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1. Introduction

Let A represent the class of functions of the following type:
k(s) = s + Z d, s, (L.1)
n=2

which in the open unit disc U = {s:s € C, |s| < 1} are holomorphic and univalent.

Let M represent the subclass of A consisting of functions of the following type:
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k(s) =s— Z d,sm™ (d, = 0). (1.2)
n=2
For k(s) € M given by (1.2) and g(s) given by
g(s)=s— Z b,s" (b,=0,neN,s el) (1.3)
The Hadamard product (or Convolution), indicated by (k * g), is specified based on
(k*g)(s) = s — Z dbs"=(g+k)(s) (se€U. (1.4)
n=2

In domain U, if k(U) is a starlike domain with regard to origin and k : U — C is univalent, we say that k(s) is
starlike. In such case, k(s) € A is considered starlike of order p if it fulfils

sk'(s)
Re >
( k(s) )
for some p (0 < p < 1) and for each s € U. The univalent function k(s) € A is told to be convex of order p if and
only if sk’(s) is starlike of order p. In other words, if

Rel1+ SK'(s) >
BTV AR
for some p (0 < p < 1) and for each s € U. Also, a univalent function k(s) € A is told to be close-to-convex of order
p if

Re(k'(s)) > p
for some p (0 < p < 1) and for each s € U.

For holomorphic functions k defined in a simply connected domain containing zero, the fractional derivative of
order ( is defined as follows [6]:

k(t)

4 _
Dsk(s) = 5= c)j G=t)

dt, 0<(<1, (1.5)

0%k(s) = I'(2 = {s Dk (s)

=S+Zr(n+1)r(2—z)d .

Tn+1-¢) (1.6)

where multiplicity of (s — t)~¢ is removed based on requiring log (s — t), to be real when s —t > 0 (see also [6],

[7])-

Mowafy et al. [5] introduced the following operator in 2023, which can also be called fractional differential operator
D;"'(k(s): A — A defined by

DY°k(s) = k(s),

DY k(s) = (1 — w0%k(s) + ps (Qik(s))' = DSk (s), ©>00<¢<1,
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28100y — né (nf
D;%k(s) = DS (DSk(s)),
DIk(s) = DS (D;”‘“ k(s)), m e N, = Nu {0}
If k is given by (1.1) then

m,{ — n
DIKS) =5+ ) WG 0dys™ (17
n=2

where

Frn+1Dr2-29)
rn+1-27)

WG ) = [1+u(n— D™ 1.8)

Now, by using fractional differential operator D;” '{k(s), we define the following:

Definition (1.1): A function k(s) in M belongs to the class N}[;n’{(&l, a,n,y)if and only if it fulfilled the

condition:

|52 (04 k)) " + 1 = s (07k() " + 2 (D k(5))

| @r-0s (oK) + 21 - (Do)

<n,

WhereSE[U,MZO,OS(<1,mENO,OSa<1,OSl<1,OS6<1,%<y£13nd0<7]£1.
Remark (1.1): When { = 0 and m = 0, the following distinct subclasses have been examined by different authors.

1) ForA=0,6 = 0the class ]\fj-[;"’Z (8, 4, a,n, y) reduce to the subclass C(a, 8,y) introduced and studied by Joshi
and Shelake [4].

2) ForA=0,5§=0,y=1andn =1, the class N}[IT‘Z((S, A, a,n,v) reduce to the subclass C () introduced and
studied by Silverman [10].

The features listed below were examined for different classesin [1,3,8,12,13, 14].

2. Coefficient Estimate

A necessary and sufficient condition for a function to belong to the class N?-[;"‘z(&/l, a,n,y) is obtained in the

following theorem.

Theorem (2.1): Suppose that the function k be defined based on (1.2). Then k € N}[,I"‘q (6,4, a,n,y) if and only if
z n[d(n? —3n+2)+n(1-21)—1+nQ2yn—-2ya—n+ DI¥,,,((, wd, <2yn(l —a) + 2, (2.1)
n=2

wheresE[U,/JZO,OS(<1,mENO,OSa<1,OSA<1,OS6<1,%<y£1and0<n$1.

Then result (2.1) is sharp for the function
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2ynl—a)+ 2 R omw2 2.2)

ks) =s - n[d(m? —3n+2)+n(1—-21) —1+nQ2yn—2ya —n+ D]¥,, (1) 5

Proof: Suppose that |s| = 1 and the inequality (2.1) is valid. Next, we obtain
|65 (D" k() + (1= Ds (DF*k(s)) +2(Dk(S)) |

-n |(2y - 1s (D;”'ik(s))” +2y(1—a) (D;"'Zk(s))l|
) i nn—1Dn—-2)¥ ,,wd,s"t=(1-2) i nn—D¥, ,((,u)d,s" 1+ 2

-2 Z N, w)d,s™?
n=2

-n

-2y -1 Z nn—D¥ ¢, wd,s"*+2y(1—a)—2y(1 —a) Z N ((, wWd,s™?
n=2 n=2

< Z n[dn*=3n+2)+n(1-)-1+nQ2yn—-2ya—n+ D]¥, . wd, —2yn(1 —a) =1 <0
n=2

Hence, by maximum modules principle, k € J\fﬂ-[;n’z (6,4, a,1,7). Now, assume that k € J\f}[,:n‘{ (6,2, a,m,y) so that

552 (DI k()) + (1 - Ds(D14k(s)) +2 (DI ¥k(s))

@y - Ds (D*k() +2v@ - o) (D)k(s))

<n, s eU.
Hence
|6s2 (D1¥k(s))” + @ = Ds (D k() + 2 (D1¥k(s)) |

<n|@y - Ds (D) +2r - (DK |

Therefore, we get
|5 11~ 100~ 2 G0 5™ = = DY 1 = D0 5™ +2
n=2 n=2

- Z n¢™(n, b, t,u)d,s" !
n=2

<n

-@2y-1) Z n(n—1) lpn,m((: /“‘)dnsn_1 +2y(1—-a)-2y(1—a) Z n ‘Pn,m(f. .u)dnsn_1
n=2 n=2

Thus

(oo}

n[d(m*—=3n+2)+n(1-21) - 1+nQ2yn—-2ya —n+ DY, wd, <2yn(1-a) + 4,

n=2
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and the proofis finished.

Corollary (2.1): Suppose that the function k € N?—[:l'{ (6,2, a,1,7). Then

2y —a) + 1
d, < s, n=2.
n[d(m? —=3n+2)+n(1-21) —1+nQ2yn—2ya—n+ D]¥,, (1)

3. Growth and Distortion Theorems

Theorem (3.1): Suppose that k a holomorphic function specified based on (1.2) is in the class N}[Jn‘z 6,1, a,n,7),
thenfor0<|s|=r<1

2ym(1l—a)+ 4

. 2ym(l—a)+4 ,
2[2(1 =) = 1+ 04y = 2ya = D]¥om({ 1)

2(1— 1) — 1 +n(4y —2ya — Do) |

r? < |k(s)| ST+

The bounds are sharp, because the equality are reached based on the function

2yl —a) + 1 5 3.1

k(s) =s— 220 —2) — 1+ n(4y — 2ya — 1)]q’2,m(('#) S

Proof: Considering Theorem (2.1), we possess

Z n[d(n? —3n+2)+n(1-21) —-1+nQ2yn—2ya —n+ DY, wd, <2yn(1 —a) + 4,

n=2

and

20201 = ) = 1+ 5y - 2ya = DWW, G0) ) d,

n=2
< Z n[d(n*=3n+2)+n(1-21)—-1+nQ2yn—-2ya —n+ D]¥,.((, wd, <2yn(1—a) + A
n=2

Therefore, we have

id < 2yn(l—a)+ 2
n=2 " 2[2(1 - A) -1+ 77(4)/ —2ya— 1)]11]2‘,”({,‘[1).

Thus, fork € N}[;"'{(& A a,1,v), we obtain

oo
s - Z d, s™
n=2

The following is a proof for the other claim

2yn(l—a) + 2 5

()l = 2[2(1—/1)—1+n(4y—2ya—1)]‘1’z,m(€,u)r '

[oe]
< |s|+|s|zzdn <r+
n=2

(oo}

s—Zdns"

n=2

- 2yn(l—a) + 2
> |s| — ISIZZd >r— r2,
4 2[2(1 =) = 1+ n(4y — 2ya = D]¥,, (1)

k()| =
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as far as the proofis finished.

Likewise, by using the same approach as in Theorem (3.1), we may demonstrate the following

Theorem (3.2): Suppose that k a holomorphic function specified based on (1.2) is in the class N}[;n‘{ 6,1, a,1n,7),
thenfor0<|s|=r<1
2ymdl—a)+ 1 2yn(1l—a) + 1

1= 20 -2 —1+n@y - 2ya — D¥,,,({, 1) relk@eyl=1+ 21 -2 —1+n@y = 2ya — DY, ,,(, ) 4

The bounds are sharp for the function k(s) is specified based on (3.1).

Proof: For k € N}[Jn'{(& A, a,m,7), we have

N 2yl —a) + 4
k(s |—1—an s"1<1+|s|an <1+ r
© n=2 " 20 - - 1+ny —2ya— DY, (¢, W)
On the other hand
N N 2yn(1—a) + 4
lk(s)'| = 1—an S"_121—|S|an >1-— .
( ) n=2 " n=2 " 2(1 - A) -1+ 7](4]/ —2ya — 1)W2,m((» .u)

and the proofis finished.

4. Radii of Starlikeness, Convexity and Close-to-convexity

The radii of starlikeness, convexity, and close-to-convexity for the class V- 3—[,:" ’5(6,1, a,n,y) are obtained in the

following theorems.

Theorem (4.1): Suppose thatk € N}[;"’z (6,A,a,1m,7). Then k is starlike in |s| < R, of order p,0 < p < 1, wherever

1
R, = i7;llf {(1 —pn[6(n? —3n+2) -é—nn_(lp;(/zlzm—(ll;l-z)(ZIr;)— 2ya—n+ D], @, ‘u)}n—l, Vs 1)
The result is sharp to the function k(s) specified by (2.2).
Proof: k is starlike of order p,0 < p < 1if
sk'(s
Re( k(g))) >p

Therefore, it suffices to demonstrate that

sk'(s) | S = D™ _ St — D ls]?

k(s) T 1-X2,d,s"? 1= dyls|m
Thus,

S:(S) 1| —p if Z(" p)d Is|*1 < 1. (4.2)
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Hence, by Theorem (2.1), (4.2) is accurate if

(n—p) |1 < n[6(n*=3n+2)+n(1 - —-1+nQ2yn—-2ya—n+ D]¥, . 1)
(1-p) - 2yl —a)+2

orif

Is] = [(1 —pn[6(n?-3n+2)+n(1-D)—-1+7Q2yn—-2ya—n+ 1)]‘1’nlm({,y)]n—1, N> 2 3)

(n—p)2yn(1 —a) +2)
From (4.3), the theorem is readily inferred.

Theorem (4.2): Suppose that k € N}[;”'{ (6,4, a,m,7). Then k is convex in |s| < R, of order p,0 < p < 1, wherever

1
1-p)[6(n? =3n+2)+n(1—21)—1+nQ2yn—2ya—n+ D]¥, ,({,p))?
R, = inf (1-p)[6(n*—3n+2)+n(l-21) n@2yn—2ya—n+ V¥, 0 2 (4.4)
n n-pQynl-a)+2)
The result is sharp to the function k(s) specified by (2.2).
Proof: k is convex of order p,0 < p < 1if
sk"(s)
Rel( 1
e( o) ) mF
Therefore, it suffices to demonstrate that
sk" ()| _ |- Zrean(n — Dd,s™! =z t(n — Dy |s|**
k'(s) | 1-Xr ,nd,s* ! 1Y, nd,ls|*t -~
Thus,
sk”(s) - n(n — p)
<1- i ——d,ls|"t < 1. 4.5
ey b ) Ty (45)
n=2
Hence, by Theorem (2.1), (4.5) is accurate if
n(n —p) |1 < n[d(n*-3n+2)+n(1-2)—-1+nQ2yn—2ya—n+ D]¥, ., 1)
— s <
1-p) 2yn(l—a) + 4
orif
1
— 2 _ _ _ - - n-1
Is| < A=-p[6(n*=3n+2)+n(1-2) —-1+nQ2yn—-2ya—n+1]¥, (1) n>2 (4.6)

(n=—p)Q2yn(1 —a) +2) ’
From (4.6), the theorem is readily inferred.

Theorem (4.3): Suppose thatk € N}C,:"’{(é‘, A a,m,y). Then k is close-to-convex in |s| < R; of order p,0 < p <1,

wherever

R, = inf 4.7)

n

1=-p)[s(n*=3n+2)+n(1-21)—1+nQ2yn - 2ya—n+ D]¥,,, ({1 = S5
{ @y —a) +2) } P e
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The result is sharp to the function k(s) specified by (2.2).
Proof: k is close-to-convex of order p,0 < p < 1if
Re(k'(s)) > p.

Therefore, it suffices to demonstrate that

[oe] [oe]

k'(s) — 1| = —Z nd,s" 1 < Z nd, |s|™ 1.
n=2 n=2
Thus,
o n
k'(s)—1l<1-p if Z d,ls|*1 < 1. (4.8)
— (1-p)
n=2
Hence, by Theorem (2.1), (4.8) is accurate if
n o n[6m?=-3n+2)+n(1 - —-1+n1Q2yn—-2ya—n+ D¥,,({w
|S|n 1 S ,
1-p) 2yn(1 — a)
orif
1
1-p)[6n%2=3n+2)+n(1 -1 —-1+1nQ2yn—-2ya—n+ 1]¥ MG
Is| < (1-p)[sC ) +n( ) nQ2y Y N¥m (1) Cas2 (4.9)
Q1 -a)+24)
From (4.9), the theorem is readily inferred.
5. Closure Theorem
Theorem (5.1): Suppose that the function k; specified by
ki(s) =s— Z dp;s™ (dn‘i >0,n=2i=1,2, ...,t), (5.1)
n=2

belongs to the class N}[,Z"'z (6,4, a,n,y)foreach i =1,2,...,¢t.

Then, the function f; thatis specified based on

[oe]

fl(s)=s—Zens", (e, =0,n=>2),

n=2

also be in the class ]\f}(;"’( (68, 4, a,n, y) wherever

~ | =

t
Yy, (=2

i=1

e, =

Proof: Since k; € N}[Jn'{ (6,4,a,m,y), consequently Theorem (2.1) states that
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(oo}

Z n[6(n*=3n+2)+n(1-21) - 1+nQ2yn—-2ya—n+ DY, ((,wd,; <2yn(1—a)+ 4,
n=2
foreveryi = 1,2,...,t. Hence

(oo}

n[6(m*—-3n+2)+n(1-21) —-1+nQ2yn—2ya —n+ D]¥, ., we,

=2

S

4

0 t
= Z n[d(n*—=3n+2)+n(1-21)—-1+nQ2yn—-2ya —n+ D]¥, ., 1) (% dn‘i>
n=2 =1

t oo
- 12 (Z n[6(n? —3n+2) +n(1 —2) — 1 +nQyn - 2ya — n+ D%, (1) dn.i)

i=1 \n=2

<2yml—a)+A
By Theorem (2.1), it follows that f; € N}[Jn’{(& Ada,ny).

Theorem (5.2): Suppose that the function k; defined based on (5.1) belong to the class ]\f}[;n‘{(& A a,1,y) for each
i =1,2,...,t. Then the function f, specified based on

t

£) = ) k(s

i=1
Belongs to the class J\f}f,;"’Z (6,2, a,n,y) wherever

t
Zci -1, (¢ =0

i=1

Proof: Based on Theorem (2.1) for each i = 1,2, ...,t, we obtain
Z n[dm*—=3n+2)+n(1-21)—-1+nQ2yn—-2ya—n+ V¥, ., wd,; <2yn(1 —a) + 1.
n=2

But

f2(s) = ici ki(s) = Zt:ci (S _idn,isn> =S —i (ici dn‘i>sn.
1 i=1 n=2 1

i= n=2 i=

Therefore

oo t
n[d(m*—3n+2)+n(1-2)-1+nQ2yn—2ya—n+ D]¥, ., w (Z C; dn,l-)
=2

i=1

S

t 0
= C; (Z n[6(n>—-3n+2)+n(1—-1)—-1+nQ2yn—2ya—n+ 1)]Wn_m({,u)dn‘i)
i=1

n=2
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< ZCL- Cynl-ao)+)=2ym1—-—a)+ 1

=1

and the proof is complete.

6. Convolution Properties

Theorem (6.1): Let the function k; (j = 1,2) defined by
ki(s) =s — Z dpjs™,  (dn;20,j=12),
n=2

which is in the class N}[Jn'{(& A a,n,y). Thenk, k, € N.‘I-[;n’{ (8,2, a,1,y), where

n[d(n*—=3n+2)+n(1-21)—1+nQ2yn—-2ya—n+ D*¥, (1)
—Qynl-—a) + A)(n(l —)—-14+79Q2yn—-2ya—n+ 1))
Cynl—-a)+2)(n?>—-3n+2)

B <

Proof: We need to determine the biggest 8 such that

_ n[f(n?—-3n+2)+n(1—-2)—-1+nQyn—-2ya—n+ D%, ., 1w
> By rdy, < 1.
n=2

2ym(1—a) + A

Since k; € N}[,I"'{(&/L a,n,y) (G =1,2),then

i n[d(n*=3n+2)+n(1-21)—-1+nQ2yn—-2ya—n+ D]¥, ., 1)
J S
n=2

2yn(l—a) + 1

By Cauchy-Schwarz inequality, we have

n[8(n? —3n+2) + n(1 — ) — 1+ nQ2yn — 2ya — n + D%, . ({1
: <1
nz:; 2yl —a)+ 21 Vdn1dn, <1

So, we only show that

n[f(n*-3n+2)+n(1 -1 —1+nQ2yn—-2ya—n+ D%, w
2yn(l—a) + 1

dn,ldn,z =<

n[d(n? —3n+2)+n(1-21)—1+nQ2yn—-2ya—n+ D]¥,,. ({0

2yl —a) + 2 Vnidnz:

That is equivalent to

\/ﬁ<6(n2—3n+2)+n(1—/1)—1+n(2yn—2ya—n+1)
T2 = m2 —3n+2)+n(1—A) —-14+nQRyn—2ya —n+1)

From (6.3), we have

d,; <1 (G =12).

(6.1)

(6.2)

(6.3)
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W < 2yl —a) + 1
2 Z (2 —3n+2)+n(1—1) —1+nQyn—2ya —n+ D]¥n((w)

which is sufficient to prove that

2yl —a)+ 2
n[6(n2 —3n+2) +n(1 — 1) — 1+ nQyn — 2ya —n+ D]¥, . ((, u) B

SmM?2=3n+2)+n(1 - —-1+n@2yn—-2ya—n+1)
B2 —=3n+2)+n(1—-2)—-1+nQ2yn—-2ya—n+1)

That implies to

n[6(n? —=3n+2)+n(l — 1) — 1+ nQyn — 2ya — n+ D?¥, . ({, 1)
—Qyn(1 —a) + )(n(1 =) —1+3nQ2yn—2ya—n+1))
Cynd-a)+2)(n?>—-3n+2)

B =<

Theorem (6.2): Let the function k; (j = 1,2) that is defined in (6.1) belongs to the class ]\f}[;n‘{(d, A a,n,v). Then

the function h defined based on
h(s) = s — Z(d,ﬁ,1 +d2,)sm,
n=2

be in the class N}f;"'{ (g, 4, @, n,y) wherever

n[d(n? —3n+2)+n(1-21) - 1+nQ2yn—-2ya—n+ DI*¥, (1)
=2Qyn(1 —a) + l)(n(l —1)-14+nQ@2yn—-2ya—n+ 1))
2yn1—a) + A)(n? —3n+2)

Proof: We need to determine the biggest € such that

[oe]

Z nle(n®* —=3n+2)+n(1-2) —1+nQ2yn—2ya—n+ D]¥, ., 1)
2yn(l—a) + 1

(a2, +d2,) <1,

since k; € N}[;"’((& Aa,ny) (=12), weget

= n[d(n*—-3n+2)+n(1-2) —-1+nQ2yn—-2ya —n+ D]¥, ., ,u) 2
Z 2ym(l—a) + 2 nl

n[d(n*—=3n+2)+n(1-21)—1+nQ2yn—2ya—n+ D]¥,,. ({0 2<1
Z( 2yl —-—a)+2 "1> =

= n[d(n*-3n+2)+n(1-2) —-1+nQ2yn—-2ya—n+ D]¥, ., ,u) 2
z 2yml—a) + A n2

<1

< Z (n[(S(n2 —-3n+2)+n(1-2)-1+nQ2yn—-2ya—n+ D]¥, (1) dn2>
2yn(l—a) + 2

(6.4)

(6.5)

(6.6)
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Annexation of the inequalities (6.5) and (6.6) gives

il(n[d(nz -3n+2)+n(1-D)—-1+nQ2yn—-2ya—n+ D]¥, ., 1)
2

2
2ym(l—a) +4 ) (d2,+d?2,) <1

Buth € NH™ (¢, 4, a,n,7) if and only if
u

(d121,1 + d121,2) <1

i nle(n*=3n+2)+n(1-21) —1+nQ2yn—-2ya—n+ D]¥, ., 1)
~ 2yl —a)+ 2

The inequality (6.8) will be satisfied if

nle(n*—=3n+2)+n(1-2)—-1+nQ2yn—-2ya —n+ D]¥,. (1) -
2yl —a) + 1 -

n? ([8(n2 -3n+2)+n(1-2)—-1+nQ2yn—-2ya—n+ D]¥, . y))z
2Qyn(1 —a) + 1) '

So that

n ([6(112 -3n+2)+n(1-2)—-1+nQ2yn—-2ya—n+ D]¥, . y))z

=2Qyn1-a)+ l)(n(l —A)—-14+nQ@2yn—-2ya—n+ 1))‘1’n‘m((, )
2ynl—a) + A)(n? —3n+2) '

7. Neighborhood Property and Partial sums

6.7)

(6.8)

In accordance with the previous studies conducted by Goodman [2] and Ruscheweyh [9], we determine the

o —neighborhood of function k(s) € M based on

Na(k)={g€]vf:g(s)=s—2bns" and andn—bnlga}.
n=2 n=2
In particular, for identity function e(s) = s, we immediately have

N,(e) = {g EM:g(s) =s— Z b,s™ and anbnl < 0}
n=2 n=2

(7.1)

(7.2)

Definition (7.1): A function k(s) € M is said to be in the class N?fﬂg(&/l, a,n,y) if there exists a function

g(s) € N}(f’((c?,/l, a,m,y), such that

k(s)
E_1‘<1—y (seU,0<y <)

Theorem (7.1): If g(s) € N}C;"’((é‘, A a,m,y) and

o (2= 2) = 1+ 4y — 2ya = D%, @ w)
2[[2(1 - 1) — 1+ 0y — 2ya — DI¥, @) — 21— @) + 2]

y=1-

(7.3)
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Then N, (g) N}[ﬂg(&l, a,n,y).

Proof: Let k(s) € N;(g). Then we get from (7.1) that

[oe]

ann _b| <o,

n=2

which readily implies the coefficient inequality

- o
Zldn bl
n=2

Also, since g(s) € N}[;"'Z (6,1, a,1m,7), we get from Theorem (2.1)

ib - 2yn(1l—a)+ 2
"T220 - -1 +n@y - 2va - D], G0

n=2

So that

kS |< fealdy — byl
g(S) B 1_21010:21911

o (1201 = D) = 1+ 4y - 2ya = DY, (1)
22 =D =1+nly = 2ya = D]¥n @ w) = 2yn(1 = a) + 1)

IA

Thus by Definition (7.1), k(s) € Nﬂ-[:;;( (6,4, a,n,y) for y given by (7.3).

The ratio of the function of type (1.2) to its series of partial sums will be examined in this section specified by
k,(s) = sand k,(s) = s — X},_, d,, s™ when the coefficients of k are sufficiently small to fulfill the condition (2.1). We
will determine sharp lower bounds to

k(s) k,(s) k'(s) ki(s)
Re (m>, Re <m>, Re (k{(s)) and Re <k’(s))'

What follows, we'll employ the widely acknowledged outcome that

1-T(s
Re( ()>>0, se,

1+T(s)

if and only if

T(s) = z b, s™
n=1

satisfies the inequality [T (s)| < |s].

Theorem (7.2): If k(s) € NH,"* (8,1, &, 1,y), then

k(s) 1
Re (W) 1= (lEN,s € U) (7.4)
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and

re (11 bisy leNsEU 7.5
(i) > T4 tetset) =

where

" n[6(n*-3n+2)+n(1-2)-1+nQ2yn—-2ya—n+ D]¥, . y)
n 2yn(l—a) + 2

Estimated values in (7.4) and (7.5) are sharp.

Proof: We apply the same strategy that Silverman [11] used. The function k(s) € }[,In 45,7 a, n,v) if and only if

It is simple to confirm that b;,, > b; > 1. Consequently,

[oe]

l co
Z d,, + by, Z d, < z b,d, <1. (7.6)
n=2 n=2

n=l+1

We could write

{k(s) (1 1 )} 1= dy s" T = b Ty Ay ST 14 D(s)
I+1 - -

ki(s) \" by 1-Yho,dy s T 1+F(s)
Set
1+ D(s) _1- T(s)
14+F(s) 14T(s)
so that
F -D
1 = FO DO
2+ D(s)+ F(s)
Then
T(s) = biiq Xoerv1dn snt
2= 2%t ody STt = by Xy dpy ST
and
bl+1 Zn l+1
IT(s)I <
2 - 22 bl+1 Zn=l+1 dn

Now |T(s)| < 1if and only if

Zd + by Z d,

n=l+1

Support for it comes from (7.6). This makes the assertion (7.4) of theorem (7.2) simple. Seeing that
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Sl+1
k(s)=s— (7.7)
biyq
gives sharp results, we observe that
k(s) st
kl(S) b1+1.
Letting s - 17, we have
k(s) B 1
ke (s) b1+1.

It demonstrates that for any [ € N, the bounds in (7.4) are the best available

ki(s) b1 ) 1= dn ST by Bpy1 dn ST 1T ()

1+b - - ,
a+ l+1)(k(s) 1+ by 1-%t_,d, st 1+ T(s)

where

(1 +byyq) Xpmgea d
2 anz dn + (1 bl+1) Zn l+1

IT()l <5

Now |T(s)| < 1if and only if
Zd + by Z d, <1.
n=l+1

It has the backing of (7.6). As a direct conclusion, Theorem (7.2) yields the claim (7.5). The extremal function k(s)
given by (7.7) is sharply estimated in (7.5). This completes the proof of theorem (7.2).

We now discuss the ratios including derivatives. Theorem (7.3) is proved in the manner described in Theorem
(7.2), and thus the details may be left out.

Theorem (7.3): I k(s) € NH,"* (8,1, a,1,y), then

k’(s)) 1+1
Re >1- lLeN,s eU), 7.8
(k;(s) bis ( ) 78
and
kl’(S) byiq
> . .
Re(k’(s)>_1+l+bl+1 (leN,s €eU) (7.9)

Along with the extremal function described by (7.7), the estimations in (7.8) and (7.9) are sharp.
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