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1. Introduction
In the analysis of differential equations on R", the existence of a first integral provides a powerful tool for
model reduction by decreasing the system’s dimension by one. However, establishing the presence of
such
an integral for an arbitrary system is a notoriously challenging problem. The Darboux theory of
integrability, originating with the work of G. Darboux in 1878, offers a powerful algebraic framework for
addressing this question. Subsequently extended by Jouanolou and Llibre and Zhang, the theory provides
a systematic approach to constructing first integrals for polynomial differential systems that possess a
sufficient number of invariant algebraic hypersurfaces, accounting for their respective multiplicities. This
theoretical approach has been successfully applied to the analysis of various physical models [5-8].
This work introduces a novel conservative oscillator that exhibits a continuum of equilibria forming a
line,
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a feature of growing interest in both mathematics and computation [9-11].The system is structurally
simple, comprising only five terms, yet its inherent symmetry gives rise to two coexisting symmetric
dynamical attractors. The dynamics of this oscillator are described by the following three-dimensional
autonomous system of differential equations:

U=, v =—au+ vw, w = u? — pv? (1D
where u, v, w are the state variables and «, f € R are real parameters. System (1) represents a quadratic

oscillator possessing a line of equilibrium points at (u, v, w) = (0,0, w). For the parameter values a = 1,
B = 0.68, and initial conditions (uy, vy, wy) = (—0.57,—0.99,—0.71),

Chaotic Oscillator in the u-v Plane

Chaotic Oscillator in the u-w Plane
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Chaotic Oscillator in the v-w Plane

Fig.1 Trajectories corresponding to the initial values (—0.57,—0.99,—0.71), projected onto the UV, UW, and VW
planes.

2. Definitions and Preliminary Results

Definition 2.1 Let the polynomial vector field associated with system (1) be given by:

oh oh
— _ 2 _ pa,2
Vo + (vw — au) . + (u* - Bv )aw (2)

defined on an open subset U c R3. A nonconstant C! function H:U - R, is said to be a first integral of
system (2.1) on U if H(u(t), v(t), w(t)) = constant, for all values of t for which (u(t), v(t), w(t)) isa
solution of system (2.1) contained in U. Equivalently, H is a first integral of system (1.4) if and only if

XH = ah+ ah+(2 2)6h_0 3
—vau (vw au)av uc — pv T 3)

for all (u,v,w) € U.
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Definition 2.2 Let f: U — C be a non-constant polynomial function defined on an open subset U € C3,
and let

X=vg—£+(vw—au)2—£+(u2—ﬁv2)g—£ (4)
be a polynomial vector field on U, where L, M, N € C[u, v, w] are polynomials of degree at most d.

We say that f = 0 defines an invariant algebraic surface, or that f is a Darboux polynomial of the vector
field X, if there exists a polynomial K € C[u, v, w], called the cofactor of f, such that

0 0
Lvae—pl=kr

af
Xf =v—+ (vw —au)a—

Jdu

Definition 2.3 An exponential factor E of the polynomial differential system (2.1) is a non-constant
gluv,w)
h(u,v,w)
they have no non-constant common factor in C[u,v,w]) and h # 0, such thatE ¢ C (i.e,, E is not
identically constant). We say that E is an exponential factor of the associated polynomial vector field
X=Ld,+Md, + N J,, if it satisfies the partial differential equation
XE=vg—i+(vw—au)g—5+(u2—ﬁvz)g—i:LE~E (6)
Definition 2.4 A first integral H(u, v,w) of system (2.1) is said to be of Darboux type if it can be

expressed in the form H(u,v,w) = ff‘1 2)“2 ---fplp -EES? - Ef;q, where:
a) f1, .., fp € C[u,v,w] are Darboux polynomials of the associated polynomial vector field X = Ld, +
Md,+Na,.
b) Ey, ..., E4 are exponential factors of X, each of the form E; = exp(gj/hj) with g;, h; € C[u, v,w] coprime.
c) A, 1 € C(complex exponents), not all zero. Furthermore, H satisfies XH = 0 identically on an open
subset of C3, meaning that H is constant along the solutions of system (2.1).
Proposition 2.5 Let system (2.1) be a polynomial differential system defined by the vector field
X=Ld,+Md,+Nad,,

with L, M, N € Clu,v,w]. If the system admits a rational first integral, i.e., a non-constant function
H = f/g € C(u,v,w) such that XH = 0, then one of the following two conditions holds:
1. The system has a polynomial first integral, or
2. There exist two distinct Darboux polynomials f;, f, € C[u, v, w], not differing by a constant factor, such
that both share the same non-zero cofactor K, i.e.,

Xfi=Kfi and Xf,=Kf,, withK #0.
Theorem 2.6(Darboux; see also (Dumortier et al., 2006)
Let the polynomial differential system u=Luv,w), v=Muv,w), w=Nuuvw)
of degree m be associated with the polynomial vector field X = Ld, + M d,, + N d,,. Suppose the system
admits:
a) p invariant algebraic surfaces defined by f;(u, v, w) = 0, where f; € C[u, v, w] are Darboux polynomials
with corresponding cofactors K; € Clu,v,w],i.e., Xf; = Kif;, i=1,..,p;
b) q exponential factors E; = exp(gj/hj) , with g;,h; € C[u,v,w] coprime and h; #0, satisfying
XE; = LjEj, for polynomial cofactors Lj e Clu,v,w],j =1,...,q. Then, there exist complex constants
A, oy Ap and gy, ..., g, not all zero, such that

LMK+ X uLi =0, (7)

if and only if the function  H(u,v,w) = fl'11 2’12 ---fplp . EflEélz E(I;q

is a first integral of system (2.1), i.e., XH = 0 on an open subset of C3.
Moreover, H is called a Darboux-type first integral.
XH=0e X0 4K +X]_ 4L =0

function of the form E(u,v,w) = exp( ),where g,h € Clu,v,w] are coprime polynomials (i.e.,
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3. Results and their proofs

This section outlines the key outcomes of the research, accompanied by their respective proofs. The
findings seek to demonstrate that system (1) exhibits a distinctive irreducible Darboux polynomial when
the parameter o is set to zero. Moreover, it is shown that the system does not allow for either a
polynomial or a rational first-integral. In addition, it is established that the system includes one
exponential factor provided the parameter £ is non-zero. Lastly, the investigation verifies that the system
lacks Darboux integrability.

Theorem 3.1. System (1) has no polynomial first integrals.

Proof. We proceed by contradiction. Let H € R[u, v, w] be a polynomial first integral for System (1) with a
zero constant term. This conserved quantity satisfies the partial differential equation (4) and admits a
graded decomposition:

n
H(u,v,w) = z h; (u, V)W,
i=0

h; € R[u, v] are polynomial coefficient function. By analyzing the leading-order terms in (3), particularly

the coefficient of w**1, we derive:

doh
v SR = 0= hy(,0) = Gy ),

where G, (u) is a polynomial in u. For the coefficient of w", we obtain:
Oh,_4 N dG, oh,
v

v T Van W, =0

This partial differential equation for h,,_; may be solved as follows:

d
hp_1(u,v) = —vd—un + Gp—1(w),

where G,_,(u) is a polynomial in u. Similarly, for the coefficient of w1, we obtain:

Ohna  Ohyy  Ohuy .
v, T +v E” + (u® — Bv*)nG,(u) = 0.

Solving for h,,_, yields:
2

1 d 1d d
hpo(u,v) = > G, (w)pnv? — v G (u) + EWGn(u)UZ —u (Gn(u)nu + @Gn (u)a) In(v) + G,,_,(u),

where G,_,(u) is a polynomial in u. Since h,_, must be a polynomial, the logarithmic term must vanish,
which means that:

d
G,(wWnu + @Gn(u)a =0.

For a € R, we have n - G,(u) = 0. We consider the following two cases:
Case 1. Letn = 0. This implies H = hy(u,v). Substituting this into Equation (3) and analyze the
coefficients of w° and w? yields:

Fori=1:
vw = 0= ho(u,v) = ho(w),
and for i = 0:
vahg—:t)=0=>h0(u)=c,

where c is a constant. This contradicts the assumption that H has a zero constant term (or is a non-trivial
polynomial).

Case 2. Suppose G,(u) = 0. It follows that h,, = 0, which implies that the polynomial H reduces to a
function depending only on lower-degree terms, specifically H = hy(u, v). The subsequent steps of the
proof proceed analogously to those in Case 1. i

Theorem 3.2. The system (1) admits exactly one irreducible Darboux polynomial, given by v, with the
corresponding cofactor w, if and only if a = 0.
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Proof. Let H(u,v,w) be a polynomial in R[u, v, w]. We express H as a polynomial in w with coefficients
depending on u and v:

n
H(u,v,w) = Z h; (u, V)W,
i=0

where h; (u, v) are coefficient functions. The definition of a Darboux polynomial requires that H satisfies
the condition:

H = HK,
where K = (ko + kqu + kv + ksw) is the cofactor. Expanding the total time derivative H = Z—Zu +
0H

0H i .
ST ﬁw and substituting the system equations leads to:

n n n n

dh; . oh: . . .

vza—u‘wl + (—au + vw) Za—v‘wl + (u? - ﬁvz)z ihwi ™t = (ko + kyu + kv + k3w)z h; wt.
i=0 i=0 i=0 =

n+1

Analysis of the coefficient of w : By isolating the terms involving w*{n+1}, we obtain:

”a_vn = ksh,,.

Integration yields:
hn(u, v) = G, (Wv*s,
where G, (u) is an arbitrary function of u,and k; € N U {0}.

Analysis of the coefficient of w": For the terms involving w", the equation simplifies to:
O0hy—q ohy, ohy,
EP au%+vﬁ = kshy,_1 + hy (ko + kqu + kyv).

Substituting h,, and solving this partial differential equation for h,,_, yields:

hna(u,v) = [Gn<u)kzv — Gy — ““3]_“"2“

14

+ G, (W) (kqu + kg)Inv + G,_1 (w) | v¥s,

where G,_;(w) is an arbitrary function of u. Since h,,_; (u, v) must be a polynomial, the term involving Inv
must vanish. This implies:

G, (w)(kyu + ko) = 0.
We consider two cases based on this condition:
Case 1: Suppose G,(u) = 0and ky + k;u # 0. This implies h,, = 0. Consequently, the degree of the
polynomial reduces. Assume H = hy(u, v), the invariant condition becomes:

v—2 4 (vw — au)a—vo = (ko + kyu + kv + ksw)ho(u, v).

du
Comparing coefficients of w:
1. For wl:
dhy ;
Vo= kshy = ho(u,v) = Go(u)v"s.
2. For w®:

] 0
Vo (Go(w)vks) — au (Go)v¥s) = (ko + kqu + kyv)Go(w)v¥s.
Solving for G, () yields:

aksu? + 2ksuv + kyu?v + 2k,uv?
Go(uw) = ciexp 757 .

For h{ to be a polynomial, the exponent must be constant or logarithmic in a specific way. This requires
ko = k; = k, = 0 and ak; = 0. However, this contradicts the assumption that ky + k;u # 0. Therefore,
we must pass to the second case where ky = k; = 0.
Case 2: Suppose G,(u) # 0. It follows that kyu + kq = 0, which implies k; = k; = 0. We proceed to
analyze the term involving w"~1:
Ohy,— 0h,_ Ohy,—

v 67111 L au (’)7:7 Liv c’)r; 2+ (u? — Bv¥)nhy, = kshy—y + kyVhy;.

Solving for h,_,(u, v) results in an expression containing a logarithmic term:
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hpp(u,v) = [ZG (w)pnv? + 1G L (Wk3v? — G, (Wk,v? +%Gn"(u)v2

+G_1(Wkyv — Gy (Wv + (Gn(u)akzu - G,(wWnu? + G,(Wak; — aan’(u))lnv
Gy (Waksu N G,(W)a?k,u? (ks — 1)

Gn— (W) vks

v 20?2
Since h,_, must be a polynomial, the coefficient of Inv must vanish:
G, (W akyu + G,(wWnu? + G, (Wak; — auG,'(u) = 0. (8)

Since we assumed G, (u) # 0, we analyze two subcases regarding a:
G, Wakyu — G,(wnu? + G,(wak; — auG,'(u) = 0.
Subcase 2.1: If ¢ # 0.
Solving equation (8) for G, (u) yields:
G,(u) = uklclexp( —
For G, (u) to be a polynomial, the argument of the exponential must be constant, which implies n = 0 and
k, = 0.Thus H = hy(u, v).
Substituting into the invariant condition:

Zakzu—nuz)

on on
va—u" + (vw — au)a—v" = kswhy. (9)
Comparing coefficients:
For w': k3h0 = ho(u,v) = Go(w)v’s,
ah
For w? va —au a_ = 0.

Substituting h, leads to G,(u) = c;exp ( ) For this to be a valid solution, we must have k; = 0, which

implies K = 0. Thus, no non-trivial Darboux polynomial exists when a # 0.
Subcase 2.2: Ifa = 0.
Equation (9) reduces to —nu?G,(u) = 0. Since G, (u) # 0, this implies n = 0. Thus H = hy(u, v).

The invariant condition becomes:

v tv — = (kgw + kyv)hy. (10)
Comparing coefficients:
Forwl: == = k3h0 = ho(u v) = Go(w)vks.
For w: v = k,vhy = =— = k,h,.

Solving thls gives Go(u) = clekzu. For G, to be a polynomial, we must have k, = 0, and G,(u) becomes a
constant.

Therefore, H = cv*s with cofactor K = ks;w. For the polynomial to be irreducible, we take k; =1,
yielding H = v and cofactor w. This concludes the proof. i

Theorem 3.3. System (1) does not admit any rational first integrals.

Proof. This conclusion follows directly from Theorems 3.1 and 3.2. System (1) possesses a single
irreducible Darboux polynomial and lacks any polynomial first integrals, which together rule out the
existence of rational first integrals. m

Theorem 3.4: system has the only e* exponential factor with the cofactor v.

The following results are necessary to establish the proof of Theorem 3.3. mi
Theorem 3.5. For the case when a # 0, System (1) admits e" as its unique exponential factor, with the
corresponding cofactor v. m

Proof. Let F = exp(g/h) be an exponential factor of System (1) with cofactor L, where g, h € C[u, v, w]
are coprime polynomials (i.e., gcd(g, h) = 1). By Theorem 3.1 and Proposition 2.5, the denominator h
must be a constant polynomial. Without loss of generality, we may normalize h = 1. It follows that
F = exp(g), where the function g satisfies the associated partial differential equation:
99 , 99 2 — pp2)29 _ oo
vau+( au+vw)av+(u ﬁv)aW—Le.
This equation simplifies to:
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99 | (_ 99 2 _ p,2)99 _
vau+( au+vw)ay+(u pv )aw_L’ (11)
where the cofactor L takes the form:
L= do + dlu + dzv + d3W. (11)
The polynomial g admits a power series representation in the variable w:

n
gu,v,w) = Z gi (w, v)wt,
i=0

where each g; € C[u, v] represents a bivariate polynomial coefficient function. For our initial analysis, we
consider the case where the degree satisfies n > 2.
Through careful examination of the terms involving w
relation:

"+1in Equation (11), we establish the fundamental

d
v% = 0.
This differential constraint immediately implies that g, (u, v) reduces to a univariate polynomial in u,
which we denote as G,,(u) € C[u]. Proceeding to the next order of analysis, we investigate the coefficients
of w" in Equation (11), which yields:

0gn g 0gn-1
du ov

= 0.
The solution to this equation is:
In-1u,v) = —vG," (W) + G,_1(w),
where G,_,(u) is a polynomial in the variable u. By evaluating the coefficients of w"~! in Equation (11),
we obtain:

09n-1 . O0gn-2 0gn-1 5 N
v +v Er + nG,(w)(u* — prv?) = 0.
Solving for g,,_, yields:

In-2 (W, v) = %Gn(u)ﬁnv2 +%Gn"(u)v2 = Gy WV + (=G, (Wnu? — auG,' W) Inw) + G, (w),

where G,_,(u) is required to be a polynomial. Since g,_,(u, v) must be a polynomial, the logarithmic
term must vanish, implying:
—G,(Wnu? — auG,'(u) = 0.

Assuming a # 0, the solution to this differential equation is:
2

G,(u) =c,e 2a.
Since G, (u) must be a polynomial, we must haven =0 or G,(u) = 0. Ifn =0, it contradicts the
assumption that n = 2. Therefore, G,, = 0, which implies g, = 0 for all n = 2. Consequently, g is linear in
w:
g, v,w) = go(w,v) + g1 (w, v)w.
Substituting this form into Equation (10):

d + gw d + gw
v% + (vw — au)% + (u? — prv3)g, = dy + diu+ dyv + dyw.

By evaluating the coefficients of w' for i = 2,1,0, we derive the following:
Fori = 2:

991

—=0.

v
This implies g, (u, v) = g;(u), where g, (u) is a polynomial.
Fori =1:

991 990
Ua + ‘UW = d3.

Solving for g, yields:
d
Jolu,v) = —v% + d;lnv + Q(w),

where Q(u) is a polynomial. Given that g,(u, v) must be a polynomial, the logarithmic term must vanish,
which implies d3 = 0. Fori = 0:
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990 990
v AU + (u? - pv?®)g, = dy + diu + dyv.

Substituting g, = —vg; (w) + Q(w), and analyzing the degrees of the terms (specifically, the u?g, term on
the left-hand side versus the linear terms on the right), implies that g, (u) must be zero. Consequently, the
equation simplifies, leading to Q (u) = d,u.

Thus, we obtain g(u, v, w) = d,u. This yields the exponential factor F = e%2* with the cofactor L = d,v.
Setting d, = 1 gives the unique factor e* with cofactor v. i

Proposition 3.6. When a = 0, the system admits e* as its unique exponential factor, with the
corresponding cofactor v.

Proof. Following Proposition 2 and Theorem 5, under the condition a = 0, the exponential factors of
System (1) must assume the form:

_ g
E =exp (F)'
where s € Z20 is a non-negative integer, g € C[u, v, w] is a multivariate polynomial, and g and v”"s are

coprime. As established by Theorem 6, the exponential factor E must satisfy the governing partial
differential equation:

0 0 d
—(e9/v* — —(e9/v* 2 _ Bp2)—(e9/v%) = Le9/v*
Vo (e9"°) + (vw — aw) 5 (e9"°) + (W? — Bv )6W (e9/"") = Le9/”",

where L is given by Equation (11). Upon simplification, the equation can be rewritten in the following
equivalent form:

i + i _|_(2_ Z)i — = LvS (12)

agg vwavg u® —fv Gy 9 TSI = Vs,
Case 1: Analysis for s = 1. Let § denote the restriction of g to the hyperplane v = 0. We first observe that
g # 0; otherwise, v would divide g, violating the coprimality condition. By restricting Equation (12) to
v = 0, the function § must satisfy the reduced partial differential equation:

ag
299 s
ut o, T SWg 0. (13)

The general solution to this equation takes the form:
2

3u,w) = fwexp (=)

However, for s # 0, the essential singularity at u = 0 forces f(u) = 0, which results in the contradiction
g = 0. Consequently, no valid solutions exist in this parameter regime.

Case 2: Analysis fors = 0. In this case, E = e9, where g € C[u, v,w] is a polynomial. Settinga = 0 in
Theorem 7 yields the solution g(u, v,w) = d,u, with the corresponding cofactor L = d,v. This concludes
the proof. m|

Theorem 3.7. System (1) does not possess any Darboux-type first integrals for any value of the
parameter a.

Proof. The proof relies on Theorem 3, which provides a necessary and sufficient condition for the
existence of Darboux-type first integrals. Specifically, such a first integral exists if and only if there exist
constants A, uj € C (not all zero) satisfying the equation:

{ J
where K; are the cofactors of the invariant polynomials and L; are the cofactors of the exponential
factors. We examine the following cases depending on the parameter values:
Case 1: Suppose a # 0. According to Theorem 3.2, System (1) admits no irreducible Darboux polynomials;
thus, there are no cofactors K;. From Theorem 3.5 (and Proposition 3.6), the system admits a unique
exponential factor with the cofactor L; = d,v . Substituting these into Equation (14) yields:

wv = 0.

This equation implies y; = 0. Since no non-trivial solution for the constants exists, the system possesses
no Darboux-type first integrals in this case.
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Case 2: Suppose a = 0 (and § # 0).

In this scenario, Theorem 5 states that the system possesses a single irreducible Darboux polynomial with
the cofactor K; = kzw (where k3 is a constant). Additionally, according to Proposition 3.6, the system
admits an exponential factor with the cofactor L; = d,v. Consequently, Equation (7) takes the form:
A1(ksw) + py(dpv) = 0.

Due to the linear independence of v and w, we must have 4; = 0 and p; = 0. As there are no non-zero
constants satisfying the condition, the system admits no Darboux-type first integrals.

This concludes the proof. =

Results
The investigation into the integrability of System (1) using the Darboux theory of integrability yields the
following established facts:

1.  Absence of Polynomial First Integrals: Theorem 4 demonstrates that System (1) possesses no
polynomial first integrals. The analysis of the partial differential equation governing the
conserved quantities proves that no non-trivial polynomial solution exists.

2.  Classification of Darboux Polynomials: Theorem 5 characterizes the invariant algebraic surfaces
of the system. It is established that the system admits an irreducible Darboux polynomial if and
only if the parameter a = 0. In this specific case, the unique Darboux polynomial is H = v, with
the associated cofactor K = w. For a # 0, the system admits no Darboux polynomials.

3. Non-existence of Rational First Integrals: As a direct consequence of the scarcity of Darboux
polynomials and the absence of polynomial first integrals, Theorem 6 confirms that System (1)
admits no rational first integrals.

4. Exponential Factors: Theorem 8 and Proposition 9 provide a complete classification of the
exponential factors.

- Fora # 0, the unique exponential factor is E = e* with the cofactor L = v.
-  Fora = 0, the result remains consistent; the system admits e* as the unique exponential
factor with the cofactor v.

5.  Non-integrability in the Darboux Sense: Theorem 10 serves as the culminating result. By
examining the linear dependence of the cofactors derived in the previous theorems, it is proven
that no linear combination of cofactors vanishes. Specifically:

- If @ # 0, the only cofactor is v, which is non-zero.

- Ifa = 0, the cofactors are w and v, which are linearly independent.
Consequently, System (1) does not possess a first integral of the Darboux type for any value of the
parameters.

Discussion

The results presented in this study provide a comprehensive algebraic characterization of System (1).
The primary conclusion is that the system is not integrable within the class of Darboux functions,
suggesting that its dynamics are not confined to algebraic or generalized algebraic foliations of the phase
space.

Conclusion

We have proven that System (1) is not Darboux integrable. This implies that any first integral, if one
exists, must belong to a more complex functional class or the system is strictly non-integrable. Given the
absence of even rational first integrals, System (1) is a strong candidate for exhibiting chaotic behavior,
subject to further numerical or analytical investigation of its global dynamics.
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