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A B S T R A C T 

In this paper, we study the Darboux-type first integrals of the three-dimensional polynomial 
dynamical system defined by the equations   ̇          ̇                  and       ̇          

This system exhibits chaotic behavior for suitably selected values of the real parameters α 
and β. We demonstrate that the system has no polynomial, rational, or Darboux first integrals 
for any values of α and β. Furthermore, we derive all Darboux polynomials associated with 
the system, in conjunction with their corresponding exponential factors. 
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1. Introduction 
In the analysis of differential equations on   , the existence of a first integral provides a powerful tool for 
model reduction by decreasing the system’s dimension by one. However, establishing the presence of 
such 
an integral for an arbitrary system is a notoriously challenging problem. The Darboux theory of 
integrability, originating with the work of G. Darboux in 1878, offers a powerful algebraic framework for 
addressing this question. Subsequently extended by Jouanolou and Llibre and Zhang, the theory provides 
a systematic approach to constructing first integrals for polynomial differential systems that possess a 
sufficient number of invariant algebraic hypersurfaces, accounting for their respective multiplicities. This 
theoretical approach has been successfully applied to the analysis of various physical models [5-8]. 
This work introduces a novel conservative oscillator that exhibits a continuum of equilibria forming a 
line, 
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a feature of growing interest in both mathematics and computation [9-11].The system is structurally 
simple, comprising only five terms, yet its inherent symmetry gives rise to two coexisting symmetric 
dynamical attractors. The dynamics of this oscillator are described by the following three-dimensional 
autonomous system of differential equations: 

 ̇                   ̇                        ̇                                                                     (1) 

where  ,  ,   are the state variables and  ,     are real parameters. System (1) represents a quadratic 
oscillator possessing a line of equilibrium points at (     )  (     ). For the parameter values    , 
      , and initial conditions (        )  (                 ),  
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Fig.1 Trajectories corresponding to the initial values (                 ) , projected onto the      , and    

planes. 

2. Definitions and Preliminary Results 
Definition 2.1 Let the polynomial vector field associated with system (1) be given by: 

 
  

  
 (     )

  

  
 (      )

  

  
       ( ) 

defined on an open subset     . A nonconstant    function         is said to be a first integral of 

system (2.1) on   if     ( ( )  ( )  ( ))  constant  for all values of   for which ( ( )  ( )  ( )) is a 

solution of system (2.1) contained in  . Equivalently,   is a first integral of system (1.4) if and only if 

    
  

  
 (     )

  

  
 (      )

  

  
                ( ) 

for all (     )   . 
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Definition 2.2 Let       be a non-constant polynomial function defined on an open subset     , 
and let 

   
  

  
 (     )

  

  
 (      )

  

  
               (4) 

be a polynomial vector field on  , where        ,     - are polynomials of degree at most  . 
We say that     defines an invariant algebraic surface, or that   is a Darboux polynomial of the vector 
field  , if there exists a polynomial     ,     -, called the cofactor of  , such that 

    
  

  
 (     )

  

  
 (      )

  

  
                 ( ) 

Definition 2.3 An exponential factor   of the polynomial differential system (2.1) is a non-constant 

function of the form    (     )     .
 (     )

 (     )
/  where      ,     - are coprime polynomials (i.e., 

they have no non-constant common factor in  ,     -) and    , such that     (i.e.,   is not 
identically constant). We say that   is an exponential factor of the associated polynomial vector field 
              if it satisfies the partial differential equation 

    
  

  
 (     )

  

  
 (      )

  

  
              (6) 

Definition 2.4 A first integral  (     ) of system (2.1) is said to be of Darboux type if it can be 

expressed in the form     (     )    
    

     
     

    
     

    where: 

 a)          ,     - are Darboux polynomials of the associated polynomial vector field        

       . 

b)         are exponential factors of  , each of the form       (     ) with        ,     - coprime.  

c)         (complex exponents), not all zero. Furthermore,   satisfies      identically on an open 

subset of   , meaning that   is constant along the solutions of system (2.1). 
Proposition 2.5 Let system (2.1) be a polynomial differential system defined by the vector field 

             , 
with        ,     -. If the system admits a rational first integral, i.e., a non-constant function 
       (     ) such that     , then one of the following two conditions holds:  
1. The system has a polynomial first integral, or  
2. There exist two distinct Darboux polynomials        ,     -, not differing by a constant factor, such 
that both share the same non-zero cofactor  , i.e., 

        and          with      
Theorem 2.6(Darboux; see also (Dumortier et al., 2006) 
Let the polynomial differential system           ̇   (     )   ̇   (     )   ̇   (     ) 
of degree   be associated with the polynomial vector field              . Suppose the system 
admits:  
a)   invariant algebraic surfaces defined by   (     )   , where     ,     - are Darboux polynomials 
with corresponding cofactors     ,     -, i.e.,                     

b)   exponential factors       (     ) , with        ,     -  coprime and     , satisfying                

          for polynomial cofactors     ,     -,        . Then, there exist complex constants 

        and        , not all zero, such that 

∑   
 
      ∑   

 
               (7) 

if and only if the function         (     )    
    

     
     

    
     

   

is a first integral of system (2.1), i.e.,      on an open subset of   . 
Moreover,   is called a Darboux-type first integral. 

     ∑   
 
      ∑   

 
               

 
 
   

 



Wirya Jawhar Jameel, Adnan Ali Jalal, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Math 42–52              5 

 

3. Results and their proofs 
This section outlines the key outcomes of the research, accompanied by their respective proofs. The 
findings seek to demonstrate that system (1) exhibits a distinctive irreducible Darboux polynomial when 
the parameter   is set to zero. Moreover, it is shown that the system does not allow for either a 
polynomial or a rational first-integral. In addition, it is established that the system includes one 
exponential factor provided the parameter   is non-zero. Lastly, the investigation verifies that the system 
lacks Darboux integrability. 
 
Theorem 3.1. System (1) has no polynomial first integrals.  
Proof. We proceed by contradiction. Let    ,     - be a polynomial first integral for System (1) with a 
zero constant term. This conserved quantity satisfies the partial differential equation (4) and admits a 
graded decomposition: 

 (     )  ∑  

 

   

(   )    

    ,   - are polynomial coefficient function. By analyzing the leading-order terms in (3), particularly 
the coefficient of     , we derive: 

 
   
  
     (   )    ( )  

where   ( ) is a polynomial in  . For the coefficient of   , we obtain: 

 
     
  

  
   
  
   

   
  
    

This partial differential equation for      may be solved as follows: 

    (   )    
   
  
     ( )  

where     ( ) is a polynomial in  . Similarly, for the coefficient of     , we obtain: 

 
     
  

   
     
  

  
     
  

 (      )   ( )     

Solving for      yields: 

    (   )  
 

 
  ( )   

   
 

  
    ( )  

 

 

  

   
  ( ) 

   (  ( )   
 

  
  ( ) )   ( )      ( )  

where     ( ) is a polynomial in  . Since      must be a polynomial, the logarithmic term must vanish, 
which means that: 

  ( )   
 

  
  ( )     

For    , we have     ( )   . We consider the following two cases: 
Case 1. Let    . This implies     (   ). Substituting this into Equation (3) and analyze the 
coefficients of    and    yields: 
For    : 

 
   (   )

  
     (   )    ( )  

and for    : 

 
   ( )

  
     ( )     

where   is a constant. This contradicts the assumption that   has a zero constant term (or is a non-trivial 
polynomial). 
Case 2. Suppose   ( )   . It follows that     , which implies that the polynomial   reduces to a 
function depending only on lower-degree terms, specifically     (   ). The subsequent steps of the 
proof proceed analogously to those in Case 1.           □  
Theorem 3.2. The system (1) admits exactly one irreducible Darboux polynomial, given by  , with the 
corresponding cofactor  , if and only if α = 0.  
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Proof. Let  (     ) be a polynomial in  ,     -. We express H as a polynomial in w with coefficients 
depending on u and v: 

 (     )  ∑  

 

   

(   )    

where   (   ) are coefficient functions. The definition of a Darboux polynomial requires that H satisfies 
the condition: 

 ̇      

where     (              ) is the cofactor. Expanding the total time derivative  ̇  
  

  
 ̇  

  

  
 ̇  

  

  
 ̇ and substituting the system equations leads to: 

 ∑
   
  

 

   

   (      ̇)∑
   
  

 

   

   (      )∑ 

 

   

   
    (              )∑  

 

   

    

Analysis of the coefficient of       : By isolating the terms involving w^{n+1}, we obtain: 

 
   
  
       

Integration yields: 
  (   )    ( ) 

    
where   ( ) is an arbitrary function of  , and          * +  
Analysis of the coefficient of   : For the terms involving   , the equation simplifies to: 

 
     
  

   
   
  
  

   
  

          (          )  

Substituting    and solving this partial differential equation for      yields: 

    (   )  *  ( )      
 ( )  

  ( )    

 
   ( )(      )        ( )+  

    

where     ( ) is an arbitrary function of  . Since     (   ) must be a polynomial, the term involving     
must vanish. This implies: 

  ( )(      )     
We consider two cases based on this condition:  
Case 1: Suppose   ( )    and         . This implies     . Consequently, the degree of the 
polynomial reduces. Assume     (   ), the invariant condition becomes: 

 
   
  
 (     )

   
  
 (              )  (   )  

Comparing coefficients of  :  
1. For   : 

 
   
  
        (   )    ( ) 

    

2. For   : 

 
 

  
(  ( ) 

  )    
 

  
(  ( ) 

  )  (          )  ( ) 
    

Solving for   ( ) yields: 

  ( )       (
    

           
        

 

   
)  

For    to be a polynomial, the exponent must be constant or logarithmic in a specific way. This requires 
           and      . However, this contradicts the assumption that         . Therefore, 
we must pass to the second case where        .  
Case 2: Suppose   ( )   . It follows that         , which implies        . We proceed to 
analyze the term involving     : 

 
     
  

   
     
  

  
     
  

 (      )                    

Solving for     (   ) results in an expression containing a logarithmic term: 
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    (   )  [
 

 
  ( )   

  
 

 
  ( )  

       ( )   
  
 

 
   ( ) 

  

     ( )        ( )  (  ( )       ( )  
    ( )         ( ))    

 
    ( )    

 
 
  ( ) 

    
 (    )

   
     ( )+  

    

Since      must be a polynomial, the coefficient of     must vanish: 
  ( )       ( )  

    ( )         ( )                      (8) 
Since we assumed   ( )   , we analyze two subcases regarding  : 

  ( )       ( )  
    ( )         ( )     

Subcase 2.1: If    . 
Solving equation (8) for   ( ) yields: 

  ( )   
       .

        
 

  
/. 

For   ( ) to be a polynomial, the argument of the exponential must be constant, which implies     and 
    . Thus     (   ). 

Substituting into the invariant condition: 

 
   

  
 (     )

   

  
      .                 (9) 

Comparing coefficients: 

For   : 
   

  
        (   )    ( ) 

  . 

For   :  
   

  
   

   

  
  . 

Substituting    leads to   ( )       .
    

 

  
/. For this to be a valid solution, we must have     , which 

implies    . Thus, no non-trivial Darboux polynomial exists when    . 
Subcase 2.2: If    . 
Equation (9) reduces to       ( )   . Since   ( )   , this implies    . Thus     (   ). 
The invariant condition becomes: 

 
   

  
   

   

  
 (       )  .                      (10) 

Comparing coefficients: 

For   : 
   

  
        (   )    ( ) 

  . 

For   :  
   

  
       

   

  
     . 

Solving this gives   ( )     
   . For    to be a polynomial, we must have     , and   ( ) becomes a 

constant. 
Therefore,        with cofactor      . For the polynomial to be irreducible, we take     , 
yielding     and cofactor  . This concludes the proof.                   □  
Theorem 3.3. System (1) does not admit any rational first integrals. 
Proof. This conclusion follows directly from Theorems 3.1 and 3.2. System (1) possesses a single 
irreducible Darboux polynomial and lacks any polynomial first integrals, which together rule out the 
existence of rational first integrals.             □  
Theorem 3.4: system has the only    exponential factor with the cofactor   . 
The following results are necessary to establish the proof of Theorem 3.3.          □  
Theorem 3.5. For the case when    , System (1) admits    as its unique exponential factor, with the 
corresponding cofactor  .                   □  
Proof. Let      (   ) be an exponential factor of System (1) with cofactor  , where      ,     - 
are coprime polynomials (i.e.,    (   )   ). By Theorem 3.1 and Proposition 2.5, the denominator   
must be a constant polynomial. Without loss of generality, we may normalize    . It follows that 
     ( ), where the function   satisfies the associated partial differential equation: 

 
  

  
 (      )

  

  
 (      )

  

  
      

This equation simplifies to: 
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 (      )

  

  
 (      )

  

  
              (11) 

where the cofactor   takes the form: 
                  (11) 

The polynomial   admits a power series representation in the variable  : 

 (     )  ∑  

 

   

(   )    

where each     ,   - represents a bivariate polynomial coefficient function. For our initial analysis, we 
consider the case where the degree satisfies    . 
Through careful examination of the terms involving      in Equation (11), we establish the fundamental 
relation: 

 
   
  
    

This differential constraint immediately implies that   (   ) reduces to a univariate polynomial in  , 
which we denote as   ( )   , -. Proceeding to the next order of analysis, we investigate the coefficients 
of    in Equation (11), which yields: 

   
  
  

     
  

    

The solution to this equation is: 
    (   )       ( )      ( )  

where     ( ) is a polynomial in the variable  . By evaluating the coefficients of      in Equation (11), 
we obtain: 

 
     
  

  
     
  

   
     
  

    ( )( 
     )     

Solving for      yields: 

    (   )  
 

 
  ( )   

  
 

 
   ( ) 

       ( )  (   ( )  
       ( ))  ( )      ( )  

where     ( ) is required to be a polynomial. Since     (   ) must be a polynomial, the logarithmic 
term must vanish, implying: 

   ( )  
       ( )     

Assuming    , the solution to this differential equation is: 

  ( )     
 
   

    
Since   ( ) must be a polynomial, we must have     or   ( )   . If    , it contradicts the 
assumption that    . Therefore,     , which implies      for all    . Consequently,   is linear in 
 : 

 (     )    (   )    (   )   
Substituting this form into Equation (10): 

 
 (      )

  
 (     )

 (      )

  
 (      )                   

By evaluating the coefficients of    for        , we derive the following: 
For    : 

 
   
  
    

This implies   (   )    ( ), where   ( ) is a polynomial.  
For    : 

 
   
  
  

   
  
     

Solving for    yields: 

  (   )    
   
  
        ( )  

where  ( ) is a polynomial. Given that   (   ) must be a polynomial, the logarithmic term must vanish, 
which implies     . For    : 
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 (      )               

Substituting        
 ( )   ( ), and analyzing the degrees of the terms (specifically, the      term on 

the left-hand side versus the linear terms on the right), implies that   ( ) must be zero. Consequently, the 
equation simplifies, leading to  ( )     . 
Thus, we obtain  (     )     . This yields the exponential factor        with the cofactor      . 
Setting          gives the unique factor    with cofactor  .          □ 
Proposition 3.6. When α = 0, the system admits    as its unique exponential factor, with the 
corresponding cofactor  .  
Proof. Following Proposition 2 and Theorem 5, under the condition α = 0, the exponential factors of 
System (1) must assume the form: 

     .
 

  
/  

where s   Z≥0 is a non-negative integer,    ,     - is a multivariate polynomial, and g and v^s are 
coprime. As established by Theorem 6, the exponential factor E must satisfy the governing partial 
differential equation: 

 
 

  
(    

 
)  (     )

 

  
(    

 
)  (      )

 

  
(    

 
)       

 
  

where L is given by Equation (11). Upon simplification, the equation can be rewritten in the following 
equivalent form: 

 

  
    

 

  
  (      )

 

  
           (  ) 

Case 1: Analysis for    . Let  ̂ denote the restriction of   to the hyperplane    . We first observe that 
 ̂   ; otherwise,   would divide  , violating the coprimality condition. By restricting Equation (12) to 
   , the function  ̂ must satisfy the reduced partial differential equation: 

  
  ̂

  
    ̂     (  ) 

The general solution to this equation takes the form: 

 ̂(   )   ( )   (
   

  
)  

However, for    , the essential singularity at     forces  ( )   , which results in the contradiction 
 ̂   . Consequently, no valid solutions exist in this parameter regime.  
Case 2: Analysis for      . In this case,     , where    ,     - is a polynomial. Setting     in 
Theorem 7 yields the solution  (     )     , with the corresponding cofactor      . This concludes 
the proof.            □  
 
Theorem 3.7. System (1) does not possess any Darboux-type first integrals for any value of the 
parameter α.  
Proof. The proof relies on Theorem 3, which provides a necessary and sufficient condition for the 
existence of Darboux-type first integrals. Specifically, such a first integral exists if and only if there exist 
constants           (not all zero) satisfying the equation: 

∑  
 

   ∑  
 

      (  ) 

where    are the cofactors of the invariant polynomials  and    are the cofactors of the exponential 

factors. We examine the following cases depending on the parameter values:  
Case 1: Suppose α ≠ 0. According to Theorem 3.2, System (1) admits no irreducible Darboux polynomials; 
thus, there are no cofactors   . From Theorem 3.5 (and Proposition 3.6), the system admits a unique 
exponential factor with the cofactor          .  Substituting these into Equation (14) yields: 

       
This equation implies     . Since no non-trivial solution for the constants exists, the system possesses 
no Darboux-type first integrals in this case. 
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Case 2: Suppose     (and    ). 
In this scenario, Theorem 5 states that the system possesses a single irreducible Darboux polynomial with 
the cofactor        (where    is a constant). Additionally, according to Proposition 3.6, the system 
admits an exponential factor with the cofactor       . Consequently, Equation (7) takes the form: 
  (   )    (   )   . 
Due to the linear independence of   and  , we must have      and     . As there are no non-zero 
constants satisfying the condition, the system admits no Darboux-type first integrals. 
This concludes the proof.   
 
 
Results 

The investigation into the integrability of System (1) using the Darboux theory of integrability yields the 
following established facts: 

1. Absence of Polynomial First Integrals: Theorem 4 demonstrates that System (1) possesses no 
polynomial first integrals. The analysis of the partial differential equation governing the 
conserved quantities proves that no non-trivial polynomial solution exists. 

2. Classification of Darboux Polynomials: Theorem 5 characterizes the invariant algebraic surfaces 
of the system. It is established that the system admits an irreducible Darboux polynomial if and 
only if the parameter    . In this specific case, the unique Darboux polynomial is    , with 
the associated cofactor    . For    , the system admits no Darboux polynomials. 

3. Non-existence of Rational First Integrals: As a direct consequence of the scarcity of Darboux 
polynomials and the absence of polynomial first integrals, Theorem 6 confirms that System (1) 
admits no rational first integrals. 

4. Exponential Factors: Theorem 8 and Proposition 9 provide a complete classification of the 
exponential factors. 

– For    , the unique exponential factor is      with the cofactor    . 
– For    , the result remains consistent; the system admits    as the unique exponential 

factor with the cofactor  . 
5. Non-integrability in the Darboux Sense: Theorem 10 serves as the culminating result. By 

examining the linear dependence of the cofactors derived in the previous theorems, it is proven 
that no linear combination of cofactors vanishes. Specifically: 

– If    , the only cofactor is  , which is non-zero. 
– If    , the cofactors are   and  , which are linearly independent. 

Consequently, System (1) does not possess a first integral of the Darboux type for any value of the 
parameters. 
 
Discussion 
The results presented in this study provide a comprehensive algebraic characterization of System (1). 
The primary conclusion is that the system is not integrable within the class of Darboux functions, 
suggesting that its dynamics are not confined to algebraic or generalized algebraic foliations of the phase 
space. 
 
Conclusion  
We have proven that System (1) is not Darboux integrable. This implies that any first integral, if one 
exists, must belong to a more complex functional class or the system is strictly non-integrable. Given the 
absence of even rational first integrals, System (1) is a strong candidate for exhibiting chaotic behavior, 
subject to further numerical or analytical investigation of its global dynamics. 
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