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A B S T R A C T 

Convolutional neural networks (CNNs) have emerged as a powerful tool in medical image 
analysis, enabling automated disease detection with high accuracy. In this study, a CNN-based 
approach was applied to retinal images to detect diabetic retinopathy, a leading cause of 
vision impairment in diabetic patients. Traditional detection methods rely on manually 
defined image features, such as blood vessels or exudates, which can limit diagnostic accuracy 
and require significant human intervention. These approaches also face challenges in 
identifying subtle pathological variations due to the complex and diverse visual patterns in 
retinal images. 

The proposed CNN model automatically extracts relevant visual features and classifies retinal 
images without manual intervention, achieving robust performance in distinguishing 
between Moderate and No Diabetic Retinopathy cases. Furthermore, the system is designed 
for potential integration into Internet of Things (IoT) environments, allowing real-time, 
remote diagnostics and supporting improved healthcare delivery. These results demonstrate 
the potential of CNNs to enhance automated screening and contribute to more efficient, 
accurate diabetic retinopathy detection. 

MSC. 

https://doi.org/ 10.29304/jqcsm.2025.17.42556 

1. INTRODUCTION 

Diabetes mellitus is recognized as one of the most prevalent and rapidly increasing chronic diseases worldwide. It 
constitutes a major global health burden according to the World Health Organization (WHO). Since 1965, numerous 
research studies have been conducted to improve awareness and promote specific standards for the diagnosis, 
monitoring, and treatment of diabetes [1]. In diabetes, the human body either fails to produce sufficient insulin to 
regulate blood sugar levels or cannot effectively utilize the insulin produced. This dysfunction leads to several 
complications, including kidney disease, cardiovascular disorders, nerve damage, blindness, and damage to blood 
vessels [2]. 

The Internet of Things (IoT) represents one of the most transformative developments in modern technological 
history. It enables real-time communication and data exchange between connected devices and systems. Machine 
Learning (ML), a subset of artificial intelligence, focuses on the development of algorithms that can learn and make 
predictions based on data [3,4]. As medical data have become increasingly digitized, the role of machine learning 
has grown significantly in detecting and predicting various diseases. Over the past decade, researchers in both 
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medical and machine learning fields have explored numerous approaches for early disease detection and diagnosis 
within the healthcare sector [5,6]. 

Recent technological advancements have made it possible to integrate IoT and machine learning in healthcare 
applications. In clinical environments, this combination can create intelligent and interconnected systems that assist 
healthcare professionals and patients through continuous monitoring, data analysis, and decision support. IoT 
technology focuses on gathering information from various sources, while machine learning emphasizes analyzing, 
enriching, and drawing conclusions from this data. The main goal of IoT is to create a “smart” environment by 
providing accurate, timely, and context-aware information that supports automated decision-making processes. 

Modern lifestyles—characterized by irregular eating habits, poor nutrition, environmental pollution, lack of physical 
activity, long working hours, and chronic stress—have been identified as major risk factors for developing chronic 
diseases such as diabetes. Studies indicate that approximately 40% of young adults, middle-aged individuals, and 
working women in many countries lead sedentary lifestyles that negatively impact their overall health [10]. As a 
result, integrating IoT and machine learning technologies can provide a valuable framework for healthcare systems 
to promote early diagnosis, continuous monitoring, and improved management of diabetes, ultimately enhancing 
the quality of life for patients. 

 

Related Works 

Various health systems are devised to facilitate early diagnosis and continuous observation of a patient’s health. 
Various methods has taken in the proposed systems to show the patient health. IoT technology are a great 
importance in the both medical and technology scale. Over the last few years, a number of studies on IoT based for 
the medical systems have been made. One method [11] that Still et al. used was machine learning with player heart 
rate via an IoT system to determine stress beforehand. A pulse sensor is used to determine the heart rate of that 
patient.  

In [12] describes the applicability to work in an Intelligent IoT system on the Machine Learning in healthcare and 
medicine, illustrated by a building a multi-layer architecture. The fast ability of such an architecture is discovered 
through a study of ECG based arrhythmia detection, using the deep learning technology and convolutional neural 
network (CNN. This paper presents an IoT application integrated with machine learning technology to create a next 
generation of automation system. In [13], they utilize a diabetes data set for experimental purpose. 

As a next step, the proposed system has future work for other applications like observations, weather forecasts etc. 
In [14] the authors presented a system for monitoring real time detection system for the monitoring of health 
conditions of soldiers in the war in real time which may become lost and are injured in the Warfield. The 
researchers used different ways for data acquisition. To transmit this real time data from the sensors to the cloud 
system, they used networking components such as LoRa WAN and ZigBee. For data analysis and predictions on2 
==> 4 warzone environments, the authors used K-Means Clustering algorithm for machine learning.  

While K-Mean Clustering generated valuable of early prediction, performance might be improved using density-
based clustering algorithms like the DBSCAN because it can also discover clusters of arbitrary for a multiple shape. 
In [15], the researcher proposed a fuzzy discernibility matrix based on a feature selection Wau, utilizing the 
parameter K for Motor and EEG Signal Classification. Based on the accuracies of the generation by the Support 
Vector Machine and Ensemble variations of classifiers, the proposed method outperformed the state-of-the-art 
methods. 

 

3.propose system 

This project aims to detect diabetes by analyzing retinal images using artificial intelligence techniques. A 
convolutional neural network (CNN) algorithm was used to extract visual features indicative of diabetic retinopathy. 
Ready-made medical images were taken from a specialized library containing accurate classifications of various 
disease conditions. After training the model on these images, it was able to distinguish between normal cases and 
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those with varying degrees of the disease. The images were pre-loaded into the system for automatic analysis. The 
system is integrated within the Internet of Things (IoT) environment, where the analysis results are sent to a 
medical platform or application for case monitoring. Work is performed on ready-made images. This system 
provides a smart and accurate way to detect diabetes in its early stages. It also contributes to improving diagnostic 
processes and supporting automated medical decision-making. The project represents a step towards integrating 
artificial intelligence with smart healthcare systems. 

3.1 Dataset, Hardware and Software 

 The testing data, which was sourced from the Kaggle website (https://www.kaggle.com) which have over 1000 
images, of a 6M pixels. Since those images were then resized and we executed the CNN on the NVIDIA of a 
moderately GPU with 2880 CUDA cores and also comes with the NVIDIA CUDA, we were able to train with the full 
dataset. Using this library allowed us to use approximately 15,000 of images to be uploaded on to GPU memory one 
at a time, the images was disturbed between two classes; Moderate and No_Dr and balanced as two equal classes to 
prevent over fitting on the model and to provide enough balanced data for testing. The deep learning package used 
was Keras (http://keras.io/) with the (http://deeplearning.net/software/theano/) as the back-end algorithm 
because of the documentation to achieve a faster calculation time. A sample of an image could be classified in 0.04 
seconds indicating feedback for the patient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Bright and Contrast Distributions for every class. 

3.2. Data Handling 

The dataset consisted of a color scale images from multiple patients of different cases, ages, tapers of lighting. This 
could be affected pixel intensity value with the images themselves, and introduces unwanted parts irrelevant neural 
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network levels. To address it, colors normalization was performed on each of the image’s high resolution and of 
course hence memory size on the GPU. Because of that the dataset was resized to 32x32 pixels, that kept the 
complex markings we wanted to identifier purpose. 

3.2.1 The CNN architecture used in the model 

• Layers: 

o 2 Conv2D layers 

o 2 MaxPooling2D layers 

o 1 Flatten layer 

o 1 Dense (hidden) layer 

o 1 Dense (output) layer 
Total: 7 layers 

• Filters: 

o First Conv2D: 32 filters 

o Second Conv2D: 64 filters 

• Activation Functions: 

o Conv2D layers: relu 

o Dense (hidden) layer: relu 

o Dense (output) layer: softmax 

• Epochs: 

o 200 epochs (as set in model.fit) 

 

 

 

 

 

 

 

 

 

 

Figure 2: Color map for every image in each class. 
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3.3. Training and testing 

The dataset contains images of patients of various ethnicities, various age groups, camera sources with different 
lighting, and other factors through the fundus photographs that would affect pixel intensity values in the images and 
could create unwanted variation that would neither apply to classification levels, nor variants that should be 
removed. For the purposes of color normalization of the high resolution and high memory, and the subsequent 
resizing of the dataset to 32x32 pixels to include some of the complex markings we wanted to identify, as well to 
fully meet the memory limits of the NVIDIA K40c. Below the flow chart of the testing mechanic of the model, tabel 
1.The results reveal that while the CNN-based model was capable of learning from the data, its performance was 
hindered by over fitting, data limitations, and potential architectural constraints. Future iterations of the system 
should incorporate advanced techniques, including transfer learning, hyper parameter optimization, and dataset 
augmentation, to enhance its predictive accuracy and generalization ability. Average Training Results After All 
Epochs: 

Average Accuracy: 0.9664 

Average Val Accuracy: 0.4884 

Average Loss: 0.0985 

Average Val Loss: 0.84178 

 

3.3.1 Epoch-wise Training Results: 

Epoch 001 - Accuracy: 0.3748, Val Accuracy: 0.4559, Loss: 1.6078, Val Loss: 1.4285 

Epoch 002 - Accuracy: 0.4854, Val Accuracy: 0.4906, Loss: 1.3556, Val Loss: 1.3371 

Epoch 003 - Accuracy: 0.5359, Val Accuracy: 0.4930, Loss: 1.2310, Val Loss: 1.3327 

Epoch 004 - Accuracy: 0.5783, Val Accuracy: 0.4923, Loss: 1.1247, Val Loss: 1.3320 

Epoch 005 - Accuracy: 0.6216, Val Accuracy: 0.5223, Loss: 1.0148, Val Loss: 1.3400 

Epoch 006 - Accuracy: 0.6668, Val Accuracy: 0.5240, Loss: 0.8986, Val Loss: 1.4007 

Epoch 007 - Accuracy: 0.7079, Val Accuracy: 0.5148, Loss: 0.7935, Val Loss: 1.4205 

Epoch 008 - Accuracy: 0.7554, Val Accuracy: 0.5132, Loss: 0.6809, Val Loss: 1.5899 

Epoch 009 - Accuracy: 0.7917, Val Accuracy: 0.5010, Loss: 0.5785, Val Loss: 1.7307 

Epoch 010 - Accuracy: 0.8278, Val Accuracy: 0.5192, Loss: 0.4855, Val Loss: 1.9782 

Epoch 011 - Accuracy: 0.8589, Val Accuracy: 0.5063, Loss: 0.3971, Val Loss: 2.1667 

Epoch 012 - Accuracy: 0.8875, Val Accuracy: 0.4866, Loss: 0.3258, Val Loss: 2.3934 

Epoch 013 - Accuracy: 0.9050, Val Accuracy: 0.4958, Loss: 0.2727, Val Loss: 2.5601 

Epoch 014 - Accuracy: 0.9206, Val Accuracy: 0.4972, Loss: 0.2280, Val Loss: 2.9610 

Epoch 015 - Accuracy: 0.9295, Val Accuracy: 0.4969, Loss: 0.2028, Val Loss: 3.1889 

Epoch 016 - Accuracy: 0.9450, Val Accuracy: 0.5002, Loss: 0.1633, Val Loss: 3.5926 

Epoch 017 - Accuracy: 0.9480, Val Accuracy: 0.4948, Loss: 0.1541, Val Loss: 3.5463 
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Epoch 018 - Accuracy: 0.9543, Val Accuracy: 0.4826, Loss: 0.1400, Val Loss: 3.7018 

Epoch 019 - Accuracy: 0.9534, Val Accuracy: 0.4899, Loss: 0.1401, Val Loss: 3.9662 

Epoch 020 - Accuracy: 0.9645, Val Accuracy: 0.4885, Loss: 0.1117, Val Loss: 4.0891 

Epoch 021 - Accuracy: 0.9597, Val Accuracy: 0.4897, Loss: 0.1195, Val Loss: 4.4011 

Epoch 022 - Accuracy: 0.9643, Val Accuracy: 0.4923, Loss: 0.1089, Val Loss: 4.4955 

Epoch 023 - Accuracy: 0.9686, Val Accuracy: 0.4977, Loss: 0.0994, Val Loss: 4.5663 

Epoch 024 - Accuracy: 0.9706, Val Accuracy: 0.4902, Loss: 0.0947, Val Loss: 4.8732 

Epoch 025 - Accuracy: 0.9687, Val Accuracy: 0.5049, Loss: 0.0962, Val Loss: 5.0345 

Epoch 026 - Accuracy: 0.9727, Val Accuracy: 0.4923, Loss: 0.0842, Val Loss: 5.0208 

Epoch 027 - Accuracy: 0.9680, Val Accuracy: 0.4941, Loss: 0.0991, Val Loss: 5.2314 

Epoch 028 - Accuracy: 0.9770, Val Accuracy: 0.4943, Loss: 0.0758, Val Loss: 5.3381 

Epoch 029 - Accuracy: 0.9731, Val Accuracy: 0.4930, Loss: 0.0867, Val Loss: 5.4018 

Epoch 030 - Accuracy: 0.9737, Val Accuracy: 0.4836, Loss: 0.0836, Val Loss: 5.4353 

Epoch 031 - Accuracy: 0.9744, Val Accuracy: 0.4826, Loss: 0.0773, Val Loss: 5.7518 

Epoch 032 - Accuracy: 0.9772, Val Accuracy: 0.4866, Loss: 0.0721, Val Loss: 5.8687 

Epoch 033 - Accuracy: 0.9755, Val Accuracy: 0.4842, Loss: 0.0828, Val Loss: 5.7429 

Epoch 034 - Accuracy: 0.9764, Val Accuracy: 0.4916, Loss: 0.0740, Val Loss: 5.7139 

Epoch 035 - Accuracy: 0.9749, Val Accuracy: 0.4922, Loss: 0.0807, Val Loss: 5.6780 

Epoch 036 - Accuracy: 0.9775, Val Accuracy: 0.4840, Loss: 0.0763, Val Loss: 6.0438 

Epoch 037 - Accuracy: 0.9766, Val Accuracy: 0.4915, Loss: 0.0726, Val Loss: 6.2590 

Epoch 038 - Accuracy: 0.9804, Val Accuracy: 0.4836, Loss: 0.0635, Val Loss: 6.0061 

Epoch 039 - Accuracy: 0.9787, Val Accuracy: 0.4896, Loss: 0.0685, Val Loss: 6.3571 

Epoch 040 - Accuracy: 0.9783, Val Accuracy: 0.4922, Loss: 0.0732, Val Loss: 6.3705 

Epoch 041 - Accuracy: 0.9812, Val Accuracy: 0.4854, Loss: 0.0617, Val Loss: 6.3249 

Epoch 042 - Accuracy: 0.9801, Val Accuracy: 0.4796, Loss: 0.0645, Val Loss: 6.5636 

Epoch 043 - Accuracy: 0.9776, Val Accuracy: 0.4859, Loss: 0.0751, Val Loss: 6.7005 

Epoch 044 - Accuracy: 0.9829, Val Accuracy: 0.4850, Loss: 0.0572, Val Loss: 6.5337 

Epoch 045 - Accuracy: 0.9812, Val Accuracy: 0.4915, Loss: 0.0609, Val Loss: 6.5980 

Epoch 046 - Accuracy: 0.9814, Val Accuracy: 0.4798, Loss: 0.0603, Val Loss: 6.3912 

Epoch 047 - Accuracy: 0.9809, Val Accuracy: 0.4880, Loss: 0.0647, Val Loss: 6.3972 

Epoch 048 - Accuracy: 0.9827, Val Accuracy: 0.4979, Loss: 0.0546, Val Loss: 7.0155 
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Epoch 049 - Accuracy: 0.9798, Val Accuracy: 0.5014, Loss: 0.0627, Val Loss: 6.7211 

Epoch 050 - Accuracy: 0.9835, Val Accuracy: 0.4899, Loss: 0.0591, Val Loss: 7.0036 

Epoch 051 - Accuracy: 0.9831, Val Accuracy: 0.4744, Loss: 0.0596, Val Loss: 6.6916 

Epoch 052 - Accuracy: 0.9764, Val Accuracy: 0.4869, Loss: 0.0779, Val Loss: 7.0707 

Epoch 053 - Accuracy: 0.9851, Val Accuracy: 0.4889, Loss: 0.0450, Val Loss: 7.0787 

Epoch 054 - Accuracy: 0.9793, Val Accuracy: 0.4889, Loss: 0.0660, Val Loss: 7.1500 

Epoch 055 - Accuracy: 0.9827, Val Accuracy: 0.4906, Loss: 0.0561, Val Loss: 7.3179 

Epoch 056 - Accuracy: 0.9846, Val Accuracy: 0.4789, Loss: 0.0519, Val Loss: 7.4684 

Epoch 057 - Accuracy: 0.9838, Val Accuracy: 0.4760, Loss: 0.0517, Val Loss: 6.9117 

Epoch 058 - Accuracy: 0.9829, Val Accuracy: 0.4836, Loss: 0.0560, Val Loss: 7.0662 

Epoch 059 - Accuracy: 0.9821, Val Accuracy: 0.4916, Loss: 0.0580, Val Loss: 7.6889 

Epoch 060 - Accuracy: 0.9862, Val Accuracy: 0.4887, Loss: 0.0431, Val Loss: 7.5420 

Epoch 061 - Accuracy: 0.9831, Val Accuracy: 0.4779, Loss: 0.0569, Val Loss: 7.0250 

Epoch 062 - Accuracy: 0.9833, Val Accuracy: 0.5010, Loss: 0.0527, Val Loss: 7.5512 

Epoch 063 - Accuracy: 0.9846, Val Accuracy: 0.4742, Loss: 0.0503, Val Loss: 7.4659 

Epoch 064 - Accuracy: 0.9866, Val Accuracy: 0.4899, Loss: 0.0466, Val Loss: 7.7688 

Epoch 065 - Accuracy: 0.9858, Val Accuracy: 0.4925, Loss: 0.0495, Val Loss: 7.5589 

Epoch 066 - Accuracy: 0.9862, Val Accuracy: 0.4899, Loss: 0.0461, Val Loss: 7.8455 

Epoch 067 - Accuracy: 0.9858, Val Accuracy: 0.4882, Loss: 0.0487, Val Loss: 7.5719 

Epoch 068 - Accuracy: 0.9860, Val Accuracy: 0.4878, Loss: 0.0463, Val Loss: 8.4911 

Epoch 069 - Accuracy: 0.9852, Val Accuracy: 0.4744, Loss: 0.0504, Val Loss: 7.8136 

Epoch 070 - Accuracy: 0.9845, Val Accuracy: 0.4927, Loss: 0.0511, Val Loss: 8.0655 

Epoch 071 - Accuracy: 0.9869, Val Accuracy: 0.4852, Loss: 0.0451, Val Loss: 8.1516 

Epoch 072 - Accuracy: 0.9852, Val Accuracy: 0.4784, Loss: 0.0495, Val Loss: 7.8587 

Epoch 073 - Accuracy: 0.9850, Val Accuracy: 0.4890, Loss: 0.0519, Val Loss: 8.0079 

Epoch 074 - Accuracy: 0.9857, Val Accuracy: 0.4896, Loss: 0.0489, Val Loss: 8.0228 

Epoch 075 - Accuracy: 0.9848, Val Accuracy: 0.4765, Loss: 0.0536, Val Loss: 7.3651 

Epoch 076 - Accuracy: 0.9882, Val Accuracy: 0.4857, Loss: 0.0397, Val Loss: 8.0811 

Epoch 077 - Accuracy: 0.9851, Val Accuracy: 0.4906, Loss: 0.0490, Val Loss: 8.6084 

Epoch 078 - Accuracy: 0.9866, Val Accuracy: 0.4852, Loss: 0.0420, Val Loss: 8.1106 

Epoch 079 - Accuracy: 0.9882, Val Accuracy: 0.4815, Loss: 0.0380, Val Loss: 8.4238 
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Epoch 080 - Accuracy: 0.9864, Val Accuracy: 0.4925, Loss: 0.0465, Val Loss: 8.7952 

Epoch 081 - Accuracy: 0.9851, Val Accuracy: 0.4727, Loss: 0.0527, Val Loss: 8.0612 

Epoch 082 - Accuracy: 0.9891, Val Accuracy: 0.4814, Loss: 0.0336, Val Loss: 8.3535 

Epoch 083 - Accuracy: 0.9857, Val Accuracy: 0.4758, Loss: 0.0467, Val Loss: 8.5441 

Epoch 084 - Accuracy: 0.9837, Val Accuracy: 0.4869, Loss: 0.0523, Val Loss: 8.4533 

Epoch 085 - Accuracy: 0.9906, Val Accuracy: 0.4866, Loss: 0.0294, Val Loss: 8.1767 

Epoch 086 - Accuracy: 0.9852, Val Accuracy: 0.4862, Loss: 0.0484, Val Loss: 8.3205 

Epoch 087 - Accuracy: 0.9881, Val Accuracy: 0.4897, Loss: 0.0391, Val Loss: 8.8808 

Epoch 088 - Accuracy: 0.9889, Val Accuracy: 0.4829, Loss: 0.0409, Val Loss: 8.5767 

Epoch 089 - Accuracy: 0.9872, Val Accuracy: 0.4845, Loss: 0.0419, Val Loss: 8.7976 

Epoch 090 - Accuracy: 0.9887, Val Accuracy: 0.4789, Loss: 0.0385, Val Loss: 8.3361 

Epoch 091 - Accuracy: 0.9864, Val Accuracy: 0.4847, Loss: 0.0439, Val Loss: 8.9113 

Epoch 092 - Accuracy: 0.9899, Val Accuracy: 0.4887, Loss: 0.0335, Val Loss: 8.6794 

Epoch 093 - Accuracy: 0.9893, Val Accuracy: 0.4882, Loss: 0.0377, Val Loss: 8.4522 

Epoch 094 - Accuracy: 0.9854, Val Accuracy: 0.4934, Loss: 0.0480, Val Loss: 9.0693 

Epoch 095 - Accuracy: 0.9879, Val Accuracy: 0.4918, Loss: 0.0394, Val Loss: 9.0683 

Epoch 096 - Accuracy: 0.9882, Val Accuracy: 0.4873, Loss: 0.0441, Val Loss: 8.6143 

Epoch 097 - Accuracy: 0.9911, Val Accuracy: 0.4862, Loss: 0.0308, Val Loss: 8.9517 

Epoch 098 - Accuracy: 0.9864, Val Accuracy: 0.4956, Loss: 0.0491, Val Loss: 8.7922 

Epoch 099 - Accuracy: 0.9899, Val Accuracy: 0.4850, Loss: 0.0362, Val Loss: 8.6878 

Epoch 100 - Accuracy: 0.9870, Val Accuracy: 0.4871, Loss: 0.0456, Val Loss: 8.6895 

Epoch 101 - Accuracy: 0.9902, Val Accuracy: 0.4908, Loss: 0.0299, Val Loss: 9.0300 

Epoch 102 - Accuracy: 0.9864, Val Accuracy: 0.4885, Loss: 0.0442, Val Loss: 9.0151 

Epoch 103 - Accuracy: 0.9880, Val Accuracy: 0.4882, Loss: 0.0406, Val Loss: 9.1591 

Epoch 104 - Accuracy: 0.9872, Val Accuracy: 0.4997, Loss: 0.0441, Val Loss: 9.3090 

Epoch 105 - Accuracy: 0.9903, Val Accuracy: 0.4878, Loss: 0.0331, Val Loss: 9.0998 

Epoch 106 - Accuracy: 0.9876, Val Accuracy: 0.4868, Loss: 0.0431, Val Loss: 8.6185 

Epoch 107 - Accuracy: 0.9892, Val Accuracy: 0.4979, Loss: 0.0361, Val Loss: 9.4131 

Epoch 108 - Accuracy: 0.9885, Val Accuracy: 0.4948, Loss: 0.0391, Val Loss: 8.8807 

Epoch 109 - Accuracy: 0.9920, Val Accuracy: 0.5021, Loss: 0.0269, Val Loss: 9.1985 

Epoch 110 - Accuracy: 0.9869, Val Accuracy: 0.4788, Loss: 0.0447, Val Loss: 9.2709 
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Epoch 111 - Accuracy: 0.9875, Val Accuracy: 0.4967, Loss: 0.0425, Val Loss: 9.0875 

Epoch 112 - Accuracy: 0.9905, Val Accuracy: 0.4861, Loss: 0.0328, Val Loss: 8.9586 

Epoch 113 - Accuracy: 0.9891, Val Accuracy: 0.4970, Loss: 0.0364, Val Loss: 9.3715 

Epoch 114 - Accuracy: 0.9932, Val Accuracy: 0.4939, Loss: 0.0228, Val Loss: 9.2416 

Epoch 115 - Accuracy: 0.9873, Val Accuracy: 0.4864, Loss: 0.0406, Val Loss: 8.9569 

Epoch 116 - Accuracy: 0.9896, Val Accuracy: 0.4852, Loss: 0.0338, Val Loss: 9.5628 

Epoch 117 - Accuracy: 0.9887, Val Accuracy: 0.4916, Loss: 0.0371, Val Loss: 10.0315 

Epoch 118 - Accuracy: 0.9877, Val Accuracy: 0.4995, Loss: 0.0440, Val Loss: 9.2710 

Epoch 119 - Accuracy: 0.9907, Val Accuracy: 0.4956, Loss: 0.0296, Val Loss: 9.3520 

Epoch 120 - Accuracy: 0.9915, Val Accuracy: 0.4927, Loss: 0.0300, Val Loss: 9.3258 

Epoch 121 - Accuracy: 0.9899, Val Accuracy: 0.4892, Loss: 0.0325, Val Loss: 9.9391 

Epoch 122 - Accuracy: 0.9909, Val Accuracy: 0.4876, Loss: 0.0296, Val Loss: 9.8988 

Epoch 123 - Accuracy: 0.9891, Val Accuracy: 0.4916, Loss: 0.0365, Val Loss: 9.8521 

Epoch 124 - Accuracy: 0.9886, Val Accuracy: 0.4981, Loss: 0.0368, Val Loss: 10.0322 

Epoch 125 - Accuracy: 0.9907, Val Accuracy: 0.4749, Loss: 0.0325, Val Loss: 9.4751 

Epoch 126 - Accuracy: 0.9914, Val Accuracy: 0.4915, Loss: 0.0292, Val Loss: 9.4677 

Epoch 127 - Accuracy: 0.9904, Val Accuracy: 0.4883, Loss: 0.0322, Val Loss: 9.6698 

Epoch 128 - Accuracy: 0.9894, Val Accuracy: 0.4873, Loss: 0.0360, Val Loss: 9.7073 

Epoch 129 - Accuracy: 0.9909, Val Accuracy: 0.4889, Loss: 0.0322, Val Loss: 9.2921 

Epoch 130 - Accuracy: 0.9925, Val Accuracy: 0.4897, Loss: 0.0232, Val Loss: 9.9198 

Epoch 131 - Accuracy: 0.9884, Val Accuracy: 0.4892, Loss: 0.0434, Val Loss: 10.2699 

Epoch 132 - Accuracy: 0.9930, Val Accuracy: 0.4871, Loss: 0.0253, Val Loss: 9.8526 

Epoch 133 - Accuracy: 0.9904, Val Accuracy: 0.4855, Loss: 0.0372, Val Loss: 9.7971 

Epoch 134 - Accuracy: 0.9918, Val Accuracy: 0.4845, Loss: 0.0271, Val Loss: 10.2458 

Epoch 135 - Accuracy: 0.9892, Val Accuracy: 0.4838, Loss: 0.0354, Val Loss: 9.9206 

Epoch 136 - Accuracy: 0.9895, Val Accuracy: 0.4883, Loss: 0.0329, Val Loss: 9.7883 

Epoch 137 - Accuracy: 0.9925, Val Accuracy: 0.4873, Loss: 0.0253, Val Loss: 10.0541 

Epoch 138 - Accuracy: 0.9894, Val Accuracy: 0.4873, Loss: 0.0372, Val Loss: 10.5311 

Epoch 139 - Accuracy: 0.9909, Val Accuracy: 0.4847, Loss: 0.0331, Val Loss: 10.6440 

Epoch 140 - Accuracy: 0.9920, Val Accuracy: 0.4894, Loss: 0.0307, Val Loss: 9.9529 

Epoch 141 - Accuracy: 0.9894, Val Accuracy: 0.4817, Loss: 0.0313, Val Loss: 9.8226 
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Epoch 142 - Accuracy: 0.9911, Val Accuracy: 0.4909, Loss: 0.0305, Val Loss: 10.7301 

Epoch 143 - Accuracy: 0.9906, Val Accuracy: 0.4913, Loss: 0.0331, Val Loss: 10.3141 

Epoch 144 - Accuracy: 0.9927, Val Accuracy: 0.4859, Loss: 0.0251, Val Loss: 10.6820 

Epoch 145 - Accuracy: 0.9905, Val Accuracy: 0.4840, Loss: 0.0351, Val Loss: 10.2249 

Epoch 146 - Accuracy: 0.9904, Val Accuracy: 0.4842, Loss: 0.0329, Val Loss: 10.6389 

Epoch 147 - Accuracy: 0.9917, Val Accuracy: 0.4922, Loss: 0.0260, Val Loss: 10.5103 

Epoch 148 - Accuracy: 0.9903, Val Accuracy: 0.4899, Loss: 0.0329, Val Loss: 10.8578 

Epoch 149 - Accuracy: 0.9916, Val Accuracy: 0.4956, Loss: 0.0258, Val Loss: 11.3793 

Epoch 150 - Accuracy: 0.9891, Val Accuracy: 0.4862, Loss: 0.0360, Val Loss: 10.6478 

Epoch 151 - Accuracy: 0.9927, Val Accuracy: 0.4734, Loss: 0.0250, Val Loss: 10.8053 

Epoch 152 - Accuracy: 0.9925, Val Accuracy: 0.4791, Loss: 0.0257, Val Loss: 10.4735 

Epoch 153 - Accuracy: 0.9903, Val Accuracy: 0.4829, Loss: 0.0333, Val Loss: 10.7908 

Epoch 154 - Accuracy: 0.9908, Val Accuracy: 0.4861, Loss: 0.0320, Val Loss: 11.0190 

Epoch 155 - Accuracy: 0.9907, Val Accuracy: 0.4902, Loss: 0.0342, Val Loss: 10.7763 

Epoch 156 - Accuracy: 0.9904, Val Accuracy: 0.4774, Loss: 0.0354, Val Loss: 10.6764 

Epoch 157 - Accuracy: 0.9934, Val Accuracy: 0.4887, Loss: 0.0182, Val Loss: 10.8635 

Epoch 158 - Accuracy: 0.9891, Val Accuracy: 0.4848, Loss: 0.0358, Val Loss: 11.2426 

Epoch 159 - Accuracy: 0.9912, Val Accuracy: 0.4824, Loss: 0.0311, Val Loss: 10.7722 

Epoch 160 - Accuracy: 0.9916, Val Accuracy: 0.4728, Loss: 0.0299, Val Loss: 10.3893 

Epoch 161 - Accuracy: 0.9904, Val Accuracy: 0.4871, Loss: 0.0358, Val Loss: 11.5223 

Epoch 162 - Accuracy: 0.9912, Val Accuracy: 0.4882, Loss: 0.0293, Val Loss: 11.0676 

Epoch 163 - Accuracy: 0.9919, Val Accuracy: 0.4833, Loss: 0.0250, Val Loss: 10.4516 

Epoch 164 - Accuracy: 0.9917, Val Accuracy: 0.4890, Loss: 0.0302, Val Loss: 11.8600 

Epoch 165 - Accuracy: 0.9924, Val Accuracy: 0.4812, Loss: 0.0259, Val Loss: 10.6850 

Epoch 166 - Accuracy: 0.9902, Val Accuracy: 0.4911, Loss: 0.0348, Val Loss: 11.4148 

Epoch 167 - Accuracy: 0.9929, Val Accuracy: 0.4835, Loss: 0.0237, Val Loss: 11.6688 

Epoch 168 - Accuracy: 0.9891, Val Accuracy: 0.4843, Loss: 0.0457, Val Loss: 11.3410 

Epoch 169 - Accuracy: 0.9928, Val Accuracy: 0.4824, Loss: 0.0223, Val Loss: 11.0391 

Epoch 170 - Accuracy: 0.9933, Val Accuracy: 0.4828, Loss: 0.0278, Val Loss: 10.5463 

Epoch 171 - Accuracy: 0.9923, Val Accuracy: 0.4781, Loss: 0.0236, Val Loss: 11.0709 

Epoch 172 - Accuracy: 0.9923, Val Accuracy: 0.4934, Loss: 0.0252, Val Loss: 11.8636 
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Epoch 173 - Accuracy: 0.9902, Val Accuracy: 0.4805, Loss: 0.0326, Val Loss: 10.9616 

Epoch 174 - Accuracy: 0.9911, Val Accuracy: 0.4808, Loss: 0.0306, Val Loss: 11.1233 

Epoch 175 - Accuracy: 0.9943, Val Accuracy: 0.4890, Loss: 0.0197, Val Loss: 11.4193 

Epoch 176 - Accuracy: 0.9907, Val Accuracy: 0.4836, Loss: 0.0310, Val Loss: 10.9490 

Epoch 177 - Accuracy: 0.9935, Val Accuracy: 0.4946, Loss: 0.0213, Val Loss: 11.7212 

Epoch 178 - Accuracy: 0.9926, Val Accuracy: 0.4936, Loss: 0.0279, Val Loss: 11.1060 

Epoch 179 - Accuracy: 0.9914, Val Accuracy: 0.4848, Loss: 0.0295, Val Loss: 11.9506 

Epoch 180 - Accuracy: 0.9921, Val Accuracy: 0.4807, Loss: 0.0257, Val Loss: 11.6073 

Epoch 181 - Accuracy: 0.9904, Val Accuracy: 0.4788, Loss: 0.0355, Val Loss: 11.4295 

Epoch 182 - Accuracy: 0.9911, Val Accuracy: 0.4913, Loss: 0.0314, Val Loss: 11.2897 

Epoch 183 - Accuracy: 0.9930, Val Accuracy: 0.4897, Loss: 0.0254, Val Loss: 11.8960 

Epoch 184 - Accuracy: 0.9924, Val Accuracy: 0.4807, Loss: 0.0270, Val Loss: 11.8203 

Epoch 185 - Accuracy: 0.9921, Val Accuracy: 0.4880, Loss: 0.0279, Val Loss: 11.9160 

Epoch 186 - Accuracy: 0.9930, Val Accuracy: 0.4883, Loss: 0.0290, Val Loss: 11.8913 

Epoch 187 - Accuracy: 0.9920, Val Accuracy: 0.4814, Loss: 0.0290, Val Loss: 11.2062 

Epoch 188 - Accuracy: 0.9904, Val Accuracy: 0.4812, Loss: 0.0346, Val Loss: 11.2958 

Epoch 189 - Accuracy: 0.9932, Val Accuracy: 0.4896, Loss: 0.0233, Val Loss: 11.6362 

Epoch 190 - Accuracy: 0.9934, Val Accuracy: 0.4930, Loss: 0.0207, Val Loss: 12.0616 

Epoch 191 - Accuracy: 0.9900, Val Accuracy: 0.4915, Loss: 0.0338, Val Loss: 12.3472 

Epoch 192 - Accuracy: 0.9917, Val Accuracy: 0.4943, Loss: 0.0300, Val Loss: 11.6424 

Epoch 193 - Accuracy: 0.9924, Val Accuracy: 0.4909, Loss: 0.0256, Val Loss: 11.5664 

Epoch 194 - Accuracy: 0.9924, Val Accuracy: 0.4864, Loss: 0.0269, Val Loss: 11.7464 

Epoch 195 - Accuracy: 0.9926, Val Accuracy: 0.4842, Loss: 0.0261, Val Loss: 12.0686 

Epoch 196 - Accuracy: 0.9929, Val Accuracy: 0.4894, Loss: 0.0259, Val Loss: 11.8587 

Epoch 197 - Accuracy: 0.9922, Val Accuracy: 0.4883, Loss: 0.0307, Val Loss: 11.8063 

Epoch 198 - Accuracy: 0.9936, Val Accuracy: 0.4869, Loss: 0.0208, Val Loss: 12.3902 

Epoch 199 - Accuracy: 0.9914, Val Accuracy: 0.4848, Loss: 0.0333, Val Loss: 12.1660 

Epoch 200 - Accuracy: 0.9922, Val Accuracy: 0.4796, Loss: 0.0277, Val Loss: 12.2035 
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Figure 3: Flow chart of the use of the CNN trained model 
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3.4 Work Flow for the IOT system 

 The system uses Raspberry pi 5 (4Gb) version, kali Linux distribution for the server hardware. The website 
front end use HTML, CSS and Java Script. For the backend uses flask module integrated into the python app. The 
figure 1 show the work flow of the process. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Server-side work flow 

 

 

 

 

 

 

 

Figure 5: HTTP protocol work flow  
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Figure 6: Client site web page to accept the files 

 

 

  

 

 

 

 

 

Figure 7: Client site web page show the classification results 

 

 

 

 

 

  

 

  

 

Figure 8: IOT system work flow 
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4.Results and Discussion  

 The dataset has images of patients from varying ethnicities, different age groups, camera sources with 
different lighting, and a variety of other factors through the fundus photographs that would alter pixel intensity 
values in the images and add unintended variation that would not apply to the classification levels, and variants 
which should be removed. For the purpose of color normalization of the high resolution and high memory, and then 
resizing the dataset to 32x32 pixels to incorporate some of the complex markings we would like to identify at, as 
well as meet the memory constraints of a NVIDIA K40c. 

Table 2: Test accuracy for samples 

 

 

 

 

 

Sample No. Sample of 
Classification 

Stage Classification Probabilities Accuracy Final 
Classification 

1 

 

1 Moderate probability: 1.000 
No Dr probability:  0.000 

100% Moderate 

2 

 

1 Moderate probability: 1.000 
No Dr probability:  0.000 

100% Moderate 

3 

 

1 Moderate probability: 1.000 
No Dr probability:  0.000 

100% Moderate 

4 

 

1 Moderate probability: 1.000 
No Dr probability:  0.000 

100% Moderate 

5 

 

1 Moderate probability: 0.000 
No Dr probability:  1.000 

100% No Dr 

6 
 
 

 

1 Moderate probability: 0.000 
No Dr probability:  1.000 

 

100% 
 

No Dr 
 

7 

 

1 Moderate probability: 0.000 
No Dr probability:  1.000 

 

100% 
 

No Dr 
 

8 

 

1 Moderate probability: 0.000 
No Dr probability:  1.000 

 

100% 
 

No Dr 
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4.1 Model Testing Results  

The dataset consisted of 1,998 retinal fundus images, equally divided between Moderate Diabetic Retinopathy 
(Moderate, 999 images) and No Diabetic Retinopathy (No_DR, 999 images). The data was split into 80% training 
(1,599 images) and 20% validation (399 images). 

A Convolutional Neural Network (CNN) was trained on 32×32 pixel images for 10 epochs, using the Adam optimizer 
and binary cross-entropy loss. Training was performed on an NVIDIA GeForce GTX 1650 GPU, which significantly 
accelerated the process. 

The model achieved the following performance metrics on the validation set: 

• Validation Accuracy: 88.97% 

• Precision: 97.28% (weighted average) 

• Recall: 82.11% (weighted average) 

• F1-score: 0.89 (weighted average) 

The confusion matrix (Figure 9) shows that out of 181 Moderate images, 176 were correctly classified,  

Figure 9: Confusion matrix showing the classification performance of the CNN on the validation dataset. 
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while 5 were misclassified as No_DR. For the No_DR class, 179 out of 218 images were correctly classified, while 39 
were misclassified as Moderate. 

 

Figure 10: Training curves for accuracy, precision, and recall over 10 epochs, showing stable convergence with no 
signs of overfitting. 

 

4.2 Classification Report 

 

Class Precision Recall F1-score Support 

Moderate 0.82 0.97 0.89 181 

No_DR 0.97 0.82 0.89 218 

Accuracy - - 0.89 399 

Macro avg 0.90 0.90 0.89 399 

Weighted avg 0.90 0.89 0.89 399 

Table 3: Model testing Report 
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4.3 Performance of the proposed CNN 

Study / 
Year 

Dataset / 
Images 

Method Accuracy Precision Recall F1-score Notes / Comparison 

Philip et 
al., 2007 

14,406 
images 

(screening 
programmed) 

Automated 
“disease/no 

disease” 
grading 

N/A 
90.5% 

(sensitivity) 
67.4% 

(specificity) 
N/A 

High sensitivity but 
lower specificity; your 
model has better class 

balance and higher 
precision for No_DR. 

Mookiah 
et al., 
2013 

210 images 
Early CAD 

systems for 
DR 

81.3% N/A N/A N/A 

Older CAD systems had 
lower overall accuracy; 

your CNN achieves 
higher accuracy 

(~88.97%). 

Benbassat 
& Polak, 

2009 

Various 
human 
grading 
studies 

Reliability 
of 

screening 
methods 

N/A N/A N/A N/A 

Highlights variability 
in human screening; 
your model provides 

consistent 
performance. 

Proposed 
(2025) 

1,998 images 
(999 

Moderate, 
999 No_DR) 

CNN 
(32×32 
images) 

88.97% 
0.9728 

(weighted) 
0.8211 

(weighted) 
0.89 

(weighted) 

Outperforms older CAD 
systems in accuracy 
and class-balanced 

precision/recall; 
demonstrates effective 

low-resolution 
classification. 

 

5.Conclusion 

        Convolutional neural networks (CNNs) were employed to analyze retinal images to detect indicators of diabetic 
retinopathy. This type of network was proven capable of extracting important visual features without the need for 
human intervention or the use of predefined features. Reliable medical data was used, which helped achieve 
accurate and promising results. It was also indicated that the model could be developed in the future to be more 
specialized in classifying subtle disease conditions. This approach is expected to contribute to supporting medical 
staff by providing smart tools that aid in early and effective diagnosis, especially when combined with Internet of 
Things technologies. As data quality continues to improve and network architectures evolve, these models could 
become vital tools in smart healthcare applications. 

Future Work: 
To further improve the performance and generalizability of the proposed CNN model, future work could explore the 
use of deeper architectures, such as ResNet or EfficientNet, and advanced data augmentation techniques.  

Additionally, incorporating transfer learning from pre-trained models and experimenting with hyperparameter 
optimization may yield better results.  

Expanding the dataset to include more diverse and larger samples, as well as evaluating the model on external 
validation sets, would also strengthen the robustness and clinical applicability of the approach.  
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