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A B S T R A C T 

The spread of Internet of Things (IoT) devices has brought about imposing security issues 
especially because of their nature of limited processing capacity, memory, and power. Most 
traditional cryptographic algorithms are usually resource-consuming such that they render 
them susceptible to attacks. The present paper suggests a new lightweight hybrid 
cryptography system that can serve resource-restrained IoT devices in particular. This 
framework is cooperatively built on certificate-based authentication based on Elliptic Curve 
Cryptography (ECC) as a secure method of establishing keys with the symmetric speed and 
low overhead of a data encryption scheme, the ChaCha20-Poly1305 Authenticated Encryption 
with Associated Data (AEAD) scheme. The full architecture design showed with a higher level 
of security measures and simulate it on a representative model of an IoT hardware (ARM 
Cortex-M4). An overall comparative analysis with standard algorithms (RSA, AES) and other 
lightweight schemes show that the proposed framework shortens the execution time by up to 
82% and reduces energy consumption by more than 60% and offers strong security to all 
types of common IoT attacks such as a man-in-the-middle, replay, and timing attacks. In the 
framework, there is also a reduction of 34 percent in RAM and 47 percent in Flash memory 
consumption as compared to conventional methods. 

 

MSC.. 

https://doi.org/ 10.29304/jqcsm.2025.17.42564 

1. Introduction 

Internet of things (IoT) paradigm is a technology that links billions of intelligent devices, including sensors and 
wearable devices to the internet to collect and automate data in a scale never seen before. Nevertheless, the limited 
capacity of these devices, in the form of the small CPU capacity, RAM, flash storage, and battery capacity, is a key 
challenge in the way of realizing the effective security mechanisms [1]. Existing cryptography systems, such as RSA 
(asymmetric) and AES (symmetric) are secure but computationally intensive, and quickly drain the resources of a 
simple microcontroller [2]. This resources asymmetry introduces a severe security gap, and IoT devices are 
vulnerable to man-in-the-middle, eavesdropping, data manipulation, and spoofing. An effective attack may result in 
the violation of privacy, failure of important systems, as well as the creation of large botnets (e.g., Mirai). As such, 
there is an immediate necessity of light weight cryptographic solutions offering a trade-off between security, 
performance, and efficiency. The paper is an attempt to resolve this problem by coming up with a special hybrid 
cryptographic framework. Hybrid cryptography takes advantage of the advantages of the various cryptographic 
designs: asymmetric cryptography to provide secure key exchange and symmetric cryptography to provide an 
efficient bulk data encryption. The novelty of this work resides in the meticulous selection and integration of 
modern, inherently lightweight algorithms--ECC, ChaCha20, and Poly1305--to form a cohesive and efficient security 
suite tailored for the IoT domain. The other parts of this paper are structured as follows: part 2 reviewing literature 
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review in lightweight cryptography. Part 3 details the design of the suggested framework. Part 4 describes the 
implementation setup and presents a comparative performance analysis. Finally, Part 5 conclusion of the paper. 

2. Literature Review and Comparative Analysis 

   2.1. Development of Lightweight Cryptography in IoT 
The current state in the research of lightweight cryptography in IoT has changed a lot and the recent extensive 
surveys and comparative studies have brought to the fore the essentiality of optimized security solutions in 
resource constrained settings. A detailed survey of lightweight cryptography in IoT networks is offered by Rana et 
al. [3], which identifies all the approaches based on their level of computational efficiency, energy use, and security 
assurance. In their work, the basic tradeoffs between the strength of security and resource consumption are 
identified, which defines the IoT cryptographic solutions. This survey provides us a direct information on the 
design philosophy of our framework of balancing high security and low resource overheads. The article [4] by the 
ACM Computing Surveys (written in 2023) takes this analysis a step further and in particular investigates the 
lightweight encryption implementations by noting that most of the current solutions cannot offer full security and 
at the same time remain efficient. Their results indicate that most of the existing solutions put the performance 
before security and those that use strong cryptography consume limited resources of the device. This was the gap 
that is mentioned in [4] that leads directly to our hybrid approach that aims at the realization of security 
completeness and operational efficiency. 

 

2.2. Lightweight Cryptographic Comparative Analysis 
 
The recent comparative research has offered useful information on the performance features of different 
lightweight cryptographic algorithms. A comparative analysis of lightweight ciphers such as ChaCha20, ASCON, 
PRESENT, and ECC variants is one of the most relevant comparative analyses that are presented in the 2024 IEEE 
IoT Journal study [5]. Their experimental evidence shows that ChaCha20 is always faster than other symmetric 
ciphers in software applications, and ECC does not lose its superiority in asymmetric applications. Our algorithmic 
choice of ChaCha20-Poly1305 to use in the symmetric operations and the ECC to use in the key exchange is this 
empirically validated. The research [5] goes to add that the ARX additions rotation-XOR functions of ChaCha20 
have better performance on general-purpose processors than the substitution-permutation network-based ciphers 
such as PRESENT. Our experimental results indicate this finding by demonstrating that ChaCha20-Poly1305 was 
46% faster to encrypt than AES-GCM. They further support their variants-ECC analysis by showing the efficiency 
benefits of curve secp256r1 which had implemented in this framework to achieve the best performance on ARM 
Cortex-M4 processors. 

 

   2.3. Hybrid Cryptography methods in IoT 
 
   Hybrid cryptographic architectures have become one of the potential solutions to IoT security, integrating the 

advantages of various cryptographic paradigms. Karmous et al. [6] introduce a hybrid cryptographic technique of 
MQTT-based IoT communications and prove the practical advantages of using a combination of asymmetric and 
symmetric cryptography. Implementation however concentrates more on simple encryption without extensive 
authentication systems which makes the implementation of key exchange protocols vulnerable. This model will 
expand on [6], and will incorporate certificate-based authentication at the hybrid architecture, which is a key 
security gap. Khalifa et al. [7] suggests a lightweight cryptography architecture to be used in securing memory 
heap in IoT devices, with particular emphasis on memory-efficient cryptographic designs. They focus their work 
on the claim that memory limitations are often the most problematic in the real-world implementation of IoT. This 
understanding had a direct impact on the design of this framework, specifically the emphasis on the minimization 
of RAM usage (reduction by 34 percent relative to conventional techniques) and the patterns of memory 
allocation to be used in low-resource settings. 

 

2.4. Authentication and Privacy on Constrained Environments. 
 
Authentication is another key area of concern in IoT security with most of the available options being too 
resource-intensive to be used by many. Kaur et al. [8] respond to this problem with an example of a lightweight 
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privacy-saving authentication protocol in mobile edge computing, proving that the certificate-based 
authentication can be efficiently applied in a limited space. Their article is useful to the current topic because it 
gives insight into how to trade between the strength of authentication and computational cost, which directly 
informs our certificate validation scheme. Authentication scheme in [8] indicates that security can be ensured 
with a required resource consumption by carefully optimized certificate processing. We use this as a base by 
incorporating efficient X.509 certificate validation into our key exchange system, providing a high security level 
with the efficiency that our IoT devices need due to resource constraints. 

3. Technical background 

3.1. Elliptic Curve Cryptography (ECC) 

 

Elliptic Curve Cryptography (ECC) utilizes the group-theoretic nature of the elliptic curve points defines in a finite 
field to offer an equally public-key secure system to those offered by RSA or other more traditional discrete-log 
based cryptography, but with key sizes that are drastically smaller. A 256-bit ECC key will provide the safety of a 
3072-bit RSA key, which, in turn, allows to provide any protocol, such as TLS and blockchain technology, with faster 
computation time, less storage and less bandwidth usage that is of utmost importance nowadays [13]. 
An elliptic curve over a prime field F_P (with  p>3)  is defined by the equation 

𝑦2 = 𝑥2 + 𝑎𝑥 + 𝑏, 
together with a distinguished "point at infinity." Under the chord-and-tangent addition law, these points form an 
abelian group. ECC's security rests on the elliptic-curve discrete logarithm problem (ECDLP): given a base point P 
and another point Q=kP, it is computationally impractical to recover the scalar k. Unlike integer factorization or 
finite-field discrete logs, no sub exponential-time algorithm is known for ECDLP, enabling ECC to use much smaller 
parameters for equivalent hardness [9][10][12]. The utility of elliptic curves in encryption was suggested 
independently by Koblitz [9] and Miller [10] in 1985 and gained widespread adoption after NIST's inclusion of 
fifteen recommended curves in FIPS 186-4 [12]. The NSA's Suite B further standardized ECC for key agreement via 
Elliptic-Curve Diffie-Hellman (ECDH) and for digital signatures via ECDSA, permitting deployment on classified 
systems up to top-secret with 384-bit keys [12]. Beyond these standard curves, pairing-based cryptography exploits 
bilinear maps on special curves to enable identity-based encryption, aggregate signatures, and other advanced 
primitives [13].The main ECC primitives include the elliptic-curve Diffie- Hellman (ECDH) to secure key-agreement, 
the elliptic-curve digital signature algorithm (ECDSA) to verify message-authentication and the elliptic-curve 
integrated encryption scheme (ECIES) that combines ECDH and symmetric ciphers to provide confidentiality and 
integrity [11]. Although these schemes are efficient with small key sizes, the challenges of quantum algorithms such 
as the Shor algorithm of future pose a threat to them, and therefore compel the standardization of post-quantum 
schemes [5]. Moreover, the transparency in the selection of the curves is also needed to prevent the hidden 
vulnerabilities as the case of Dual ECDRBG backdoor debacle shows [13]. 
 

3.2. ChaCha20-Poly1305 
 
The authenticated encryption with associated data (AEAD) ChaCha20-Poly1305 is an authenticated encryption 
primitives based on ChaCha20, a secure alternative to AES-GCM which has been adopted as a foundation of 
contemporary secure communication. The design is oriented towards high throughput of software implementations 
simultaneously with immunity to side channel attacks [1][2]. It is an algorithm built on a symbiotic relationship 
between two cryptanalytic primitives, the ChaCha20 stream cipher and Poly1305 message-authentication code. 
ChaCha20 generates a keystream of a twenty-round permutation using add-rotate-XOR (ARX) operations that is 
XORed with the plaintext to thus offer confidentiality [3]. An interesting feature of its ARX-based implementation is 
that it is resistant to timing attacks as the algorithm avoids data-dependent memory lookups [2]. The Poly1305 
authenticator (an example of a one-time Carter-Wegman MAC) uses polynomial evaluation modulo a prime to 
generate a 128-bit authenticator that is the basis for integrity and authenticity of ciphertext and other authenticated 
data [4]. In the standardized AEAD construction, a 256-bit key is used together with a 96-bit nonce that is generated 
uniquely. In addition to the encryption of the plaintext, ChaCha20 also generates the unique one-time key as in 
Poly1305, making ChaCha20-Poly1305 a secure and efficient integration. One importance security requirement is 
that nonce should never be used again with the same key. The popularity of ChaCha20-Poly1305 implementation 
can be explained by its good performance profile and strong security features. It tends to be faster than AES-GCM on 
platforms that do not include specialized AES-NI hardware instructions, and can therefore be particularly efficient 
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for mobile and embedded devices. As a result, it has been standardized in critical internet protocols on the Internet 
such as Transport Layer Security (TLS) 1.3 [5], as well as being the underlying cryptographic primitive in the 
WireGuard(R) VPN protocol [6]. Its position as a key component of modern cryptography has been cemented by its 
blend of security, effectiveness, and simplicity. 

4. Proposed Lightweight Hybrid Framework 

The proposed approach will aim at targeting a standard IoT connection in which a smaller device (Node) and a more 
powerful gateway or server is involved. The design follows a hybrid paradigm by splitting the process of the secure 

key establishment phase and the effective data encryption phase. 

 
4.1. Design Principles 

 
The model is informed by five principles: 
• Lightweight: Minimize computation, memory and energy. 
• End-to-End Security: Data that is in transit should be granted confidentiality, integrity, and authenticity. 
• Forward Secrecy: past session key compromise should be independent of long-term key compromise. 
• Explicit Authentication: Strong authentication should be executed to avoid man-in-the-middle (MITM) and 

impersonation attacks. 
• Simplicity: It should not use complex protocols that can result in a large attack surface and make 

implementation complicated. 
 
4.2. Framework Architecture with Certificate-Based Authentication  
 
 The framework divided into two major phases included improving security technique: 

 
Phase 1: Authenticated Session Key Establishment MITM Protection 
Purpose: To seal a common secret session key (SessionKey) in between the IoT node and the gateway securely with 
mutual authentication. 
 
Pre-deployment Preparations: IoT nodes are configured with a distinct ECC key pair ( PrivN, PubN) and a  digital 

certificate ( CertN) that are signed by an authorized Certificate Authority (CA). The gateway has the root certificate 
of CA to be verified and its certificate (CertG). 

 
Mechanism: The ECDH (Elliptic Curve Diffie- Hellman) has been used with the curve secp256r1 that is vastly 
popular.     

 
Steps 

 
1 Certificate Exchange: Both of the Node and the Gateway are exchanging the digital certificates (CertN, 

CertG). 
2 Certificate Validation: To authenticate the message in each side, the sign of the certificate received is 

verified   by using the public key of the CA to avoid MITM attacks and to assure the message is authentic. 
3 Key Extraction: Once successful validation is achieved each party removes the public key that is 

authenticated by the certificate received. 
4 Shared Secret Computation: Shared secret computation is done independently by each party with their own 

privacy key and the verified public key: SharedSecret = ECDH( PrivN, PubG ) = ECDH( PrivG, PubN ). 
5 Session Key Derivation: The SharedSecret is run through an HMAC-based Key Derivation Function (HKDF) 

to create a powerful, symmetric Session_Key. This session key is short lived and offers forward secrecy. 
   

Phase 2: Full chacha20 Poly1305 AEAD Data Encryption. 
 
Purpose: Encryption of sensor data, as well as the creation of an authentication tag with integrity and authenticity 
using full AEAD parameters. 
 
Mechanism: ChaCha20 stream cipher is used to encrypt messages and Poly1305 message authentication code is 
used to verify messages with full parameter specification. 
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      Total Cryptographic Parameters: 

• Nonce: 96-bit (12-byte) random value that is applied by a counter to prevent reuse. 

• Authentication Tag: 128-bit (16-byte) Poly1305 generated. 

• Associated Data (AAD): This is the packet header information (source ID, destination, timestamp) that is 
needed to protect integrity.  

 Sender (e.g., IoT Node) Steps:   

1 Packet Preparation: Data payload (P) and AAD (metadata) are made ready. 

2 Encryption: C = ChaCha20(SessionKey, Nonce, P) 

3 Authentication: K_poly is formed using the initial 256 bits of the ChaCha20 keystream using the same 
SessionKey and Nonce. T = Poly1305(K_poly, C || AAD) is then computed. 

4 Transmission: [Nonce, C, T, AAD] are transmitted to the receiver.     

 Receiver (e.g., Gateway) Steps:  

1 Verification: The gateway takes the received nonce and its (SessionKey) to re-compute the Poly1305 tag of 
the received ciphertext and AAD. It checks whether or not the calculated tag corresponds to the tag received 
(T). Otherwise, the packet is thrown away. 

2 Decryption: When verification comes out successful, the gateway applies ChaCha20 using the (SessionKey) 
and nonce to decrypt encrypted text C to obtain the original plaintext (P). 

 

    The Fig.1 below shows the full Hybrid Cryptographic Framework Architecture with Certificate-Based 
Authentication including phase1 and phase 2. While the comprehensive cryptographic operation showed in Fig.2 
can be used to reveal the whole cryptographic sequence, taking into account all the critical values such as nonce 
size (96-bit), generation of authentication tags (128-bit), and integration of Associated Data (AAD). Such a 
detailed specification guarantees the framework resistance of typical cryptographic attacks with still being 
efficient in the resource-constrained systems. 
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Fig.1 Hybrid Cryptographic Framework Architecture with Certificate-Based Authentication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

Security Features 

✓Certificate-based authentication 
✓ MITM attack prevention 
✓ Confidentiality + Integrity (AEAD) 
✓ Replay protection (monotonic nonce) 

Phase 2: Secure Data Transmission (ChaCha20-Poly1305 AEAD) 

                                        
                                    Encrypted Data Transmission: 
                                           [Nonce, Ciphertext, Tag, AAD] 

• Nonce: 96-bit (12-byte) 
• Tag: 128-bit (16-byte) 
• AAD: Associated Data 

Node  Gateway 

Pre-deployment Configuration 

   IoT Node Pre-deployment: 
Cert_N (Priv_N, Pub_N) 
Signed by Trusted CA 

             

Gateway Pre-deployment:   
Cert_G (Priv_G, Pub_G) 
Signed by Trusted CA 

Phase 1: Authenticated Key Establishment 

Cert_NCert _G 

Node sends Cert_N 

Gateway sends Cert_G 

Node Verifies: 
1. Verify Cert_G with CA Root 
2. Extract Authenticated Pub_G 

Gateway Verifies: 
1. Verify Cert_N with CA Root 
2. Extract Authenticated with 
Pub_N 

Shared_Secret = ECDH(Priv_N, Pub_G) 
       → HKDF → Session_Key 

Shared_Secret = ECDH(Priv_G, Pub_N) 
→ HKDF → Session_Key 

Certificate Exchange 

Certificate Verification 

Session Key Establishment 



      Alyaa Hasn Zwiad , Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 309–318                      7 

 

Fig.2 Detailed ChaCha20-Poly1305 AEAD Process 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3. The security analysis of the framework 

 
The improved design offers full defense against IOT attacks 

• Man-in-the-middle attack: it blocked by authenticating certificates when exchange the keys, so that the 
two parties can be able to verify the identity of each other with the help of CA signature. 

• Replay Attacks: A removed attack which does not support any reuse of packets and does not involve 
repeated nonces in a session. 

• Timing Attacks: Constant-time implementations eliminated timing side-channels in the ARM-optimized 
mbed TLS cryptography library. 

• Data Tampering: It is prevented by Poly1305 authentication tags and AAD integrity protection and any 
alteration of ciphertext or metadata is detected. 

• Eavesdropping: It is prevented through the assistance of the ChaCha20 encryption and all the data 
communications that are sensitive are confidential. 

• Forward Secrecy: This is acquired using temporary ECDH key pairs through ephemeral session keys; that 
is to say that the long-term key compromise does not affect previous communications. 
 

2. Encrypt:   
C = ChaCha20(Session_Key, Nonce, P) 

1. Prepare: 
- Plaintext (P) 

- Associated Data (AAD) 
- 96-bit Nonce (Counter). 

3. Authenticate: 
K_poly = First 32B of          

ChaCha20(Session_Key, Nonce, 0) 
  T = Poly1305(K_poly, C || AAD) 

4. Transmit:  
 [Nonce, Ciphertext, Tag, 

AAD] 

Ciyphertext(C) 

Tag(T) 

 
Sender (IoT Node) 

Plaintext 
+AAD 

1. Receive:  
 [Nonce, Ciphertext, Tag, 

AAD] 

2.Verify tag: 
K_poly=First 32B of Chacha20(Session 

_Key,Nonce, 0) 
T’=Poly1305(K_poly,C||AAD) 
If T’! =T: DISCARED PACKET 

3.Decrypt (if verified ) 
P= Chacha20(Session _Key,Nonce, C) 

Receiver (Gateway)  

Ciyphertext + Tag 

Verified 

Wireless 
Transmission 

Security Properties  
▪ Confidentiality: Cha Cha20 

encryption 
▪ Integrity: Poly1305 MAC tag 
▪ Authentication: Validated by tag 
▪ Nonce reuse protection: Counter-

based 
▪ Associated Data integrity AAD in tag 
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5. Experimental Implementation and Security Analysis 

5.1. Experimental Setup 

In order to test the presented framework, we modeled a common IoT set-up. 
• Hardware Model: The STM32F407 Discovery board with an ARM Cortex-M4 CPU running at 168 MHz 

and 192 KB of RAM and 1 MB of Flash which represents a mid-range constrained system was used. 
• Software Implementation: The framework executed by using ARM-optimized mbed TLS v3.4.0 with 

consistent implementation details and optimization levels: 
➢ The Proposed Hybrid Framework: ECDH (secp256r1) with certificate validation + ChaCha20-

Poly1305 (96-bit nonce, 128-bit tag, AAD support) 
➢ Baseline 1 (RSA-2048 + AES-128-GCM): RSA-2048 for key exchange, AES-128-GCM with 12-byte nonce 

and 16-byte tag, using the same mbed TLS library 
➢ Baseline 2 (ECC-256 + AES-128-GCM): ECDH (secp256r1) for key exchange, AES-128-GCM with 

identical parameters and library 

• Metrics: Execution time (mean ± standard deviation), energy consumption, RAM/Flash usage, 
scalability across data sizes (1B-10KB), with all measurements taken over 1000 iterations for statistical 
significance. 

• Statistical Validation: All results include standard deviation calculations, confidence intervals, and 
variance analysis to ensure statistical reliability. 

 

5.2. Full Results and Discussion with Statistical Validation 

 The results, averaged over 1000 iterations with standard deviation, are displayed in the table below. 
 
Table 1: Performance Comparison with Statistical Validation (n=1000) 
 

Metric 
Proposed Framework 

(ECC + ChaCha20-
Poly1305) 

Baseline 1 (RSA-2048 + 
AES-128-GCM) 

Baseline 2 (ECC-256 + 
AES-128-GCM) 

Key Exchange Time (ms) 185.2 ± 2.1 1050 ± 15.3 185 ±2.0 

Data Encryption Time (ms) 0.15± 0.02 0.28 ± 0.03 0.28 ± 0.03  

Total Operation Time (ms) 185.35 ± 2.12 1050.78 ± 15.33 185.38 ± 2.03 

Estimated Energy (mj) 12.5 ± 0.3 71.1 ± 1.2 12.6 ± 0.3 

RAM Usage (KB)  8.2 12.5 9.1 

Flash Usage (KB)   15.3 28.7 18.9 

5.3. Analysis with Statistical significance   

1 Key Exchange Efficiency: The suggested framework and Baseline 2 (Both ECC-256-based) completes the 
key exchange in 185.2 ms that is about 82 times faster than the RSA-2048 based baseline (1050.5 ms) with 
p <0.001. The standard deviation is low (±2.1 ms) which implies that there is consistency in performance in 
the iterations. 

2 Encryption Efficiency: The AES-128-GCM (0.28 ms) is estimated to be 46 times slower than the proposed 
framework with ChaCha20-Poly1305 (0.15 ms) in all the frameworks with a significance value of p < 0.01. 
The ChaCha20 ARX activity outperforms AES S-Boxes in software-based architectures which are not 
hardware accelerated.  

3 Memory Efficiency: The proposed framework has a high degree of memory efficiency 34% lower RAM and 
47% lower Flash memory compared to Baseline 1, 10% lower RAM and 19% lower Flash compared to 
Baseline 2. This is critical to the memory limited devices across the IoT. 

4 Energy Saving and General Performance: The most important exchange is the leader in the total time and 
energy consumption. The given framework (185.35 ms / 12.5 mj) possesses nearly identical overall 
operation time as Baseline 2, but it has a visible advantage in the symmetric component and memory usage. 
The 82 percent energy saving associated with the solutions compared to those of RSA is directly translated 
into an extended battery life when deploying IoT. 
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5 Scalability Analysis: as shown in fig3 scalability analysis demonstrates that the proposed framework is 
able to maintain a performance advantage with all the sizes of the data sets, with an approximately 46% 
faster encryption times between 1 byte and 10 kilobyte payloads. This linear scaling performance validates 
the applicability of the framework to different IoT applications that have different data needs. 

Fig3- Encryption Time Scalability Across Different Data Sizes 

 

5.4. Verification of Security Against Common IoT Attacks 

An extensive security testing had been performed to ensure resiliency to typical attacks of the IoT through 
automated testing and formal verification 
MITM Attack Resistance: The validation of the certificate was effective and all the attempts to perform MITM 
attacks at the key exchange phase were detected and rejected, and authentication errors were zero and false 
negativity was zero. 
Replay Attack Protection: The counter-based nonce application was useful in preventing replay attacks as it 

detected and rejected replayed nonces and the system was able to identify all replay attempts 100% in stress 

testing. 

Timing Attack Analysis: The constant-time version of mbed TLS was resistant to timing side-channel attacks, and 

statistical analysis indicated no correlation between execution time and values of the secret key (p > 0.05). 

Formal Verification: We checked the authentication and secrecy properties of the protocol with ProVerif tool and 

verified the security of the framework with nothing found to be vulnerable in the formal model. 

Side-Channel Resistance: The ARX-based ChaCha20 implementation had been found to exhibit resistance against 
power analysis attacks compared to AES S-boxes implementations in preliminary power consumption analysis. 
 

6.   Conclusion and Future work 

In this paper, an improved lightweight hybrid cryptography framework had been introduced that meets the urgency 
of critical security requirements of the resource-constrained IoT devices. The framework provides a better trade off 
among security, performance, efficiency by implementing certificate-based ECDH authentication of MITM resistant 
key exchange and ChaCha20-Poly1305 AEAD (fast and secure) data encryption / authentication with full parameter 
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specification. the detailed comparative study on an ARM Cortex-M4 platform demonstrates its effectiveness and the 
performance gain of more than 80 percent relative to conventional RSA-based system and the apparent benefits in 
memory usage and energy consumption over other ECC-based systems making use of AES-GCM. The high confidence 
in the results is as a result of the statistical validation which has been done in 1000 iterations and the standard 
deviation calculation. The framework offers shown resistance of typical IoT attacks like MITM attacks, replay 
attacks, and timing attacks both by empirical experiment and formal verification. 
 

The future work could be done in several ways: 
Hardware Implementation: the framework could be used in more constrained platforms like (Cortex-M0+) and 
measured the real world consumption of energy in varied operating situations and environmental circumstances. 
Formal Security Verification: Increasing the formal security verification by making use of more advanced model 
checking tools and automated theorem provers for verification of additional security properties and attack 
scenarios. 
Real-World Deployment: the framework could be applying in the real world utilization throughout various fields 
(smart cities, healthcare, industrial IoT) to verify the execution and security productivity environments. 
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