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ARTICLEINFO ABSTRACT

Convolutional neural networks (CNNs) have emerged as a powerful tool in medical image
Received: 19/09/2025 analysis, enabling automated disease detection with high accuracy. In this study, a CNN-based
Received form: 27/10/2025 approach was applied to retinal images to detect diabetic retinopathy, a leading cause of

) vision impairment in diabetic patients. Traditional detection methods rely on manually
Accepted: 02 /11/2025 defined image features, such as blood vessels or exudates, which can limit diagnostic accuracy
Available online: 30/12/2025 and require significant human intervention. These approaches also face challenges in
identifying subtle pathological variations due to the complex and diverse visual patterns in
retinal images.
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prediction; cloud computing; IoT. The proposed CNN model automatically extracts relevant visual features and classifies retinal

images without manual intervention, achieving robust performance in distinguishing
between Moderate and No Diabetic Retinopathy cases. Furthermore, the system is designed
for potential integration into Internet of Things (IoT) environments, allowing real-time,
remote diagnostics and supporting improved healthcare delivery. These results demonstrate
the potential of CNNs to enhance automated screening and contribute to more efficient,
accurate diabetic retinopathy detection.
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1. INTRODUCTION

Diabetes mellitus is recognized as one of the most prevalent and rapidly increasing chronic diseases worldwide. It
constitutes a major global health burden according to the World Health Organization (WHO). Since 1965, numerous
research studies have been conducted to improve awareness and promote specific standards for the diagnosis,
monitoring, and treatment of diabetes [1]. In diabetes, the human body either fails to produce sufficient insulin to
regulate blood sugar levels or cannot effectively utilize the insulin produced. This dysfunction leads to several
complications, including kidney disease, cardiovascular disorders, nerve damage, blindness, and damage to blood

vessels [2].

The Internet of Things (10T) represents one of the most transformative developments in modern technological
history. It enables real-time communication and data exchange between connected devices and systems. Machine
Learning (ML), a subset of artificial intelligence, focuses on the development of algorithms that can learn and make
predictions based on data [3,4]. As medical data have become increasingly digitized, the role of machine learning
has grown significantly in detecting and predicting various diseases. Over the past decade, researchers in both
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medical and machine learning fields have explored numerous approaches for early disease detection and diagnosis
within the healthcare sector [5,6].

Recent technological advancements have made it possible to integrate [oT and machine learning in healthcare
applications. In clinical environments, this combination can create intelligent and interconnected systems that assist
healthcare professionals and patients through continuous monitoring, data analysis, and decision support. [oT
technology focuses on gathering information from various sources, while machine learning emphasizes analyzing,
enriching, and drawing conclusions from this data. The main goal of [oT is to create a “smart” environment by
providing accurate, timely, and context-aware information that supports automated decision-making processes.

Modern lifestyles—characterized by irregular eating habits, poor nutrition, environmental pollution, lack of physical
activity, long working hours, and chronic stress—have been identified as major risk factors for developing chronic
diseases such as diabetes. Studies indicate that approximately 40% of young adults, middle-aged individuals, and
working women in many countries lead sedentary lifestyles that negatively impact their overall health [10]. As a
result, integrating loT and machine learning technologies can provide a valuable framework for healthcare systems
to promote early diagnosis, continuous monitoring, and improved management of diabetes, ultimately enhancing
the quality of life for patients.

Related Works

Various health systems are devised to facilitate early diagnosis and continuous observation of a patient’s health.
Various methods has taken in the proposed systems to show the patient health. IoT technology are a great
importance in the both medical and technology scale. Over the last few years, a number of studies on IoT based for
the medical systems have been made. One method [11] that Still et al. used was machine learning with player heart
rate via an IoT system to determine stress beforehand. A pulse sensor is used to determine the heart rate of that
patient.

In [12] describes the applicability to work in an Intelligent [oT system on the Machine Learning in healthcare and
medicine, illustrated by a building a multi-layer architecture. The fast ability of such an architecture is discovered
through a study of ECG based arrhythmia detection, using the deep learning technology and convolutional neural
network (CNN. This paper presents an [oT application integrated with machine learning technology to create a next
generation of automation system. In [13], they utilize a diabetes data set for experimental purpose.

As a next step, the proposed system has future work for other applications like observations, weather forecasts etc.
In [14] the authors presented a system for monitoring real time detection system for the monitoring of health
conditions of soldiers in the war in real time which may become lost and are injured in the Warfield. The
researchers used different ways for data acquisition. To transmit this real time data from the sensors to the cloud
system, they used networking components such as LoRa WAN and ZigBee. For data analysis and predictions on2
==> 4 warzone environments, the authors used K-Means Clustering algorithm for machine learning.

While K-Mean Clustering generated valuable of early prediction, performance might be improved using density-
based clustering algorithms like the DBSCAN because it can also discover clusters of arbitrary for a multiple shape.
In [15], the researcher proposed a fuzzy discernibility matrix based on a feature selection Wau, utilizing the
parameter K for Motor and EEG Signal Classification. Based on the accuracies of the generation by the Support
Vector Machine and Ensemble variations of classifiers, the proposed method outperformed the state-of-the-art
methods.

3.propose system

This project aims to detect diabetes by analyzing retinal images using artificial intelligence techniques. A
convolutional neural network (CNN) algorithm was used to extract visual features indicative of diabetic retinopathy.
Ready-made medical images were taken from a specialized library containing accurate classifications of various
disease conditions. After training the model on these images, it was able to distinguish between normal cases and
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those with varying degrees of the disease. The images were pre-loaded into the system for automatic analysis. The
system is integrated within the Internet of Things (IoT) environment, where the analysis results are sent to a
medical platform or application for case monitoring. Work is performed on ready-made images. This system
provides a smart and accurate way to detect diabetes in its early stages. It also contributes to improving diagnostic
processes and supporting automated medical decision-making. The project represents a step towards integrating
artificial intelligence with smart healthcare systems.

3.1 Dataset, Hardware and Software

The testing data, which was sourced from the Kaggle website (https://www.kaggle.com) which have over 1000
images, of a 6M pixels. Since those images were then resized and we executed the CNN on the NVIDIA of a
moderately GPU with 2880 CUDA cores and also comes with the NVIDIA CUDA, we were able to train with the full
dataset. Using this library allowed us to use approximately 15,000 of images to be uploaded on to GPU memory one
at a time, the images was disturbed between two classes; Moderate and No_Dr and balanced as two equal classes to
prevent over fitting on the model and to provide enough balanced data for testing. The deep learning package used
was Keras (http://keras.io/) with the (http://deeplearning.net/software/theano/) as the back-end algorithm
because of the documentation to achieve a faster calculation time. A sample of an image could be classified in 0.04
seconds indicating feedback for the patient.

Class-wise Image Statistics
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Figure 1: Bright and Contrast Distributions for every class.
3.2. Data Handling

The dataset consisted of a color scale images from multiple patients of different cases, ages, tapers of lighting. This
could be affected pixel intensity value with the images themselves, and introduces unwanted parts irrelevant neural
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network levels. To address it, colors normalization was performed on each of the image’s high resolution and of
course hence memory size on the GPU. Because of that the dataset was resized to 32x32 pixels, that kept the
complex markings we wanted to identifier purpose.

3.2.1 The CNN architecture used in the model
e Layers:
o 2 Conv2D layers
o 2 MaxPooling2D layers
o 1 Flatten layer
o 1 Dense (hidden) layer

o 1 Dense (output) layer
Total: 7 layers

e Filters:

o  First Conv2D: 32 filters

o Second Conv2D: 64 filters
e Activation Functions:

o Conv2D layers: relu

o Dense (hidden) layer: relu

o Dense (output) layer: softmax
e Epochs:

o 200 epochs (as set in model.fit)
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Figure 2: Color map for evéry image in each class.
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3.3. Training and testing

The dataset contains images of patients of various ethnicities, various age groups, camera sources with different
lighting, and other factors through the fundus photographs that would affect pixel intensity values in the images and
could create unwanted variation that would neither apply to classification levels, nor variants that should be
removed. For the purposes of color normalization of the high resolution and high memory, and the subsequent
resizing of the dataset to 32x32 pixels to include some of the complex markings we wanted to identify, as well to
fully meet the memory limits of the NVIDIA K40c. Below the flow chart of the testing mechanic of the model, tabel
1.The results reveal that while the CNN-based model was capable of learning from the data, its performance was
hindered by over fitting, data limitations, and potential architectural constraints. Future iterations of the system
should incorporate advanced techniques, including transfer learning, hyper parameter optimization, and dataset
augmentation, to enhance its predictive accuracy and generalization ability. Average Training Results After All

Epochs:

Average Accuracy: 0.9664

Average Val Accuracy

Average Loss: 0.0985

:0.4884

Average Val Loss: 0.84178

3.3.1 Epoch-wise Training Results:

Epoch 001 - Accuracy
Epoch 002 - Accuracy
Epoch 003 - Accuracy
Epoch 004 - Accuracy
Epoch 005 - Accuracy
Epoch 006 - Accuracy
Epoch 007 - Accuracy
Epoch 008 - Accuracy
Epoch 009 - Accuracy
Epoch 010 - Accuracy
Epoch 011 - Accuracy
Epoch 012 - Accuracy
Epoch 013 - Accuracy
Epoch 014 - Accuracy
Epoch 015 - Accuracy
Epoch 016 - Accuracy

Epoch 017 - Accuracy

: 0.3748, Val Accuracy
: 0.4854, Val Accuracy
:0.5359, Val Accuracy
:0.5783, Val Accuracy
:0.6216, Val Accuracy
:0.6668, Val Accuracy
:0.7079, Val Accuracy
: 0.7554, Val Accuracy
:0.7917, Val Accuracy
:0.8278, Val Accuracy
: 0.8589, Val Accuracy
: 0.8875, Val Accuracy
:0.9050, Val Accuracy
:0.9206, Val Accuracy
:0.9295, Val Accuracy
: 0.9450, Val Accuracy

:0.9480, Val Accuracy

: 0.4559, Loss
:0.4906, Loss
:0.4930, Loss
:0.4923, Loss
:0.5223, Loss
:0.5240, Loss
:0.5148, Loss
:0.5132, Loss
:0.5010, Loss
:0.5192, Loss
:0.5063, Loss
1 0.4866, Loss
:0.4958, Loss
:0.4972, Loss
1 0.4969, Loss
:0.5002, Loss

:0.4948, Loss

:1.6078, Val Loss
: 1.3556, Val Loss
:1.2310, Val Loss
:1.1247, Val Loss
:1.0148, Val Loss
: 0.8986, Val Loss
:0.7935, Val Loss
:0.6809, Val Loss
:0.5785, Val Loss
:0.4855, Val Loss
:0.3971, Val Loss
:0.3258, Val Loss
:0.2727, Val Loss
:0.2280, Val Loss
:0.2028, Val Loss
:0.1633, Val Loss

:0.1541, Val Loss

:1.4285

:1.3371

:1.3327

:1.3320

:1.3400

:1.4007

:1.4205

:1.5899

:1.7307

:1.9782

:2.1667

:2.3934

:2.5601

:2.9610

:3.1889

:3.5926

:3.5463
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Epoch 018 - Accuracy
Epoch 019 - Accuracy
Epoch 020 - Accuracy
Epoch 021 - Accuracy
Epoch 022 - Accuracy
Epoch 023 - Accuracy
Epoch 024 - Accuracy
Epoch 025 - Accuracy
Epoch 026 - Accuracy
Epoch 027 - Accuracy
Epoch 028 - Accuracy
Epoch 029 - Accuracy
Epoch 030 - Accuracy
Epoch 031 - Accuracy
Epoch 032 - Accuracy
Epoch 033 - Accuracy
Epoch 034 - Accuracy
Epoch 035 - Accuracy
Epoch 036 - Accuracy
Epoch 037 - Accuracy
Epoch 038 - Accuracy
Epoch 039 - Accuracy
Epoch 040 - Accuracy
Epoch 041 - Accuracy
Epoch 042 - Accuracy
Epoch 043 - Accuracy
Epoch 044 - Accuracy
Epoch 045 - Accuracy
Epoch 046 - Accuracy
Epoch 047 - Accuracy

Epoch 048 - Accuracy

:0.9543, Val Accuracy: 0.4826, Loss: 0.1400, Val Loss

: 0.9534, Val Accuracy:
: 0.9645, Val Accuracy:
:0.9597, Val Accuracy:
:0.9643, Val Accuracy:
:0.9686, Val Accuracy:
:0.9706, Val Accuracy:
:0.9687, Val Accuracy:
:0.9727, Val Accuracy:
:0.9680, Val Accuracy:
:0.9770, Val Accuracy:
:0.9731, Val Accuracy:
:0.9737, Val Accuracy:
:0.9744, Val Accuracy:
:0.9772, Val Accuracy:
: 0.9755, Val Accuracy:
: 0.9764, Val Accuracy:
: 0.9749, Val Accuracy:
:0.9775, Val Accuracy:
: 0.9766, Val Accuracy:
: 0.9804, Val Accuracy:
:0.9787, Val Accuracy:
:0.9783, Val Accuracy:
:0.9812, Val Accuracy:
:0.9801, Val Accuracy:
:0.9776, Val Accuracy:
:0.9829, Val Accuracy:
:0.9812, Val Accuracy:
: 0.9814, Val Accuracy:
:0.9809, Val Accuracy:

:0.9827, Val Accuracy:

0.4899, Loss
0.4885, Loss
0.4897, Loss

0.4923, Loss

0.4977, Loss:
0.4902, Loss:
0.5049, Loss:
0.4923, Loss:
0.4941, Loss:
0.4943, Loss:
0.4930, Loss:
0.4836, Loss:
0.4826, Loss:
0.4866, Loss:
0.4842, Loss:
0.4916, Loss:
0.4922, Loss:
0.4840, Loss:
0.4915, Loss:
0.4836, Loss:
0.4896, Loss:
0.4922, Loss:
0.4854, Loss:
0.4796, Loss:
0.4859, Loss:
0.4850, Loss:
0.4915, Loss:
0.4798, Loss:
0.4880, Loss:

0.4979, Loss:

:0.1401, Val Loss
:0.1117, Val Loss
:0.1195, Val Loss
:0.1089, Val Loss
0.0994, Val Loss
0.0947, Val Loss
0.0962, Val Loss
0.0842, Val Loss
0.0991, Val Loss
0.0758, Val Loss
0.0867, Val Loss
0.0836, Val Loss
0.0773, Val Loss
0.0721, Val Loss
0.0828, Val Loss
0.0740, Val Loss
0.0807, Val Loss
0.0763, Val Loss
0.0726, Val Loss
0.0635, Val Loss
0.0685, Val Loss
0.0732, Val Loss
0.0617, Val Loss
0.0645, Val Loss
0.0751, Val Loss
0.0572, Val Loss
0.0609, Val Loss
0.0603, Val Loss
0.0647, Val Loss

0.0546, Val Loss

:3.7018

:3.9662

:4.0891

:4.4011

:4.4955

:4.5663

:4.8732

:5.0345

:5.0208

:5.2314

:5.3381

:5.4018

:5.4353

:5.7518

: 5.8687

:5.7429

:5.7139

:5.6780

:6.0438

:16.2590

:6.0061

:6.3571

:6.3705

:6.3249

:6.5636

:6.7005

:6.5337

:6.5980

16.3912

:16.3972

:7.0155
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Epoch 049 - Accuracy

Epoch 050 - Accuracy:
Epoch 051 - Accuracy:
Epoch 052 - Accuracy:
Epoch 053 - Accuracy:
Epoch 054 - Accuracy:
Epoch 055 - Accuracy:
Epoch 056 - Accuracy:
Epoch 057 - Accuracy:
Epoch 058 - Accuracy:
Epoch 059 - Accuracy:
Epoch 060 - Accuracy:
Epoch 061 - Accuracy:
Epoch 062 - Accuracy:
Epoch 063 - Accuracy:
Epoch 064 - Accuracy:
Epoch 065 - Accuracy:
Epoch 066 - Accuracy:
Epoch 067 - Accuracy:
Epoch 068 - Accuracy:
Epoch 069 - Accuracy:
Epoch 070 - Accuracy:
Epoch 071 - Accuracy:
Epoch 072 - Accuracy:
Epoch 073 - Accuracy:
Epoch 074 - Accuracy:
Epoch 075 - Accuracy:
Epoch 076 - Accuracy:
Epoch 077 - Accuracy:
Epoch 078 - Accuracy:

Epoch 079 - Accuracy:

:0.9798, Val Accuracy
0.9835, Val Accuracy
0.9831, Val Accuracy
0.9764, Val Accuracy
0.9851, Val Accuracy
0.9793, Val Accuracy
0.9827, Val Accuracy
0.9846, Val Accuracy
0.9838, Val Accuracy
0.9829, Val Accuracy
0.9821, Val Accuracy
0.9862, Val Accuracy
0.9831, Val Accuracy
0.9833, Val Accuracy
0.9846, Val Accuracy
0.9866, Val Accuracy
0.9858, Val Accuracy
0.9862, Val Accuracy
0.9858, Val Accuracy
0.9860, Val Accuracy
0.9852, Val Accuracy
0.9845, Val Accuracy
0.9869, Val Accuracy
0.9852, Val Accuracy
0.9850, Val Accuracy
0.9857, Val Accuracy
0.9848, Val Accuracy
0.9882, Val Accuracy
0.9851, Val Accuracy
0.9866, Val Accuracy

0.9882, Val Accuracy

:0.5014, Loss
:0.4899, Loss
:0.4744, Loss
1 0.4869, Loss
1 0.4889, Loss
:0.4889, Loss
:0.4906, Loss
:0.4789, Loss
:0.4760, Loss
: 0.4836, Loss
:0.4916, Loss
:0.4887, Loss
:0.4779, Loss
:0.5010, Loss
:0.4742, Loss
:0.4899, Loss
:0.4925, Loss
:0.4899, Loss
:0.4882, Loss
:0.4878, Loss
:0.4744, Loss
:0.4927, Loss
:0.4852, Loss
:0.4784, Loss
:0.4890, Loss
1 0.4896, Loss
:0.4765, Loss
:0.4857, Loss
:0.4906, Loss
:0.4852, Loss

: 0.4815, Loss

:0.0627, Val Loss

:0.0591, Val Loss:
:0.0596, Val Loss:
:0.0779, Val Loss:
:0.0450, Val Loss:
:0.0660, Val Loss:
:0.0561, Val Loss:
:0.0519, Val Loss:
:0.0517, Val Loss:
:0.0560, Val Loss:
:0.0580, Val Loss:
:0.0431, Val Loss:
:0.0569, Val Loss:
:0.0527, Val Loss:
:0.0503, Val Loss:
:0.0466, Val Loss:
: 0.0495, Val Loss:
:0.0461, Val Loss:
:0.0487, Val Loss:
:0.0463, Val Loss:
:0.0504, Val Loss:
:0.0511, Val Loss:
:0.0451, Val Loss:
:0.0495, Val Loss:
:0.0519, Val Loss:
:0.0489, Val Loss:
:0.0536, Val Loss:
:0.0397, Val Loss:
: 0.0490, Val Loss:
:0.0420, Val Loss:

:0.0380, Val Loss:

16,7211

7.0036

6.6916

7.0707

7.0787

7.1500

7.3179

7.4684

6.9117

7.0662

7.6889

7.5420

7.0250

7.5512

7.4659

7.7688

7.5589

7.8455

7.5719

8.4911

7.8136

8.0655

8.1516

7.8587

8.0079

8.0228

7.3651

8.0811

8.6084

8.1106

8.4238
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Epoch 080 - Accuracy
Epoch 081 - Accuracy
Epoch 082 - Accuracy
Epoch 083 - Accuracy
Epoch 084 - Accuracy
Epoch 085 - Accuracy
Epoch 086 - Accuracy
Epoch 087 - Accuracy
Epoch 088 - Accuracy
Epoch 089 - Accuracy
Epoch 090 - Accuracy
Epoch 091 - Accuracy
Epoch 092 - Accuracy
Epoch 093 - Accuracy
Epoch 094 - Accuracy
Epoch 095 - Accuracy
Epoch 096 - Accuracy
Epoch 097 - Accuracy
Epoch 098 - Accuracy
Epoch 099 - Accuracy
Epoch 100 - Accuracy
Epoch 101 - Accuracy
Epoch 102 - Accuracy
Epoch 103 - Accuracy
Epoch 104 - Accuracy
Epoch 105 - Accuracy
Epoch 106 - Accuracy
Epoch 107 - Accuracy
Epoch 108 - Accuracy
Epoch 109 - Accuracy

Epoch 110 - Accuracy

: 0.9864, Val Accuracy: 0.4925, Loss: 0.0465, Val Loss

:0.9851, Val Accuracy:
:0.9891, Val Accuracy:
:0.9857, Val Accuracy:
:0.9837, Val Accuracy:
:0.9906, Val Accuracy:
:0.9852, Val Accuracy:
:0.9881, Val Accuracy:
:0.9889, Val Accuracy:
:0.9872, Val Accuracy:
:0.9887, Val Accuracy:
: 0.9864, Val Accuracy:
:0.9899, Val Accuracy:
:0.9893, Val Accuracy:
: 0.9854, Val Accuracy:
:0.9879, Val Accuracy:
:0.9882, Val Accuracy:
:0.9911, Val Accuracy:
: 0.9864, Val Accuracy:
:0.9899, Val Accuracy:
:0.9870, Val Accuracy:
:0.9902, Val Accuracy:
: 0.9864, Val Accuracy:
:0.9880, Val Accuracy:
:0.9872, Val Accuracy:
:0.9903, Val Accuracy:
:0.9876, Val Accuracy:
:0.9892, Val Accuracy:
:0.9885, Val Accuracy:
:0.9920, Val Accuracy:

:0.9869, Val Accuracy:

0.4727, Loss:
0.4814, Loss:
0.4758, Loss:
0.4869, Loss:
0.4866, Loss:
0.4862, Loss:
0.4897, Loss:
0.4829, Loss:
0.4845, Loss:
0.4789, Loss:
0.4847, Loss:
0.4887, Loss:
0.4882, Loss:
0.4934, Loss:
0.4918, Loss:
0.4873, Loss:
0.4862, Loss:
0.4956, Loss:
0.4850, Loss:
0.4871, Loss:
0.4908, Loss:
0.4885, Loss:
0.4882, Loss:
0.4997, Loss:
0.4878, Loss:
0.4868, Loss:
0.4979, Loss:
0.4948, Loss:
0.5021, Loss:

0.4788, Loss:

0.0527, Val Loss
0.0336, Val Loss
0.0467, Val Loss
0.0523, Val Loss
0.0294, Val Loss
0.0484, Val Loss
0.0391, Val Loss
0.0409, Val Loss
0.0419, Val Loss
0.0385, Val Loss
0.0439, Val Loss
0.0335, Val Loss
0.0377, Val Loss
0.0480, Val Loss
0.0394, Val Loss
0.0441, Val Loss
0.0308, Val Loss
0.0491, Val Loss
0.0362, Val Loss
0.0456, Val Loss
0.0299, Val Loss
0.0442, Val Loss
0.0406, Val Loss
0.0441, Val Loss
0.0331, Val Loss
0.0431, Val Loss
0.0361, Val Loss
0.0391, Val Loss
0.0269, Val Loss

0.0447, Val Loss

:8.7952

:8.0612

:8.3535

:8.5441

:8.4533

:8.1767

:8.3205

: 8.8808

:8.5767

:8.7976

:8.3361

:8.9113

:8.6794

: 8.4522

:9.0693

:9.0683

:8.6143

:8.9517

:8.7922

: 8.6878

: 8.6895

:9.0300

:9.0151

:9.1591

:9.3090

:9.0998

:8.6185

:9.4131

: 8.8807

:9.1985

:9.2709
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Epoch 111 - Accuracy

Epoch 112 - Accuracy:
Epoch 113 - Accuracy:
Epoch 114 - Accuracy:
Epoch 115 - Accuracy:
Epoch 116 - Accuracy:
Epoch 117 - Accuracy:
Epoch 118 - Accuracy:
Epoch 119 - Accuracy:
Epoch 120 - Accuracy:
Epoch 121 - Accuracy:
Epoch 122 - Accuracy:
Epoch 123 - Accuracy:
Epoch 124 - Accuracy:
Epoch 125 - Accuracy:
Epoch 126 - Accuracy:
Epoch 127 - Accuracy:
Epoch 128 - Accuracy:
Epoch 129 - Accuracy:
Epoch 130 - Accuracy:
Epoch 131 - Accuracy:
Epoch 132 - Accuracy:
Epoch 133 - Accuracy:
Epoch 134 - Accuracy:
Epoch 135 - Accuracy:
Epoch 136 - Accuracy:
Epoch 137 - Accuracy:
Epoch 138 - Accuracy:
Epoch 139 - Accuracy:
Epoch 140 - Accuracy:

Epoch 141 - Accuracy:

: 0.9875, Val Accuracy
0.9905, Val Accuracy
0.9891, Val Accuracy
0.9932, Val Accuracy
0.9873, Val Accuracy
0.9896, Val Accuracy
0.9887, Val Accuracy
0.9877, Val Accuracy
0.9907, Val Accuracy
0.9915, Val Accuracy
0.9899, Val Accuracy
0.9909, Val Accuracy
0.9891, Val Accuracy
0.9886, Val Accuracy
0.9907, Val Accuracy
0.9914, Val Accuracy
0.9904, Val Accuracy
0.9894, Val Accuracy
0.9909, Val Accuracy
0.9925, Val Accuracy
0.9884, Val Accuracy
0.9930, Val Accuracy
0.9904, Val Accuracy
0.9918, Val Accuracy
0.9892, Val Accuracy
0.9895, Val Accuracy
0.9925, Val Accuracy
0.9894, Val Accuracy
0.9909, Val Accuracy
0.9920, Val Accuracy

0.9894, Val Accuracy

:0.4967, Loss
:0.4861, Loss
:0.4970, Loss
:0.4939, Loss
: 0.4864, Loss
:0.4852, Loss
:0.4916, Loss
:0.4995, Loss
1 0.4956, Loss
:0.4927, Loss
:0.4892, Loss
:0.4876, Loss
:0.4916, Loss
:0.4981, Loss
:0.4749, Loss
:0.4915, Loss
:0.4883, Loss
:0.4873, Loss
1 0.4889, Loss
:0.4897, Loss
:0.4892, Loss
:0.4871, Loss
: 0.4855, Loss
:0.4845, Loss
:0.4838, Loss
:0.4883, Loss
:0.4873, Loss
:0.4873, Loss
:0.4847, Loss
1 0.4894, Loss

:0.4817, Loss

:0.0425, Val Loss

:0.0328, Val Loss:
:0.0364, Val Loss:
:0.0228, Val Loss:
:0.0406, Val Loss:
:0.0338, Val Loss:
:0.0371, Val Loss:
: 0.0440, Val Loss:
:0.0296, Val Loss:
:0.0300, Val Loss:
:0.0325, Val Loss:
:0.0296, Val Loss:
:0.0365, Val Loss:
:0.0368, Val Loss:
:0.0325, Val Loss:
:0.0292, Val Loss:
:0.0322, Val Loss:
:0.0360, Val Loss:
:0.0322, Val Loss:
:0.0232, Val Loss:
:0.0434, Val Loss:
:0.0253, Val Loss:
:0.0372, Val Loss:
:0.0271, Val Loss:
:0.0354, Val Loss:
:0.0329, Val Loss:
:0.0253, Val Loss:
:0.0372, Val Loss:
:0.0331, Val Loss:
:0.0307, Val Loss:

:0.0313, Val Loss:

:9.0875

8.9586

9.3715

9.2416

8.9569

9.5628

10.0315

9.2710

9.3520

9.3258

9.9391

9.8988

9.8521

10.0322

9.4751

9.4677

9.6698

9.7073

9.2921

9.9198

10.2699

9.8526

9.7971

10.2458

9.9206

9.7883

10.0541

10.5311

10.6440

9.9529

9.8226



10 Anaam A. Muhamed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 239-257

Epoch 142 - Accuracy: 0.9911, Val Accuracy: 0.4909, Loss: 0.0305, Val Loss: 10.7301

Epoch 143 - Accuracy
Epoch 144 - Accuracy
Epoch 145 - Accuracy
Epoch 146 - Accuracy
Epoch 147 - Accuracy
Epoch 148 - Accuracy
Epoch 149 - Accuracy
Epoch 150 - Accuracy
Epoch 151 - Accuracy
Epoch 152 - Accuracy
Epoch 153 - Accuracy
Epoch 154 - Accuracy
Epoch 155 - Accuracy
Epoch 156 - Accuracy
Epoch 157 - Accuracy
Epoch 158 - Accuracy
Epoch 159 - Accuracy
Epoch 160 - Accuracy
Epoch 161 - Accuracy
Epoch 162 - Accuracy
Epoch 163 - Accuracy
Epoch 164 - Accuracy
Epoch 165 - Accuracy
Epoch 166 - Accuracy
Epoch 167 - Accuracy
Epoch 168 - Accuracy
Epoch 169 - Accuracy
Epoch 170 - Accuracy
Epoch 171 - Accuracy

Epoch 172 - Accuracy

:0.9906, Val Accuracy:
:0.9927, Val Accuracy:
:0.9905, Val Accuracy:
:0.9904, Val Accuracy:
:0.9917, Val Accuracy:
:0.9903, Val Accuracy:
:0.9916, Val Accuracy:
:0.9891, Val Accuracy:
:0.9927, Val Accuracy:
:0.9925, Val Accuracy:
:0.9903, Val Accuracy:
:0.9908, Val Accuracy:
:0.9907, Val Accuracy:
: 0.9904, Val Accuracy:
: 0.9934, Val Accuracy:
:0.9891, Val Accuracy:
:0.9912, Val Accuracy:
:0.9916, Val Accuracy:
: 0.9904, Val Accuracy:
:0.9912, Val Accuracy:
:0.9919, Val Accuracy:
:0.9917, Val Accuracy:
: 0.9924, Val Accuracy:
:0.9902, Val Accuracy:
:0.9929, Val Accuracy:
:0.9891, Val Accuracy:
:0.9928, Val Accuracy:
:0.9933, Val Accuracy:
:0.9923, Val Accuracy:

:0.9923, Val Accuracy:

0.4913, Loss:
0.4859, Loss:
0.4840, Loss:
0.4842, Loss:
0.4922, Loss:
0.4899, Loss:
0.4956, Loss:
0.4862, Loss:
0.4734, Loss:
0.4791, Loss:
0.4829, Loss:
0.4861, Loss:
0.4902, Loss:
0.4774, Loss:
0.4887, Loss:
0.4848, Loss:
0.4824, Loss:
0.4728, Loss:
0.4871, Loss:
0.4882, Loss:
0.4833, Loss:
0.4890, Loss:
0.4812, Loss:
0.4911, Loss:
0.4835, Loss:
0.4843, Loss:
0.4824, Loss:
0.4828, Loss:
0.4781, Loss:

0.4934, Loss:

0.0331, Val Loss:
0.0251, Val Loss:
0.0351, Val Loss:
0.0329, Val Loss:
0.0260, Val Loss:
0.0329, Val Loss:
0.0258, Val Loss:
0.0360, Val Loss:
0.0250, Val Loss:
0.0257, Val Loss:
0.0333, Val Loss:
0.0320, Val Loss:
0.0342, Val Loss:
0.0354, Val Loss:
0.0182, Val Loss:
0.0358, Val Loss:
0.0311, Val Loss:
0.0299, Val Loss:
0.0358, Val Loss:
0.0293, Val Loss:
0.0250, Val Loss:
0.0302, Val Loss:
0.0259, Val Loss:
0.0348, Val Loss:
0.0237, Val Loss:
0.0457, Val Loss:
0.0223, Val Loss:
0.0278, Val Loss:
0.0236, Val Loss:

0.0252, Val Loss:

10.3141

10.6820

10.2249

10.6389

10.5103

10.8578

11.3793

10.6478

10.8053

10.4735

10.7908

11.0190

10.7763

10.6764

10.8635

11.2426

10.7722

10.3893

11.5223

11.0676

10.4516

11.8600

10.6850

11.4148

11.6688

11.3410

11.0391

10.5463

11.0709

11.8636
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Epoch 173 - Accuracy
Epoch 174 - Accuracy
Epoch 175 - Accuracy
Epoch 176 - Accuracy
Epoch 177 - Accuracy
Epoch 178 - Accuracy
Epoch 179 - Accuracy
Epoch 180 - Accuracy
Epoch 181 - Accuracy
Epoch 182 - Accuracy
Epoch 183 - Accuracy
Epoch 184 - Accuracy
Epoch 185 - Accuracy
Epoch 186 - Accuracy
Epoch 187 - Accuracy
Epoch 188 - Accuracy
Epoch 189 - Accuracy
Epoch 190 - Accuracy
Epoch 191 - Accuracy
Epoch 192 - Accuracy
Epoch 193 - Accuracy
Epoch 194 - Accuracy
Epoch 195 - Accuracy
Epoch 196 - Accuracy
Epoch 197 - Accuracy
Epoch 198 - Accuracy
Epoch 199 - Accuracy

Epoch 200 - Accuracy

:0.9902, Val Accuracy
:0.9911, Val Accuracy
:0.9943, Val Accuracy
:0.9907, Val Accuracy
:0.9935, Val Accuracy
:0.9926, Val Accuracy
:0.9914, Val Accuracy
:0.9921, Val Accuracy
:0.9904, Val Accuracy
:0.9911, Val Accuracy
:0.9930, Val Accuracy
:0.9924, Val Accuracy
:0.9921, Val Accuracy
:0.9930, Val Accuracy
:0.9920, Val Accuracy
:0.9904, Val Accuracy
:0.9932, Val Accuracy
: 0.9934, Val Accuracy
:0.9900, Val Accuracy
:0.9917, Val Accuracy
:0.9924, Val Accuracy
:0.9924, Val Accuracy
:0.9926, Val Accuracy
:0.9929, Val Accuracy
:0.9922, Val Accuracy
:0.9936, Val Accuracy
:0.9914, Val Accuracy

:0.9922, Val Accuracy

:0.4805, Loss
:0.4808, Loss
:0.4890, Loss
:0.4836, Loss
:0.4946, Loss
:0.4936, Loss
:0.4848, Loss
:0.4807, Loss
:0.4788, Loss
:0.4913, Loss
:0.4897, Loss
:0.4807, Loss
1 0.4880, Loss
: 0.4883, Loss
:0.4814, Loss
:0.4812, Loss
:0.4896, Loss
:0.4930, Loss
:0.4915, Loss
:0.4943, Loss
:0.4909, Loss
: 0.4864, Loss
:0.4842, Loss
1 0.4894, Loss
:0.4883, Loss
1 0.4869, Loss
:0.4848, Loss

:0.4796, Loss

:0.0326, Val Loss:
:0.0306, Val Loss:
:0.0197, Val Loss:
:0.0310, Val Loss:
:0.0213, Val Loss:
:0.0279, Val Loss:
:0.0295, Val Loss:
:0.0257, Val Loss:
:0.0355, Val Loss:
:0.0314, Val Loss:
:0.0254, Val Loss:
:0.0270, Val Loss:
:0.0279, Val Loss:
:0.0290, Val Loss:
:0.0290, Val Loss:
:0.0346, Val Loss:
:0.0233, Val Loss:
:0.0207, Val Loss:
:0.0338, Val Loss:
:0.0300, Val Loss:
:0.0256, Val Loss:
:0.0269, Val Loss:
:0.0261, Val Loss:
:0.0259, Val Loss:
:0.0307, Val Loss:
:0.0208, Val Loss:
:0.0333, Val Loss:

:0.0277,Val Loss:

10.9616

11.1233

11.4193

10.9490

11.7212

11.1060

11.9506

11.6073

11.4295

11.2897

11.8960

11.8203

11.9160

11.8913

11.2062

11.2958

11.6362

12.0616

12.3472

11.6424

11.5664

11.7464

12.0686

11.8587

11.8063

12.3902

12.1660

12.2035
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Resize to
64x64

Convert to
NumPy array

Normalize

Add batch
dimension

Pass to CNN
Model

Generate
Output
Probabilities

Determine
Highest Class
Probabilit

Figure 3: Flow chart of the use of the CNN trained model
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3.4 Work Flow for the IOT system

The system uses Raspberry pi 5 (4Gb) version, kali Linux distribution for the server hardware. The website
front end use HTML, CSS and Java Script. For the backend uses flask module integrated into the python app. The
figure 1 show the work flow of the process.

Load Pretrained Load Pretrained User Uploads Receive Image
CNN Model CNN Model Image (POST /classify)

Start Flask App

Delete Temp Build JSON Map to Class Get Class Classify with
Image Response Label Probabilities CNN

Return Result to
Frontend

Figure 4: Server-side work flow

Server-side Client-side

«— — — — — — —
Web Server HTTP Request Browser

Pre-created: [ T T HTTP Response

HTML

CSss L

Javascript

other files

Figure 5: HTTP protocol work flow
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Medical Image Classifier

' Choose File | No file chosen l

Classify Image

® 2024 Medical Image Classifier

Figure 6: Client site web page to accept the files

Classification Result

Predicted Class: No_DR

Class Probabilities:

Moderate: 0.0000
. No_DR: 1.0000

Figure 7: Client site web page show the classification results

“1 =

Internet L]

o ]
[Al ISP router / modem
w 192.168.1.1 ﬁ:

Laptop s
dhecp

Raspb Pi Server

Figure 8: IOT system work flow

B

Computer
dhep

iMac
dhep

iMac
dhecp

NAS
192.168.1.2
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4.Results and Discussion

The dataset has images of patients from varying ethnicities, different age groups, camera sources with

different lighting, and a variety of other factors through the fundus photographs that would alter pixel intensity
values in the images and add unintended variation that would not apply to the classification levels, and variants
which should be removed. For the purpose of color normalization of the high resolution and high memory, and then
resizing the dataset to 32x32 pixels to incorporate some of the complex markings we would like to identify at, as
well as meet the memory constraints of a NVIDIA K40c.

Table 2: Test accuracy for samples

Sample No. Sample of Stage Classification Probabilities Accuracy Final
Classification Classification
1 1 Moderate probability: 1.000 100% Moderate
No Dr probability: 0.000
2 1 Moderate probability: 1.000 100% Moderate
No Dr probability: 0.000
3 1 Moderate probability: 1.000 100% Moderate
No Dr probability: 0.000
4 1 Moderate probability: 1.000 100% Moderate
No Dr probability: 0.000
5 A 1 Moderate probability: 0.000 100% No Dr
[ No Dr probability: 1.000
6 1 Moderate probability: 0.000 100% No Dr
No Dr probability: 1.000
7 1 Moderate probability: 0.000 100% No Dr
No Dr probability: 1.000
8 1 Moderate probability: 0.000 100% No Dr

No Dr probability: 1.000
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4.1 Model Testing Results

The dataset consisted of 1,998 retinal fundus images, equally divided between Moderate Diabetic Retinopathy
(Moderate, 999 images) and No Diabetic Retinopathy (No_DR, 999 images). The data was split into 80% training
(1,599 images) and 20% validation (399 images).

A Convolutional Neural Network (CNN) was trained on 32x32 pixel images for 10 epochs, using the Adam optimizer
and binary cross-entropy loss. Training was performed on an NVIDIA GeForce GTX 1650 GPU, which significantly
accelerated the process.

The model achieved the following performance metrics on the validation set:
e Validation Accuracy: 88.97%
e Precision: 97.28% (weighted average)
e Recall: 82.11% (weighted average)
e Fl-score: 0.89 (weighted average)

The confusion matrix (Figure 9) shows that out of 181 Moderate images, 176 were correctly classified,

Confusion Matrix

160

140

Moderate

120

100

True Labels

MNo_DR

Moderate No DR
Predicted Labels

Figure 9: Confusion matrix showing the classification performance of the CNN on the validation dataset.



Anaam A. Muhamed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 239-257" 17

while 5 were misclassified as No_DR. For the No_DR class, 179 out of 218 images were correctly classified, while 39
were misclassified as Moderate.

Accuracy Precision & Recall
0.90 S —
0.85 4
0.80 1
0.75 4
0.70 A
0.65 - —— Train Precision
0.60 - . 0.6 4 VaI.Precmon
—— Train Acc —— Train Recall

0.55 4 Val Acc —— Val Recall

T T T T T T T T T T

0 2 4 6 8 0 2 4 6 8

Figure 10: Training curves for accuracy, precision, and recall over 10 epochs, showing stable convergence with no
signs of overfitting.

4.2 Classification Report

Class Precision Recall F1-score Support
Moderate 0.82 0.97 0.89 181
No_DR 0.97 0.82 0.89 218
Accuracy - - 0.89 399
Macro avg 0.90 0.90 0.89 399
Weighted avg 0.90 0.89 0.89 399

Table 3: Model testing Report
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4.3 Performance of the proposed CNN

Study / Dataset / Method Accuracy Precision Recall F1-score Notes / Comparison
Year Images
14406 putomated )
Philip et images “disease/no 90.5% 67.4% P ty; y
. . ” N/A . i N/A model has better class
al,, 2007 (screening disease (sensitivity) = (specificity) .
rogrammed) radin balance and higher
prog 8 g precision for No_DR.
Older CAD systems had
Mookiah Early CAD lower overall accuracy;
etal, 210 images systems for 81.3% N/A N/A N/A your CNN achieves
2013 DR higher accuracy
(~88.97%).
Various Reliability l:hghllghts varlab‘l lity
Benbassat human of in human screening;
& Polak, . . N/A N/A N/A N/A your model provides
grading screening 5
2009 . consistent
studies methods
performance.
Outperforms older CAD
. systems in accuracy
1,998 images
Proposed (999 CNN 0.9728 0.8211 0.89 and class-balanced
(32x32 88.97% . . . precision/recall;
(2025) Moderate, . (weighted) (weighted) @ (weighted) .
999 No_DR) images) demonstrates effective

low-resolution
classification.

5.Conclusion

Convolutional neural networks (CNNs) were employed to analyze retinal images to detect indicators of diabetic
retinopathy. This type of network was proven capable of extracting important visual features without the need for
human intervention or the use of predefined features. Reliable medical data was used, which helped achieve
accurate and promising results. It was also indicated that the model could be developed in the future to be more
specialized in classifying subtle disease conditions. This approach is expected to contribute to supporting medical
staff by providing smart tools that aid in early and effective diagnosis, especially when combined with Internet of
Things technologies. As data quality continues to improve and network architectures evolve, these models could
become vital tools in smart healthcare applications.

Future Work:
To further improve the performance and generalizability of the proposed CNN model, future work could explore the
use of deeper architectures, such as ResNet or EfficientNet, and advanced data augmentation techniques.

Additionally, incorporating transfer learning from pre-trained models and experimenting with hyperparameter
optimization may yield better results.

Expanding the dataset to include more diverse and larger samples, as well as evaluating the model on external
validation sets, would also strengthen the robustness and clinical applicability of the approach.
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