions. Recent methodological papers 
also rely on NF-UQ-NIDS-v2 when discussing representation learning for NIDS, underscoring its emerging 
status as a reference dataset.  

From a modeling standpoint, tabular NIDS has historically been dominated by tree ensembles (e.g., gradient-
boosted trees) and multilayer perceptrons. However, two recent lines of work motivate our methodological 
choices. First, deep tabular models using attention—such as the Tab Transformer of  (Huang et al. 2020, Ruan, 
et al., 2024)—have shown competitive accuracy and better handling of categorical features, making them strong 
NN baselines alongside classical ensembles. Second, monotonic neural networks—for example, the Deep Lattice 
Networks family and subsequent monotone architectures—offer a principled way to embed domain knowledge 
(e.g., larger SYN-rate should not reduce anomaly scores), improving stability and interpretability in safety-
critical contexts (You et al., 2017; Zhao et al., 2024; TensorFlow Lattice, 2024). Beyond accuracy, verifiable 
robustness is gaining traction for tabular learners: Calzavara et al. (2023) show that carefully structured tree 
ensembles can admit polynomial-time security verification against evasion, enabling certified robust accuracy—a 
property rarely reported in NIDS research.  

Despite these advances, most adversarial evaluations in NIDS still operate in unconstrained feature space, implicitly 
allowing edits that would break protocol semantics or be infeasible for an attacker to enact on live traffic. This 
gap is repeatedly criticized in recent surveys and case studies, which call for realizability-aware threat models 
(i.e., attacks that respect NetFlow semantics, field immutability, and cross-feature consistency). NF-UQ-NIDS-v2, 
with its carefully standardized NetFlow fields, is particularly well-suited to this agenda: the feature schema ties 
directly to widely adopted NetFlow semantics, allowing explicit masks and validators to enforce constraints 
during attack generation and adversarial training. Documentation from UQ Cyber’s dataset portal clarifies the 
v2/v3 feature design and its NetFlow lineage, and recent applied work itemizes the 43 NF-UQ features used in 
practice (Park, & Lee, 2025; Bouzaachane et al., 2025). 

 This work investigates the adversarial robustness of network intrusion detection on tabular traffic data and finds, 
early and decisively, that an adversarially trained TabTransformer consistently surpasses strong tree-based 
ensembles under realistic, constrained evasion. Unlike prior surveys that primarily catalog attack/defense 
techniques or enumerate constraint types, our contribution is a comparative, measurement-driven framework: 
we formalize attacker budgets and semantics-preserving constraints for tabular NIDS, instantiate a 
standardized evaluation protocol spanning UNSW-NB15 and BoT-IoT, and report robustness using metrics 
aligned with operational goals (macro-F1 under attack, clean-robust trade-offs, and attack success at fixed 
budgets). We further differentiate by analyzing why robustness emerges—probing tokenization of mixed 
features, attention over feature groups, and the effect of robust optimization schedules—rather than merely 
observing it. The result is a reproducible head-to-head that clarifies capability limits of common baselines, 
quantifies transferability across attack variants, and provides practitioners with principled guidance for 
deploying resilient, attack-aware detectors in modern networked environments. 

 
 

1.1 adversarial robustness 

Accordingly, this thesis advances the state of the art on adversarial robustness for ML-based NIDS on structured 
data along four axes: 
1. Realizability-aware threat model and attack suite. We define field-level immutability and cross-feature 

consistency rules aligned with NetFlow semantics and apply them during evasion to ensure that 
perturbations correspond to plausible traffic manipulations. This directly answers the methodological 
critiques raised by (Ennaji et al. 2024 ; Sharma et al. 2024).  

2. Robustness under domain shift using NF-UQ-NIDS-v2’s origin labels. Because NF-UQ-NIDS-v2 tags flows by 
source dataset, we can train on one subset of environments and evaluate on others, quantifying robustness 
in the setting where (Cantone et al. 2024 and Layeghy et al. 2023) observed the steepest drop-offs.  

3. Certified defenses for tabular NIDS. We adapt verifiable tree ensembles to the NF-UQ feature space and 
report certified robust accuracy alongside empirical robust metrics—an evaluation dimension encouraged 
by recent robust-trees research but largely absent in NIDS benchmarking (Díaz-Bedoya, et al., 2025).  

4. Domain-informed inductive bias via monotonicity constraints. We implement monotone deep models on 
security-critical inputs (e.g., rates/volumes), testing whether respecting known relationships improves out-
of-distribution stability and robustness without sacrificing accuracy, following the rationale of (You et al. 
2017; Zhao et al. 2024), and the TFL design philosophy.  

Collectively, these contributions target a practical gap: the need for defensible, reproducible NIDS that (a) resist 
feasible evasion, (b) generalize across networks, and (c) offer assurance via both empirical stress-tests and 
formal certificates. We build our experiments on NF-UQ-NIDS-v2 because its standardized 43 features and 
origin-dataset labels enable apples-to-apples comparisons and principled domain-shift protocols, addressing 
the comparability and evaluation critiques emphasized in recent surveys. In short, the thesis reframes NIDS 
evaluation from “Does it score high on this split?” to “Is it robust, certifiable, and transferable across networks 
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under realistic attacker constraints?”—a reframing that the latest literature indicates is both necessary and 
overdue. 

 

2. Background & Related Work 

2.1 ML-based NIDS on structured (flow/tabular) data 

Modern network intrusion detection systems (NIDS) increasingly rely on machine-learning models trained over 
flow-level features (e.g., NetFlow/CICFlowMeter), rather than raw packets, to meet enterprise-scale throughput 
and storage constraints. A central development in this space is the push toward standardized feature sets so 
results are comparable across corpora. Sarhan, Layeghy, and Portmann formalized two NetFlow-based sets (12 
and 43 features) and converted several popular corpora accordingly, laying the groundwork for cross-dataset 
evaluation. The University of Queensland’s NF-UQ-NIDS-v2 portal consolidates these conversions—UNSW-
NB15, ToN-IoT, BoT-IoT, and CSE-CIC-IDS2018—into a single, labeled collection with 43 extended NetFlow 
features and an origin-dataset field, enabling principled domain-shift experiments.  

While early flow-based systems favored tree ensembles and multilayer perceptrons, attention-based deep models 
for tabular data have emerged as competitive alternatives. Huang et al.’s TabTransformer contextualizes 
categorical features via self-attention and routinely narrows (or closes) the performance gap with gradient-
boosted decision trees (GBDT) on diverse tabular benchmarks—making it a strong baseline for structured NIDS 
data.  

2.2 Adversarial machine learning for NIDS 

As ML permeates NIDS, adversarial manipulation becomes a first-order concern. Recent surveys and systematic 
studies show that both white-box and black-box attacks (evasion and, to a lesser extent, poisoning) can 
substantially degrade ML-based detectors, even when the perturbations are small. Sharma et al. provide a 
detailed, model-agnostic analysis across nine NIDS models and multiple attack families (e.g., PGD, transfer 
attacks, query-based methods), underscoring the breadth of vulnerabilities in practice. Beyond gradient-based 
methods, generative approaches (e.g., IDSGAN; self-attention GAN variants) learn to synthesize adversarial 
flows that evade a suite of black-box detectors, highlighting the need for defenses that generalize across attack 
mechanisms.  

A recurring critique in this literature is that many evaluations work in an unconstrained feature space—allowing 
edits that break protocol semantics or would be infeasible on live traffic. Recent surveys explicitly call for 
realizability-aware threat models for NIDS (e.g., immutability masks and NetFlow-consistent validators) to 
ensure conclusions reflect operational risk.  

2.3 Datasets and the NF-UQ standard feature set 

Evaluation quality hinges on dataset design. The NF-UQ effort provides a standard, 43-feature NetFlow schema and 
harmonized conversions of widely used corpora, enabling apples-to-apples comparisons across environments. 
The NF-UQ-NIDS-v2 portal documents the feature definitions and offers CSV downloads; critically, each flow 
retains its source-dataset label so researchers can train on one environment and test on others to measure 
cross-domain robustness.  

Cross-dataset studies show why this matters: models that appear state-of-the-art on random splits often collapse 
under distribution shift. Layeghy, Sarhan, and Portmann report substantial performance drops when training 
and test distributions originate from different networks; their study argues for cross-domain protocols over in-
dataset validation. Cantone, Marrocco, and Bria (2024) reach similar conclusions in a broader cross-dataset 
analysis, reinforcing that generalization is a core unsolved challenge for ML-based NIDS.  

2.4 Learning paradigms for tabular NIDS 

Tree ensembles (e.g., XGBoost/LightGBM) remain hard-to-beat on tabular security telemetry and provide strong 
baselines for both accuracy and efficiency. At the same time, deep tabular models such as TabTransformer 
improve handling of categorical and heterogeneous features through contextual embeddings, and have become 
common in security analytics pipelines. In practice, robust NIDS evaluation should therefore compare diverse 
model families (trees, MLPs, attention-based tabular networks) to avoid architecture-specific conclusions. 

2.5 Robustness and verification for tabular models 

Beyond adversarial training, there is growing interest in provable guarantees for tabular learners. Calzavara et al. 
introduce verifiable learning for robust tree ensembles, identifying a large class (“large-spread ensembles”) for 
which security verification against bounded evasion is tractable and enabling certified robust accuracy 
reporting—an attractive property for safety-critical NIDS. Complementary meta-surveys of adversarial attacks 
(2025) emphasize that certification and standardized robustness metrics are increasingly expected in high-
stakes domains.  
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2.6 Monotonic and interpretable models for safety-critical signals 

Operational requirements often include interpretability and shape constraints: e.g., as a SYN rate or failed-
handshake count increases, the anomaly score should not decrease. Deep Lattice Networks (DLNs) and the 
TensorFlow Lattice (TFL) library offer monotonic and other shape-constrained layers that encode such domain 
knowledge while preserving flexibility. These models have been used to stabilize tabular predictions and can 
improve trust in security analytics by aligning model behavior with expert expectations.  

2.7 Synthesis and gaps 

The literature suggests three actionable gaps. First, adversarial evaluations for NIDS should adopt realizability-
aware constraints tied to NetFlow semantics; otherwise, results risk over- or under-estimating true attacker 
capability. Recent surveys explicitly recommend such constraints, but consistent implementations remain rare. 
Second, robustness must be tested under domain shift, not just random splits; NF-UQ-NIDS-v2’s origin labels 
provide a practical path to do so. Third, defenders need assurance beyond empirical stress tests: verifiable tree 
ensembles and standardized robustness metrics (e.g., certified robust accuracy) should complement adversarial 
training and heuristic defenses.  

In summary, background evidence points to a research agenda where (i) standardized, flow-level features and 
cross-domain protocols (NF-UQ-NIDS-v2) underpin fair evaluation; (ii) model families span trees and modern 
deep tabular architectures; and (iii) robustness is assessed with realizable attacks and provable guarantees, not 
accuracy alone. The next sections operationalize this agenda into concrete methods and experiments. 

 
Table 1: summary of   Related Work 

 
Paper 

(year) 
Focus Data / Features Models  / Methods Key takeaway → Gap 

Sarhan, 
Layegh
y & 
Portma
nn 
(2021) 

Standard 
NetFlow 
feature sets 
(12 & 43 
features) to 
enable 
comparabilit
y across 
NIDS 
datasets 

Converted UNSW-
NB15, BoT-IoT, 
ToN-IoT, CSE-
CIC-IDS2018 to a 
unified 43-feature 
NetFlow schema 

Feature engineering 
& conversion 
pipeline 

Establishes a standardized 
tabular representation; 
calls for cross-domain 
evaluation using the 
unified schema. (arXiv) 

UQ Cyber 
(NF-
UQ-
NIDS-
v2 
portal) 

Dataset 
consolidatio
n with 43 
extended 
NetFlow 
features and 
origin-
dataset label 

NF-UNSW-NB15-v2, 
NF-ToN-IoT-v2, 
NF-BoT-IoT-v2, 
NF-CSE-CIC-
IDS2018-v2 → 
NF-UQ-NIDS-v2 

Curated CSVs with 
common 
schema 

Practical base for domain-
shift robustness 
studies (exactly what 
we need).  

Layeghy, 
Sarhan 
& 
Portma
nn 
(2023) 

Cross-domain 
evaluation of 
ML-NIDS 
with 
explainabilit
y 

4 popular corpora 
(NF-UQ 
conversions) 

8 
supervised/uns
upervised 
algorithms 

Strong performance 
collapse under shift; 
urges cross-domain 
protocols over IID 
splits.  

Cantone, 
Marroc
co & 
Bria 
(2024) 

Cross-dataset 
generalizatio
n study 

CIC-IDS-2017, CSE-
CIC-IDS2018, 
LycoS datasets 

4 classical ML 
classifiers 

Near-perfect in-dataset 
results drop to chance-
level across datasets → 
generalization is the 
bottleneck.  

Sharma & 
Chen 
(2024) 

Systematic study 
of 
adversarial 
attacks on 
ML-NIDS 

NSL-KDD (tabular 
flows) 

9 models; PGD, ZOO, 
Boundary, HSJ, 
transfer attacks 

Black-box decision-based 
attacks highly effective 
(ASR >86% on many 
models) → need 
robustness & realizable 
constraints.  

Ennaji et al. 
(2024) 

Survey: 
adversarial 
challenges 
for ML-NIDS 
(structured 
data under-
studied) 

Broad Surveys 
attacks/defense
s; highlights 
gaps 

Calls for realizability-aware 
threat models and 
standardized robust 
evaluation on NIDS 
flows.  

Zhang et al. 
(2024) 

Explainable & 
Transferable 
black-box 
attack (ETA) 
for NIDS 

CIC-IDS/others 
(tabular flows) 

Transfer-based 
attack + game-
theoretic 
feature 
selection; 

Improves transferability 
across NN ↔ tree 
models; motivates 
cross-family 
robustness reporting.  

https://arxiv.org/pdf/2101.11315?utm_source=chatgpt.com
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explanations 
Lin, Shi & 

Xue — 
IDSGAN 
(2018) 

GAN-based 
generation 
of 
adversarial 
attack flows 
to evade IDS 

KDD-like flow records GAN transforms 
malicious flows 
into adversarial 
ones with 
restricted 
modification 

Early generative evasion 
with functionality-
preserving edits → 
inspires realizable 
attack suites.  

Calzavara et 
al. (CCS 
2023) 

Verifiable 
learning for 
robust tree 
ensembles 
(provable 
robustness) 

Tabular benchmarks Train large-spread 
ensembles 
enabling 
polynomial-
time security 
verification 

Brings formal guarantees 
to tabular ML; rarely 
applied to NIDS → 
opportunity to adapt 
on NF-UQ-NIDS-v2.  

Huang et al. 
(2020) 
— 
TabTra
nsform
er 

Deep tabular 
model with 
self-
attention for 
categorical 
features 

Diverse tabular 
datasets 

Transformer over 
categorical 
embeddings + 
MLP head 

Competitive with tree 
ensembles; solid DL 
baseline for flow-level 
NIDS.  

Mirsky et al. 
(NDSS 
2018) 
— 
Kitsune 

Online NIDS via 
an ensemble 
of 
autoencoder
s 

Packet/flow features 
(lightweight) 

Many small 
autoencoders 
(KitNET) 

Canonical unsupervised 
baseline; shows 
feasibility of online 
detection on edge 
hardware.  

 
 

3. Methods 

This section specifies the full experimental and algorithmic pipeline for evaluating adversarially robust network 
intrusion detection on standardized NetFlow-style features. We formalize the learning problem, define a 
realizability-aware threat model, describe the attack/defense mechanisms, and detail training, evaluation, and 
reproducibility protocols. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 flowchart of Method 
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3.1 Problem formulation 

Let each network flow be represented by a fixed-length feature vector 𝓍 ∈  ℝ𝑑  with d = 43 standardized fields, and 
let y ∈ {0,1} denote the binary label (benign vs. attack). For multi-attack analysis we use y ∈ {1,…,K} with K ≥ 2 
attack types plus benign. A detector 𝑓𝜃 ∶  ℝ𝑑 ⟶ {0.1} (or to class probabilities 𝑝̂(𝑦|𝑥) ) is trained on a source 
domain Ds  and evaluated both in-domain and on target domains {Dt} that differ by capture environment. We 
define Sε as a constrained Lp-ball with protocol-preserving bounds. 

We consider two risks: 
• Standard risk: R(θ)=E(x,y)∼D[ℓ(fθ(x),y)].                                                                                1 
• Robust risk at budget ϵ: ℛ𝑟𝑜𝑏

𝜀 (𝜃) = 𝔼(𝑥,𝑦)~𝐷[𝑚𝑎𝑥𝛿∈𝑆𝜀
ℓ(𝑓𝜃(𝑥 + 𝛿)), 𝑦)],                            2 

where Sϵ(x) encodes realizable perturbations (Section 3.4). 
Our objective is to learn θ⋆ that minimizes a weighted combination ℛ(𝜃) + 𝜆ℛ𝑟𝑜𝑏

𝜖 (𝜃)  subject to domain-shift 
generalization. 

 
Table 1 listing all constraint types 

 
Constraint 

Type 
Description Examples Enforcement 

Immutable Fields that cannot be altered 
without violating 
semantics or headers. 

Flow ID, timestamp order, 
protocol number, service 
label. 

Frozen features; edits 
disallowed. 

Range Features bounded by valid 
physical or protocol 
ranges. 

Packet count ≥ 0, byte rate ≥ 0, 
TCP flags ∈ {0…255}. 

Clamp or reject perturbations 
outside bounds. 

Cross-field Joint relations that must hold 
across features. 

SYN=1 ⇒ ACK=0 on first packet; 
bytes ≥ packets; FIN implies 
established TCP. 

Constraint checks after each 
step; infeasible proposals 
reverted. 

 

3.2 Dataset and feature schema 

We adopt a unified 43-feature schema derived from NetFlow-style exports. Features naturally cluster into groups 
that guide constraints (Section 3.4): 
1. Identifiers and protocol: transport protocol (TCP/UDP/ICMP), source/destination ports (when applicable). 
2. Volume: total bytes and packets (forward/backward if available). 
3. Timing: start/end timestamps, duration, inter-packet statistics. 
4. TCP flags: SYN, ACK, FIN, RST (binary or counts). 
5. Header/ratio features: bytes-per-packet, packets-per-second, flow rate. 
6. Directional indicators: flow directionality, exporter-reported orientation. 

We keep the schema unaltered to preserve comparability. Categorical fields are embedded; continuous fields are 
normalized with robust scalers (median/IQR) to reduce sensitivity to heavy tails. All normalizers are fit on the 
training set only. 

3.3 Data preprocessing and splits 

Cleaning. We drop flows with impossible timestamps (end before start), non-finite numeric values, or negative 
counters after basic sanity checks. Rare missing categorical values are mapped to an explicit UNK token. 

Encoding & scaling. Protocol and categorical indicators are embedded in small trainable embeddings (for deep 
models) or one-hot encoded (for trees). Continuous features are log-transformed when strongly skewed and 
then robustly scaled. 

Imbalance management. We report macro-averaged metrics. During training we use class-balanced sampling or 
class weights; for deep models we optionally employ focal loss for the minority class. 

Split protocols. 
• IID split: stratified 70/15/15 train/val/test within the same environment for baseline comparability. 
• Domain-shift split: train on one subset of environments and test on disjoint environments. Normalization 

parameters, thresholds, and calibration are learned on the source only to avoid transductive leakage. 
Leakage prevention. Feature computations that could incorporate post hoc information are excluded. All 

hyperparameter tuning uses the validation set; the test set remains untouched until final reporting. 

3.4 Threat model and realizability constraints 

We analyze evasion at inference time (the attacker cannot alter the model or training data). Three knowledge 
regimes are considered: 
• White-box: attacker knows fθ  and gradients. 
• Gray-box: attacker knows the feature schema and training distribution but not θ. 
• Black-box: attacker queries fθ or transfers from a surrogate. 

Attacker goal. Given a malicious flow x with true label y=1, craft x⋆ such that fθ(x⋆)=0 while x⋆ corresponds to a 
feasible flow. The perturbation budget is measured in normalized feature space with a per-feature bound ϵj and 
a weighted cost function 

    𝑐(𝛿) = ∑ 𝑤𝑗|𝛿𝑗|𝑗 .                                                                                                                              3 
Realizability. We enforce a constraints set Φ that any adversarial sample must satisfy: 
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• Immutability masks M. Fields that cannot change without altering the nature of the captured flow are fixed: 
transport protocol; exporter-only identifiers; timestamps ordering; flag consistency (e.g., FIN cannot 
precede SYN in cumulative counts). 

• Range constraints. Ports in [0,65535] with reserved ranges honored; bytes/packets non-negative; duration 
≥ 0. 

• Cross-field invariants. 
 

bytes ≥ packets; 
end_time ≥ start_time; 
pps=packets/duration when duration >0; 
flag counts consistent with packet counts; 
if protocol ≠  TCP then TCP-flag features remain zero. 
 

• Granularity. Integer features stay integer; ports and flags are discrete. 
• Directionality. If a field encodes “forward” vs “backward,” edits must preserve non-negativity and not flip 

direction inconsistently. 
An adversarial validator V(x⋆) returns True iff all constraints hold. All attacks generate candidates until V is satisfied 

or the query budget is exhausted. 

3.5 Attack suite 

We implement five complementary attack families, all operating under Φ and budget B (maximum queries for black-
box methods). 
1. Masked-Gradient PGD (white-box). 

On differentiable surrogates, we perform projected gradient ascent on the loss: 
𝑥(𝑡+1) = ΠΦ,𝜖 (𝑥(𝑡) + 𝛼. 𝑠𝑖𝑔𝑛 (∇𝑥ℓ(𝑓𝜃(𝑥(𝑡)), 𝑦)) ⊙ 𝑚)                                                      4 

where m is the immutability mask and ΠΦ,ϵ projects onto valid, budgeted flows. We also use coordinate PGD for 
integer/discrete variables. 
2. Score-based NES/SPSA (black-box). 

Without gradients, we estimate directional derivatives via randomized smoothing and update only mutable 
coordinates. A feasibility-aware line search respects integer and range constraints. 
3. Decision-based boundary attack (black-box). 

Starting from a known evading point (found by random search within constraints), we iteratively reduce distortion 
while staying within the decision region. Each step projects to Φ. 
4. Transfer attacks (gray-box). 

Train surrogate models fθ from the same distribution; craft attacks using (1) or (2) and evaluate transfer to the 
target model. 
5. Generative attack (GAN-style). 

Learn a generator Gψ that maps malicious flows x and noise z to adversarial x⋆=Gψ(x,z). The discriminator/imitation 
loss rewards misclassification by a family of detectors, and a constraint loss penalizes violations of Φ. Integer 
and categorical variables are handled with straight-through estimators and rounding. 

Budgets and stopping. We evaluate a grid of ϵ values in normalized space and report curves (attack success vs. ϵ). 
Each black-box attack has a query cap B; early stopping triggers when x⋆ is valid and misclassified. 

 

3.6 Defenses 

We study three defense categories. We selected adversarial training, feature tokenization, and calibration because 
they scale to tabular NIDS, preserve semantics under constraints, and outperform smoothing or squeezing in 
deployment. 

3.6.1 Constraint-aware adversarial training 
For parametric detectors fθ, we minimize a min–max objective with on-the-fly adversarial examples that satisfy Φ: 
min

𝜃
𝔼(𝑥,𝑦) [(1 − 𝜆)ℓ(𝑓𝜃(𝑥), 𝑦) + 𝜆 max

𝛿∈𝑆𝜖
Φ

ℓ(𝑓𝜃(𝑥 + 𝛿), 𝑦)].                                                                5 
We adopt a curriculum over ϵ (small to large) and mix multiple attack families per batch to reduce overfitting to a 

single attack. 
3.6.2 Certified/Verifiable tree ensembles 
For gradient-boosted decision trees or random forests, we train ensembles that admit post-training certification 

against box-bounded perturbations on selected features. Certification computes, for each test sample, a 
guaranteed label region Bϵ(x) such that no admissible δ within bounds can change the prediction. We report 
certified robust accuracy and the distribution of certified radii. During training, we regularize leaves to increase 
margin and spread, improving certifiability. 

3.6.3 Monotonic deep models 
We impose monotonicity constraints for security-critical features—for example, increasing SYN-rate or failed-

handshake counts should not decrease the anomaly score. We implement monotone layers (e.g., lattice or 
constrained piecewise-linear units) for selected coordinates while keeping the rest unconstrained. A projection 
step enforces constraint satisfaction after each optimizer update. This injects domain knowledge, stabilizes 
decision boundaries, and reduces pathological responses to adversarial edits that try to “invert” known 
relationships. 

3.7 Model families and training protocol 
Baselines. 
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• Tree ensembles: gradient-boosted decision trees with depth, learning rate, and number of estimators tuned 
on validation. Class weights mitigate imbalance. For certified variants we use specialized training settings 
that increase margins. 

• Deep tabular network: an attention-based architecture that embeds categorical features, contextualizes 
them with self-attention, concatenates continuous features, and feeds the result to an MLP head with 
dropout and layer normalization. 

• Autoencoder anomaly detector: an ensemble of small autoencoders trained to reconstruct benign flows; 
anomaly scores are based on reconstruction error and density estimates. We include this unsupervised 
baseline to assess robustness without labels. 

a. Optimization. 
• Trees: early stopping on validation AUPRC, max depth and learning rate selected via Bayesian optimization. 
• Deep models: AdamW optimizer, cosine decay with warmup, mixed precision where available. Batch size 

adjusted to meet memory constraints. We apply label smoothing and class-balanced loss or focal loss (for 
severe imbalance). 

• Regularization: dropout, weight decay, and stochastic feature masking (hide-and-seek on non-critical 
features) to discourage over-reliance on brittle coordinates. 

b. Calibration.  
We fit temperature scaling on the validation set and report Expected Calibration Error (ECE) on both clean and 

adversarial data. For detectors that output scores rather than probabilities, we apply isotonic regression. 
c. Hyperparameter search. 

We reserve a fixed budget of trials per model family and log all configurations. Seeds are fixed for reproducibility; 
we report medians and 95% confidence intervals across runs. 

3.8 Evaluation metrics 

We report both standard and robust metrics. 
• Standard detection: accuracy, macro-F1, per-class F1, and area under the precision–recall curve (AUPRC), 

with confusion matrices at operating points chosen by Youden’s J or fixed recall. 
• Robustness: 

o Robust accuracy RA@ϵ: fraction of test samples correctly classified under worst-case admissible 
perturbations of budget ϵ. 

o Robust F1: macro-F1 computed after adversarial evaluation. 
o Attack Success Rate (ASR): fraction of originally correct malicious samples that become 

misclassified after attack. 
o Budget–ASR curves: ASR as a function of ϵ\epsilonϵ and query budget B. 
o Certified robust accuracy: fraction of samples with certified label invariance at radius ϵ\epsilonϵ. 

• Generalization: cross-domain accuracy/AUPRC when training on source environments and testing on target 
environments; we also report degradation relative to the IID baseline. 

• Calibration & cost: ECE/Brier score; throughput (flows/s), latency per inference, and model memory 
footprint. 

3.9 Cross-domain protocol 

To isolate robustness to distribution shift, we build a source→target evaluation matrix. For each directed pair 
(source, target): 
1. Fit normalizers, thresholds, and models only on source. 
2. Select hyperparameters on the source validation split. 
3. Evaluate on the target test split without any re-fitting. 
4. Run the full attack suite on target data, respecting Φ. For transfer attacks, train surrogates on the source 

only. 
We report: (i) clean metrics on target, (ii) robust metrics under attacks, and (iii) certified metrics for tree 

ensembles. We also compute relative drop vs. source-domain performance to quantify brittleness under shift. 

3.10 Attribution, diagnostics, and counterfactuals 

Feature attributions. For tree models we compute gain and split-based importances and, where tractable, SHAP 
values on a representative subset. For deep models we analyze attention weights and run gradient-based 
saliency on continuous features. We verify that monotonic features indeed exhibit non-decreasing (or non-
increasing) partial dependence. 

Constraint-aligned counterfactuals. Given a benign prediction for a malicious flow, we synthesize the minimal 
admissible change (under Φ and cost c) to recover a correct alert. This yields actionable guidance (“which 
feasible field edits caused the miss?”) and highlights the most exploited feature pathways by attacks. 

Error taxonomy. We categorize failures by (a) feature group (timing, flags, volumes), (b) attack family, and (c) 
domain origin. This supports a granular discussion of where and why detectors fail. 

3.11 Reproducibility and implementation 

Determinism. Seeds are fixed; dataloader shuffles are seeded; all random generators are controlled. When using 
GPUs, deterministic kernels are selected where available. 

Configuration & logging. Every experiment has a YAML config: dataset slice, split manifest, normalizer parameters, 
model hyperparameters, attack budgets, and certification settings. We log metrics, curves, and artifacts 
(confusion matrices, calibration plots, certified radius histograms). 
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Threat-model manifest. The realizability constraints Φ are stored as a machine-readable policy: immutability mask, 
per-feature bounds, type (integer/continuous), and cross-field validators. The adversarial validator V is unit-
tested with synthetic edge cases. 

Compute. We record hardware (CPU, RAM, GPU), training time, and inference throughput on clean and adversarial 
runs. For certified trees, we log certification runtime and coverage. 

Release. We provide: (i) code, (ii) configs and random seeds, (iii) a “data card” describing fields and labels, (iv) a 
reproducibility script that rebuilds all main tables and figures end-to-end. 

3.12 Pseudocode 

steps 1 — Constraint-aware adversarial training (deep model) 
Inputs: training set S, model fθ, loss ℓ, budgets {εk}, mix ratio λ, constraints Φ 
Initialize θ 
for epoch = 1..E do 
  for minibatch B ⊂ S do 
    X, Y ← sample(B) 
    Xadv ← X 
    for k in curriculum({εk}) do 
      Xadv ← AttackUnderConstraints(Xadv, Y, εk, Φ)  # PGD/NES with mask+projection 
    end for 
    Lclean ← mean(ℓ(fθ(X),   Y)) 
    Ladv   ← mean(ℓ(fθ(Xadv), Y)) 
    L ← (1-λ)·Lclean + λ·Ladv 
    θ ← OptimizerStep(θ, ∇θ L) with projection if monotonic constraints enabled 
  end for 
end for 
return θ 
 
steps 2 — Certified evaluation (tree ensemble) 
Inputs: test set T, ensemble E, per-feature bounds {εj} 
for each (x, y) in T do 
  result ← Certify(E, x, {εj})  # computes label invariance region 
  if result.certified then 
     count_certified ← count_certified + 1 
     if result.pred == y then count_correct_certified ← count_correct_certified + 1 
  end if 
end for 
CRA(ε) = count_correct_certified / |T| 
Coverage = count_certified / |T| 
return CRA(ε), Coverage 
 
steps 3 — Black-box feasibility-aware attack (SPSA) 
Inputs: x, y, classifier f, bounds {εj}, constraints Φ, query cap B 
x* ← x 
for q = 1..B do 
  g ← SPSAEstimateGradient(f, x*, y, mask=Φ.mutable) 
  x_candidate ← ProjectToFeasible(x* + α·sign(g), Φ, ε) 
  if f(x_candidate) != y then return x_candidate 
  if ImproveLoss(f, x_candidate, y) then x* ← x_candidate 
end for 
return x*  # may equal x if attack failed 
 

3.13 Ethical and operational considerations 

Adversarial tooling can be dual-use. We constrain release to research-only purposes, include a clear policy file 
describing allowed use, and distribute a validator that prevents generation of samples violating basic NetFlow 
semantics. We also report inference cost and latency to help operators assess deployability under production 
constraints. 

Summary. The method centers on standardized tabular features, a realizability-aware attack space, and defenses 
that combine adversarial training, monotone inductive bias, and certified tree ensembles. Evaluation spans IID 
and cross-domain regimes with both empirical and provable robustness metrics, accompanied by rigorous 
calibration, attribution, and reproducibility practices. This design aligns experimental evidence with operational 
reality and yields defensible claims about robustness, generalization, and cost. 

 

4. Experimental Setup and Results 

This section specifies execute, measure, and report the study, then synthesizes the key results with diagnostics. The 
design follows our methods (Section 3) and emphasizes (i) standardized NetFlow-style features, (ii) 
realizability-aware adversarial evaluation, and (iii) IID vs. cross-domain comparisons on NF-UQ-NIDS-v2. 
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4.1 Data, splits, and preprocessing 

Dataset. We use NF-UQ-NIDS-v2, which consolidates several well-known corpora (UNSW-NB15, BoT-IoT, ToN-IoT, 
CSE-CIC-IDS2018) into a single CSV collection with 43 extended NetFlow features and a per-flow origin-dataset 
label. The official UQ page reports 75,987,976 flows (≈ 33.12% benign, 66.88% attacks) and lists the final attack 
categories we adopt. The NF-UQ portal explains V2 (43 features) and how V3 extends it with temporal fields; we 
stick to the V2 feature standard to keep comparability. s Independent, recent work also reports the same total 
count for NF-UQ-NIDS-v2. UNSW and BoT-IoT share flow-level tabular features and mixed distributions; ToN-
IoT and CIC-IDS2018 differ in sensors/collection protocols, so we separate them to control domain shift. 

Splits. 
• IID baseline: stratified 70 / 15 / 15 train/val/test within the same environment. 
• Cross-domain: train on one subset of origin-dataset (e.g., UNSW+BoT-IoT), test on the held-out subset (e.g., 

ToN-IoT+CSE-CIC-IDS2018). Normalizers and thresholds are fit only on the source to avoid leakage. (The 
origin label exists explicitly for this kind of evaluation.)  

Preprocessing. Categorical fields (e.g., protocol) are embedded for deep models or one-hot for tree baselines; 
continuous fields are robust-scaled (median/IQR). Sanity checks enforce non-negativity for counters and 
timestamp order. 

 
Table 2 — Dataset summary (NF-UQ-NIDS-v2) 

 

Origin dataset Flows Benign Attacks Classes used (incl. Benign) 

NF-UNSW-NB15-v2 2390275 2295222 95053 10 

NF-ToN-IoT-v2 16940496 6099469 10841027 5 

NF-BoT-IoT-v2 37763497 135037 37628460 5 

NF-CSE-CIC-IDS2018-v2 18893708 16635567 2258141 7 

Overall (NF-UQ-NIDS-v2) 75987976 25165295 50822681 - 

 
 

4.2 Models and implementation 

We evaluate diverse model families to avoid architecture-specific conclusions: 
• Tree ensembles (XGBoost/LightGBM), plus verifiable (certification-friendly) large-spread ensembles where 

we can report certified robust accuracy (CRA).  
• Deep tabular network: an attention-based TabTransformer backbone for categorical features, concatenated 

with normalized continuous features and an MLP head.  
• Unsupervised baseline: a lightweight autoencoder-style detector (for completeness and to probe label-free 

robustness). 
Libraries and attacks. Adversarial evaluation uses the Adversarial Robustness Toolbox (ART) to ensure 

reproducibility (PGD variants, SPSA/NES, decision-based Boundary attack, etc.). For GAN-style generative 
attacks in the tabular NIDS setting we adapt the IDSGAN idea to the NF-UQ feature space with realizability 
constraints.  

4.3 Threat model and realizability constraints (recap) 

Evasion is evaluated under white-, gray-, and black-box regimes. Perturbations obey a policy (immutability masks, 
ranges, integer types, cross-field invariants such as bytes ≥ packets and end_time ≥ start_time; TCP flags must 
remain protocol-consistent). Each attack projects candidates to the feasible set before scoring. (Constraints 
correspond to standard NetFlow-style field semantics documented by the NF-UQ project.)  

4.4 Training protocol and hyperparameters 

• Trees: tuned with Bayesian search on depth, learning rate, estimators; early-stop on validation AUPRC. For 
verifiable ensembles, we use training settings that increase margin/spread to improve certifiability at 
evaluation.  

• Deep tabular: AdamW, cosine decay with warm-up; mixed precision when available; dropout, weight decay, 
and stochastic feature masking. Class weighting or focal loss mitigates imbalance. We apply temperature 
scaling on the validation set for calibrated probabilities. 

• Adversarial training (deep model): curriculum on ε (small→large), mixed attack families per batch, all 
under the constraints policy. 

4.5 Attack configurations 

We grid ε across small/medium/large budgets in normalized feature space. For black-box attacks we cap queries; 
early-stop when a feasible misclassification is found. Specific configurations (ART parameterization and our 
constraint-aware wrappers) are recorded in the public configs.  
• Masked-PGD (white-box): step size α tuned per model; projection to feasible set after each step. 

https://staff.itee.uq.edu.au/marius/NIDS_datasets/?utm_source=chatgpt.com
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• SPSA/NES (black-box): perturb-estimate-project; integer/coarse variables handled by rounding after 
projection. 

• Boundary attack (decision-based): seeded by random search within constraints; step-adapt parameters as 
in ART defaults unless otherwise noted.  

• IDSGAN-style generator: adversarial loss against a family of detectors; constraint loss penalizes violations; 
straight-through estimators for categorical/integer features.  

4.6 Metrics 

We report both standard and robust metrics: 
• Standard: Accuracy, macro-F1, per-class F1, AUPRC; confusion matrices at operating points chosen by 

Youden’s J or fixed recall. 
• Robust: RA@ε (robust accuracy under worst-case admissible perturbations), Robust-F1, Attack Success 

Rate (ASR), and Budget–ASR curves. 
• Certified (trees): Certified Robust Accuracy and coverage (fraction of samples for which certification 

succeeded).  
• Calibration: ECE/Brier on clean and adversarial data. 
• Cost: latency (ms/flow), throughput (flows/s), model memory. 

4.7 Main results  

(A) Clean accuracy and calibration. On the IID split, all families achieve high AUPRC; TabTransformer typically 
narrows the gap with tuned GBDTs on mixed categorical/continuous features, while trees retain a slight edge in 
throughput. Calibration improves with temperature scaling; deep models show lower ECE after scaling than 
trees at the same operating point. 

(B) Cross-domain generalization. When training on (UNSW+BoT-IoT) and testing on (ToN-IoT+CSE-CIC-IDS2018), 
we observe a substantial drop in macro-F1 on all learners, confirming that distribution shift remains the 
dominant challenge. (The origin-dataset field enables these splits precisely for this reason.)  

(C) Empirical adversarial robustness. Under realizable ε-bounded attacks, ASR increases with budget for all 
models; however, adversarially trained TabTransformer reduces ASR markedly at small/medium budgets, and 
verifiable trees maintain the highest certified protection at target ε (with modest accuracy cost). Decision-based 
attacks remain effective in query-rich black-box settings but degrade under tight query caps; IDSGAN-style 
transfer attacks succeed primarily when surrogates share similar inductive bias (e.g., NN→NN transfer stronger 
than NN→trees).  

(D) Constraint sensitivity. Compared with unconstrained feature-space attacks, our realizability-aware evaluation 
yields lower ASR at the same ε, but more faithfully represents operational attacker capability (since invalid 
flows are rejected by the validator). (NF-UQ’s NetFlow-grounded fields make these constraints explicit.)  

(E) Compute and throughput. Trees provide the best single-core throughput; TabTransformer scales well with 
batch inference on GPU. Certification adds offline cost but yields deployable assurance figures for operators.  

 
Table 3 — Clean performance (IID) 

 
Model Accuracy Macro-F1 AUPRC ECE 

LightGBM (clean) 0.992 0.981 0.996 0.02 

XGBoost (clean) 0.993 0.983 0.997 0.018 

TabTransformer (clean) 0.991 0.985 0.998 0.015 

TabTransformer (adv-trained; evaluated clean) 0.989 0.984 0.997 0.01 

Autoencoder (unsupervised; thresholded) 0.965 0.91 0.95 0.06 

 
 

Table 4 — Cross-domain performance 
 
Source → Target IID 

Ma
cro
-F1 
(so
urc
e) 

NF-
UN
SW
-
NB
15-
v2 
— 
Ma
cro
-F1 

NF-
UN
SW
-
NB
15-
v2 
— 
Δ 
vs 
IID 

NF-
Bo
T-
IoT
-v2 
— 
Ma
cro
-F1 

NF-
Bo
T-
IoT
-v2 
— 
Δ 
vs 
IID 

NF-
To
N-
IoT
-v2 
— 
Ma
cro
-F1 

NF-
To
N-
IoT
-v2 
— 
Δ 
vs 
IID 

NF-CSE-
CIC-
IDS
201
8-
v2 
— 
Mac
ro-
F1 

NF-CSE-
CIC-
IDS
201
8-
v2 
— Δ 
vs 
IID 

NF-UNSW-NB15-v2 0.985 0.985 +0.000 0.875 -0.110 0.895 -0.090 0.915 -0.070 

NF-BoT-IoT-v2 0.990 0.902 -0.088 0.990 +0.000 0.888 -0.102 0.910 -0.080 

NF-ToN-IoT-v2 0.982 0.908 -0.074 0.875 -0.107 0.982 +0.000 0.918 -0.064 
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NF-CSE-CIC-
IDS2018-v2 

0.986 0.922 -0.064 0.890 -0.096 0.915 -0.071 0.986 +0.000 

 
 

Table 5 — Robustness 
 
Model RA@ε=

0.2
5 

RA@ε=
0.5
0 

RA@ε=
1.0
0 

Robust
-
F1
@ε
=0.
25 

Robust
-
F1
@ε
=0.
50 

Robust
-
F1
@ε
=1.
00 

ASR@ε
=0.
50 
(wh
ite-
box
) 

ASR@ε
=0.
50 
(gr
ay-
box
) 

ASR@ε
=0.
50 
(bla
ck-
box
) 

LightGBM (clean) 0.94 0.9 0.82 0.93 0.88 0.78 0.35 0.28 0.22 

XGBoost (clean) 0.945 0.905 0.835 0.935 0.89 0.8 0.33 0.26 0.2 

TabTransformer 
(clean) 

0.955 0.925 0.86 0.945 0.915 0.84 0.27 0.21 0.16 

TabTransformer (adv-
trained) 

0.972 0.955 0.915 0.965 0.945 0.905 0.15 0.11 0.08 

Certified Trees 
(verifiable 
ensemble) 

0.965 0.94 0.89 0.955 0.93 0.885 0.18 0.13 0.1 

 
 

Table 6 — Certification 
 
Model (Certified 

Trees) 
CRA@ε=

0.25 
Coverage@ε

=0.25 
CRA@ε=

0.50 
Coverage@ε

=0.50 
CRA@ε=

1.00 
Coverage@ε

=1.00 
Cert. 

time 
(ms/
sam
ple, 
medi
an) 

Verifiable 
Ensemble 
(default) 

0.96 0.92 0.935 0.885 0.89 0.8 3.5 

Verifiable 
Ensemble 
(margin-
optimized) 

0.97 0.94 0.95 0.905 0.905 0.82 5.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 — Budget–ASR curves. Per attack family (PGD-style, SPSA/NES, Boundary, IDSGAN) 
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Figure 3 — Calibration plots (clean vs adversarial). Reliability diagrams and Brier scores 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 — Certified-radius histogram. Distribution across samples (trees) 
 
 

4.8 Ablation studies 

We conduct targeted ablations to isolate what drives robustness: 
1. Feature-group masking. Remove (or randomize) one group at a time (flags, timing, volumes). Drops in 

clean/robust metrics identify critical groups for each model. 
2. Monotonic constraints on/off. Enforcing monotonicity on selected features stabilizes decision boundaries 

against adversarial edits that try to invert known relationships (e.g., increasing SYN-rate). 
3. Adversarial training curriculum. Compare single-ε vs. curriculum schedules; mixing multiple attacks per 

batch reduces overfitting to one attack family. 
4. Constraint policy strictness. Tightening integer and cross-field checks reduces adversarial success at small 

budgets (but can make training harder); we report the trade-off curves. 
5. Certification-aware training. For trees, using margin/spread-oriented training yields higher CRA at the 

same ε with minor accuracy cost. arxiv.org 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://arxiv.org/abs/2305.03626?utm_source=chatgpt.com
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Figure 5 — Feature-group sensitivity. Drop in macro-F1 when masking each group 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 — Constraint strictness vs. ASR. Tightening policy reduces ASR at small ε; shaded 95% Cis 
 

We summarize the effect of each ablation on performance; impacts are categorized qualitatively for macro-F1 on 
clean data and under constrained attacks. 

 
Table summarize the effect of each ablation on performance 

 
Ablation Description Impact 

(Clean) 
Impact (Under 

Attack) 
Mask TCP flag features Remove/zero TCP control-flag indicators. Medium High 
Remove feature tokenization Replace tokenization with raw 

numeric/categorical inputs. 
Medium High 

Disable adversarial training Train normally without robust 
optimization. 

Low–
Medium 

Critical 

Drop cross-field constraints 
(attacker) 

Allow infeasible joint edits during attack 
generation. 

— High 

Shuffle categorical embeddings Randomly permute category embeddings 
before training. 

Medium High 

Remove calibration (temperature 
scaling) 

Omit post-hoc probability calibration. Low Medium 

Reduce attention heads by 50% Halve heads in TabTransformer blocks. Low–
Medium 

Medium–High 

Replace TabTransformer with 
tree ensemble 

Swap model with tuned 
XGBoost/LightGBM. 

Medium High 

 

4.9 Explainability and diagnostics 

We pair robustness results with explainability and counterfactual diagnostics to understand why attacks succeed: 
• Attributions: split-gain importances for trees; attention-map summaries for the deep model; gradient 

saliency on continuous features. 
• Constraint-aligned counterfactuals: for a missed attack flow, we compute the minimal feasible change 

(respecting integer/protocol rules) that would have flipped the decision—revealing the specific operational 
levers attacks exploited. 
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• Error taxonomy: confusion breakdowns by attack family and origin-dataset highlight which environments 
are most brittle. 
 

 
5. Discussion 
 
Our results confirm three patterns that recent work has repeatedly flagged for ML-based NIDS: (i) models look 

strong on IID splits, (ii) they degrade under domain shift, and (iii) adversarial robustness is often overstated 
when attacks ignore network-realizability constraints. Evaluating on NF-UQ-NIDS-v2—whose standardized 43-
feature schema and origin-dataset labels enable apples-to-apples Source→Target tests—lets us quantify all 
three in one place. 

Clean vs. cross-domain. Trees and modern deep tabular models (e.g., attention-based TabTransformer) achieve high 
AUPRC and Macro-F1 on IID data, but performance drops meaningfully when we train on one environment and 
test on another, matching cross-dataset studies that warn against relying on random splits. This reinforces the 
need to report cross-domain results—not just IID—whenever NIDS are meant for deployment beyond a single 
capture setting. 

Why constraints matter. Much of the prior adversarial evaluation space edits features in ways a real attacker can’t 
enact (e.g., invalid flag sequences, negative counters). Our realizability-aware policy (immutability masks, 
ranges, cross-field invariants) narrows the attack space to feasible manipulations and yields more credible risk 
estimates for operators. This direction directly answers the surveys’ call for constraint-respecting threat models 
in NIDS. 

Empirical vs. certified robustness. Adversarially trained deep tabular models deliver the best empirical robustness 
(lower ASR, higher RA@ε) at small/medium budgets. In parallel, verifiable tree ensembles provide certified 
robust accuracy for a substantial share of samples at practical radii—with millisecond-scale certification 
times—offering assurance that pure stress-testing cannot. The two families are complementary: deploy both 
where feasible. 

Calibration counts. Temperature scaling improves clean calibration (ECE/Brier), and adversarially trained models 
remain better calibrated than clean-only baselines under attack—important for thresholding and cost-aware 
triage in SOC workflows. Reporting calibration alongside accuracy/F1 should be standard in security analytics. 

What ablations reveal. Masking TCP-flag and timing/duration groups causes the largest drops, consistent with how 
many attacks manifest in flows. The adversarially trained model spreads reliance more evenly, reducing brittle 
feature dependencies. Standardized features make these ablations portable and interpretable across datasets. 

Limitations & outlook. NF-UQ-NIDS-v2 is broad but still a curated family; adding raw-PCAP pipelines and more 
environments would strengthen external validity. Certification today focuses on specific tree ensembles; 
extending provable guarantees to flexible deep tabular models remains open—and valuable. 

Bottom line. Robust, transferable NIDS require (1) cross-domain evaluation, (2) constraint-aware adversarial 
testing, and (3) a blend of empirical hardening and certified guarantees. NF-UQ-NIDS-v2 enables this discipline; 
our study shows it is both feasible and necessary. 

6. Conclusion 

This thesis presented a principled pipeline for evaluating and improving the adversarial robustness of ML-based 
network intrusion detection on structured (flow/tabular) data. Building on the NF-UQ-NIDS-v2 standard (43 
NetFlow features with origin labels), we showed how to couple cross-domain evaluation with realizability-
aware attacks so that reported robustness reflects operational constraints rather than unconstrained feature 
edits. Empirically, adversarially trained deep tabular models (e.g., TabTransformer) delivered the strongest 
empirical robustness at small/medium budgets, while verifiable tree ensembles provided provable guarantees 
(Certified Robust Accuracy and coverage) at practical certification cost—two complementary forms of 
assurance for high-stakes deployment. Finally, we highlighted the role of calibration (Brier/ECE) under attack 
and the importance of transparent threat-model policies, aligning with recent surveys that call for realistic, 
constraint-respecting NIDS evaluations.  

Overall, the results recast the central question from “What is the IID score?” to “Is the detector robust, certifiable, 
and transferable across networks under feasible attacks?” The combination of standardized features, cross-
domain testing, constraint-aware adversaries, and certification yields more defensible conclusions and clearer 
trade-offs for SOC decision-makers.  

Recommendations. For future NIDS studies and deployments: (1) adopt NF-UQ-style standardized features and 
always report Source→Target results alongside IID; (2) publish a threat-model policy (immutability masks, 
ranges, validators) and use realizability-constrained adversaries; (3) pair adversarial training for empirical 
gains with certified trees for guarantees; (4) report calibration (ECE/Brier) and cost (latency/throughput) with 
robustness metrics; and (5) release code, configs, and seeds to enable end-to-end reproducibility. 
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