

New Subclass of Multivalent functions Defined by Multiplier Differential Operator

Abdullah Najm Mohammed^a and Najah Ali Jiben Al- Ziadi^b

^a Department of Mathematics, College of Education, University of Al-Qadisiyah, Iraq. Email: abdullah.najm.mohammad@gmail.com

^b Department of Mathematics, College of Education, University of Al-Qadisiyah, Iraq. Email: najah.ali@qu.edu.iq

ARTICLE INFO

Article history:

Received: 10/06/2025

Revised form: 26/06/2025

Accepted: 14/07/2025

Available online: 30/09/2025

Keywords:

Holomorphic function,
multivalent functions,
multiplier differential operator,
coefficient estimate,
radii of starlikeness and convexity
extreme points.

ABSTRACT

In this paper, we study a novel subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ of multivalent functions with negative coefficients defined based on multiplier differential operator $\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)$ in the open unit disk $\mathbb{U} = \{s : s \in \mathbb{C} \text{ and } |s| < 1\}$. We get some interesting properties, like, coefficient estimate, radii of starlikeness, convexity and close-to-convexity, extreme points, weighted mean and arithmetic mean, integral operators, integral means inequalities, convex set, neighborhood property for functions being a member of the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$.

MSC..

<https://doi.org/10.29304/jqcm.2025.17.32576>

1. Introduction

Let \mathcal{A}_p be denote the class of all functions of the form

$$k(s) = s^p + \sum_{n=p+1}^{\infty} d_n s^n, \quad (p \in \mathbb{N} = \{1, 2, \dots\}), \quad (1.1)$$

which are holomorphic and multivalent in the open unit disk $\mathbb{U} = \{s : s \in \mathbb{C} \text{ and } |s| < 1\}$.

Let \mathcal{M}_p be denote the subclass of \mathcal{A}_p consisting of functions of the form

$$k(s) = s^p - \sum_{n=p+1}^{\infty} d_n s^n, \quad (d_n \geq 0, p \in \mathbb{N}). \quad (1.2)$$

*Corresponding author Najah Ali Jiben Al- Ziadi

Email addresses: najah.ali@qu.edu.iq

Communicated by 'sub editor'

For the function $k(s) \in \mathcal{M}_p$ given by (1.2) and the function $g(s) \in \mathcal{M}_p$ defined by

$$g(s) = s^p - \sum_{n=p+1}^{\infty} b_n s^n, \quad (b_n \geq 0, p \in \mathbb{N}) \quad (1.3)$$

we defined Hadamard product (or the convolution) of $k(s)$ and $g(s)$ by

$$(k * g)(s) = s^p - \sum_{n=p+1}^{\infty} d_n b_n s^n = (g * k)(s). \quad (1.4)$$

A function $k(s) \in \mathcal{A}_p$, is told to be p -valently starlike of order ρ if it fulfills the inequality

$$Re \left(\frac{sk'(s)}{k(s)} \right) > \rho, \quad (s \in \mathbb{U}; 0 \leq \rho < p; p \in \mathbb{N}). \quad (1.5)$$

We represent the class of all p -valently starlike functions of order ρ by $S_n^*(p, \rho)$.

Also, the function $k(s) \in \mathcal{A}_p$, is told to be p -valently convex of order ρ if it fulfills the inequality

$$Re \left(1 + \frac{sk''(s)}{k'(s)} \right) > \rho, \quad (s \in \mathbb{U}; 0 \leq \rho < p; p \in \mathbb{N}). \quad (1.6)$$

We represent the class of all p -valently convex functions of order ρ by $C_n(p, \rho)$. The class $S_n^*(p, \rho)$ and $C_n(p, \rho)$ are studied by Owa [8].

A function $k(s) \in \mathcal{A}_p$, is told to be p -valently close-to-convex of order ρ if it fulfills the inequality

$$Re \left(\frac{k'(s)}{s^{p-1}} \right) > \rho \quad (s \in \mathbb{U}; 0 \leq \rho < p; p \in \mathbb{N}). \quad (1.7)$$

Recently, Sambo and Lasode [11] present novel multiplier differential operator as follows:

Definition (1.1)[11]: Let $p \in \mathbb{N}$; $m \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$; $\xi, \beta, \mu, \lambda \geq 0$; $0 \leq \eta \leq \lambda$; $0 < \nu \leq 1$ and $\xi + \beta > 0$, then for $k \in \mathcal{A}_p$, we defined the multiplier differential operator $\mathcal{D}_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu): \mathcal{A}_p \rightarrow \mathcal{A}_p$ by

$$\mathcal{D}_{\lambda, \mu}^{0, p}(\xi, \beta, \eta, \nu)k(s) = k(s) \quad (1.8)$$

$$(\xi + \beta)\mathcal{D}_{\lambda, \mu}^{1, p}(\xi, \beta, \eta, \nu)k(s) = [\xi + \beta + \eta - (2\nu - 1)(\lambda + \mu)]k(s) - (p - 1)\lambda\eta s^p$$

$$+ \frac{1}{p} [(2\nu - 1)(\lambda + \mu) - \eta]k(s)' + \lambda\eta s^2 k(s)'' \quad (1.9)$$

therefore

$$\mathcal{D}_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)k(s) = \mathcal{D}_{\lambda, \mu}(\xi, \beta, \eta, \nu) \left(\mathcal{D}_{\lambda, \mu}^{m-1, p}(\xi, \beta, \eta, \nu)k(s) \right), \quad m \in \mathbb{N}_0 \quad (1.10)$$

and in general we have that

$$\mathcal{D}_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)k(s) = s^p + \sum_{n=p+1}^{\infty} \left[\frac{\xi + \left[(2\nu - 1)(\lambda + \mu) + \eta(n\lambda - 1) \left(\frac{n}{p} - 1 \right) + \beta \right]}{\xi + \beta} \right]^m d_n s^n \quad (1.11)$$

or for brevity we have

$$\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) = s^p + \sum_{n=p+1}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n s^n,$$

where

$$\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) = \left[\frac{\xi + [(2\nu - 1)(\lambda + \mu) + \eta(n\lambda - 1)\left(\frac{n}{p} - 1\right) + \beta]}{\xi + \beta} \right]^m.$$

Now, by using multiplier differential operator $\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)$, we define the following:

Definition (1.2): A function of the form (1.2) is said to be in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$; if the following condition is met:

$$\begin{aligned} Re \left\{ \frac{s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)' + \delta s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)''}{(1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)''} \right\} \\ > \alpha \left| \frac{s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)' + \delta s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)''}{(1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)''} \right|^{p-1} + \gamma, \quad (1.12) \end{aligned}$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p+1$ and $p \in \mathbb{N}$.

Remark (1.1): When $m = 0$, the following distinct subclasses have been examined by different authors.

- 1) For $p = 1$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $TS(\lambda, \mu, \alpha, k, j)$ introduced and studied by Yamini [14].
- 2) For $\delta = 1$ and $\tau = 1$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $UCV(p, \alpha, \beta)$ introduced and studied by Khairmar and More [7].
- 3) For $p = 1, \delta = 1$ and $\tau = 1$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $UCT(\alpha, \beta)$ introduced and studied by Bharati et al. [3].
- 4) For $\alpha = 0, \tau = 1$ and $\delta = 1$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $C_n(p, \alpha)$ introduced and studied by Owa [8].
- 5) For $p = 1, \tau = 1, \delta = 1$ and $\alpha = 0$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $C(\alpha)$ introduced and studied by Silverman [12].
- 6) For $\tau = 0$ and $\delta = 0$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $UST(\alpha, \beta, p)$ introduced and studied by Khairmar and More [7].
- 7) For $p = 1, \delta = 0$ and $\tau = 0$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $S_p T(\alpha, \beta)$ introduced and studied by Bharati et al. [3].
- 8) For $\alpha = 0, \delta = 0$ and $\tau = 0$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $S^*(p, \alpha)$ introduced and studied by Owa [8].
- 9) For $p = 1, \tau = 0, \delta = 0$ and $\alpha = 0$, the subclass $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ shortens to the subclass $T^*(\alpha)$ introduced and studied by Silverman [12].

In order to arrive to our primary conclusions, we must remember the following lemmas.

Lemma (1.1)[1]: Let $y = v + iu$, be a complex number and $\alpha, \varphi \in \mathbb{R}$. Then $Re(y) \geq \varphi$ if and only if $|y - (p + \varphi)| \leq |y + (p - \varphi)|$, where $\varphi \geq 0$.

Lemma (1.2)[1]: Let $y = v + iu$, be a complex number and $\alpha, \varphi \in \mathbb{R}$. Then $Re(y) \geq \alpha|y - p| + \varphi$ if and only if $Re(y(1 + \alpha e^{i\theta}) - p\alpha e^{i\theta}) \geq \varphi$.

Lemma (1.3)[4]: If k and g are holomorphic in \mathbb{U} , with $k < g$, then

$$\int_0^{2\pi} |k(re^{i\theta})|^\omega d\theta \leq \int_0^{2\pi} |g(re^{i\theta})|^\omega d\theta,$$

where $\omega > 0, s = re^{i\theta}, (0 < r < 1)$.

The features listed below were examined for different classes in [2,6,9,13,15,16].

2. Coefficient Estimate

Theorem (2.1): The function $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, if and only if

$$\begin{aligned} \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n \\ \leq (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1), \end{aligned} \quad (2.1)$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p + 1$ and $p \in \mathbb{N}$.

The inequality is sharp for the extremal function

$$k(s) = s^p - \frac{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^n. \quad (2.2)$$

Proof: Since $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, when Lemma (1.2) is applied, inequality (1.12) equals

$$Re \left\{ \frac{\left(s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + \delta s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right) (1 + \alpha e^{i\theta})}{\left((1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right)} - p\alpha e^{i\theta} \right\} > \gamma$$

$(s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p + 1 \text{ and } -\pi \leq \theta \leq \pi).$

So that

$$Re \left\{ \frac{\left[s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + \delta s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right] (1 + \alpha e^{i\theta})}{\left((1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right)} - \frac{p\alpha e^{i\theta} \left[(1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right]}{\left((1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right)} \right\} \geq \gamma. \quad (2.3)$$

Let

$$N(s) = \left[s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + \delta s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right] (1 + \alpha e^{i\theta})$$

$$-p\alpha e^{i\theta} \left[(1-\tau)\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)' + (\delta - \tau)s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)'' \right]$$

and

$$N(s) = (1-\tau)\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)' + (\delta - \tau)s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)k(s) \right)''.$$

Using the Lemma (1.1) in (2.3), we have

$$|N(s) + (p - \gamma)M(s)| \geq |N(s) - (p + \gamma)M(s)|.$$

We have

$$|N(s) + (p - \gamma)M(s)|$$

$$\begin{aligned}
&= \left| -p\alpha e^{i\theta} \left(\begin{aligned} &\left(ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) nd_n s^n + (\delta p^2 - \delta p)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta n^2 - \delta n)d_n s^n \right) (1 + \alpha e^{i\theta}) \\ &- (1-\tau)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (1-\tau)d_n s^n + \tau ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \tau nd_n s^n + (\delta - \tau)(p^2 - p)s^p \\ &- \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta - \tau)(n^2 - n)d_n s^n \end{aligned} \right) \right| \\ &+ (p - \gamma) \left| \left(\begin{aligned} &(1-\tau)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (1-\tau)d_n s^n + \tau ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \tau nd_n s^n + (\delta - \tau)(p^2 - p)s^p \\ &- \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta - \tau)(n^2 - n)d_n s^n \end{aligned} \right) \right| \\ &= \left| \left(\begin{aligned} &ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) nd_n s^n + (\delta p^2 - \delta p)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta n^2 - \delta n)d_n s^n \end{aligned} \right) (1 + \alpha e^{i\theta}) \right. \\ &\quad \left. + (p - p\alpha e^{i\theta} - \gamma) \left(\begin{aligned} &(1-\tau)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (1-\tau)d_n s^n + \tau ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \tau nd_n s^n + (\delta - \tau)(p^2 - p)s^p \\ &- \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta - \tau)(n^2 - n)d_n s^n \end{aligned} \right) \right| \\ &= \left| \begin{aligned} &(\delta p^2 - \delta p + p)(1 + \alpha e^{i\theta})s^p + (p - \gamma - p\alpha e^{i\theta})(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)s^p \\ &- \sum_{n=p+1}^{\infty} (\delta n - \delta + 1)(n(1 + \alpha e^{i\theta})) \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n s^n \\ &- \sum_{n=p+1}^{\infty} (p - \gamma - p\alpha e^{i\theta})(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1) \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n s^n \end{aligned} \right| \\ &\geq ((\delta p^2 - \delta p + p)(1 + \alpha) + (p - \gamma - p\alpha)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1))|S|^p \\ &\quad - \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) + (p - \gamma - p\alpha)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n |S|^n. \end{aligned}$$

Equivalently, $|N(s) - (p + \gamma)M(s)|$

$$\begin{aligned}
 &= \left| \left(ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) nd_n s^n + (\delta p^2 - \delta p)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta n^2 - \delta n)d_n s^n \right) (1 + \alpha e^{i\theta}) \right. \\
 &\quad \left. - (p\alpha e^{i\theta} + p + \gamma) \right| \\
 &= \left| \left((1 - \tau)s^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (1 - \tau)d_n s^n + \tau ps^p - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \tau nd_n s^n + (\delta - \tau)(p^2 - p)s^p \right. \right. \\
 &\quad \left. \left. - \sum_{n=1+p}^{\infty} \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) (\delta - \tau)(n^2 - n)d_n s^n \right) \right| \\
 &\leq ((p + \gamma + p\alpha)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1) - (\delta p^2 - \delta p + p)(1 + \alpha))|s|^p \\
 &\quad + \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(\alpha + 1)) + (p - \gamma - p\alpha)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n |s|^n.
 \end{aligned}$$

Hence

$$\begin{aligned}
 |N(s) + (p - \gamma)M(s)| - |N(s) - (p + \gamma)M(s)| &\geq (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1) \\
 &\quad - \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n \geq 0.
 \end{aligned}$$

Therefore

$$\begin{aligned}
 &\sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n \\
 &\leq (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1).
 \end{aligned}$$

Conversely, by inequality (2.1), we need to show that

$$Re \left\{ \frac{\left[s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + \delta s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right] (1 + \alpha e^{i\theta})}{(1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)''} \right\} \geq 0. \quad (2.4)$$

$$- \frac{p\alpha e^{i\theta} \left[(1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)'' \right]}{(1 - \tau) \mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) + \tau s \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)' + (\delta - \tau) s^2 \left(\mathcal{D}_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) k(s) \right)''}$$

Let $0 \leq s = r < 1$, such that $Re(-e^{i\theta}) \geq -|e^{i\theta}| = -1$ and $r \rightarrow 1^-$, (2.4) is obtained from (2.1).

Corollary (2.1): Suppose the function $k(s)$ defined based on (1.2) be in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then

$$d_n \leq \frac{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}, \quad (2.5)$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p + 1$ and $p \in \mathbb{N}$.

3. Radii of Starlikeness, Convexity and Close-to-Convexity

Theorem (3.1): Let $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then $k(s)$ is starlike of order ρ ($0 \leq \rho < p$) in the disk $|s| < R_1$, wherever

$$R_1 = \inf_n \left[\frac{(p-\rho)[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(n-\rho)[(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]} \right]^{\frac{1}{n-p}},$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p+1$ and $p \in \mathbb{N}$.

The outcome is sharp for the function $k(s)$ specified based on (2.2).

Proof: It's sufficient to show that

$$\left| \frac{sk'(s)}{k(s)} - p \right| \leq p - \rho \quad (0 \leq \rho < p),$$

for $|s| < R_1$, we have

$$\left| \frac{sk'(s)}{k(s)} - p \right| \leq \frac{\sum_{n=1+p}^{\infty} (n-p)d_n |s|^{n-p}}{1 - \sum_{n=1+p}^{\infty} d_n |s|^{n-p}}.$$

Thus

$$\left| \frac{sk'(s)}{k(s)} - p \right| \leq p - \rho,$$

if

$$\sum_{n=1+p}^{\infty} \frac{(n-\rho)}{(p-\rho)} d_n |s|^{n-p} \leq 1. \quad (3.1)$$

Then by Theorem (2.1), equation (3.1) is equivalent to

$$\frac{(n-\rho)}{(p-\rho)} |s|^{n-p} \leq \frac{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}.$$

Hence,

$$|s| \leq \left[\frac{(p-\rho)[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(n-\rho)[(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]} \right]^{\frac{1}{n-p}}.$$

R_1 is obtained by letting $|s| = R_1$ and the proof completes.

Theorem (3.2): Let $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then $k(s)$ is convex of order ρ ($0 \leq \rho < p$) in the disk $|s| < R_2$, wherever

$$R_2 = \inf_n \left[\frac{p(p-\rho)[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{n(n-\rho)[(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]} \right]^{\frac{1}{n-p}},$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p+1$ and $p \in \mathbb{N}$.

The outcome is sharp for the function $k(s)$ specified based on (2.2).

Proof: It's sufficient to show that

$$\left| 1 + \frac{sk''(s)}{k'(s)} - p \right| \leq p - \rho \quad (0 \leq \rho < p),$$

for $|s| < R_2$, we have

$$\left| 1 + \frac{sk''(s)}{k'(s)} - p \right| \leq \frac{\sum_{n=1+p}^{\infty} n(n-p)d_n|s|^{n-p}}{p - \sum_{n=1+p}^{\infty} nd_n|s|^{n-p}}.$$

Thus

$$\left| 1 + \frac{sk''(s)}{k'(s)} - p \right| \leq p - \rho,$$

if

$$\sum_{n=1+p}^{\infty} \frac{n(n-\rho)}{p(p-\rho)} d_n |s|^{n-p} \leq 1. \quad (3.2)$$

Then by Theorem (2.1), equation (3.2) is equivalent to

$$\frac{n(n-\rho)}{p(p-\rho)} |s|^{n-p} \leq \frac{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}$$

Hence,

$$|s| \leq \left[\frac{p(p-\rho)[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{n(n-\rho)[(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]} \right]^{\frac{1}{n-p}}.$$

R_2 is obtained by letting $|s| = R_2$ and the proof completes.

Theorem (3.3): Let $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then $k(s)$ is close to convex of order ρ ($0 \leq \rho < p$) in the disk $|s| < R_3$, wherever

$$R_3 = \inf_n \left[\frac{(p-\rho)[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{n[(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]} \right]^{\frac{1}{n-p}},$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p+1$ and $p \in \mathbb{N}$.

The outcome is sharp for the function $k(s)$ specified based on (2.2).

Proof: It's sufficient to show that

$$\left| \frac{k'(s)}{s^{p-1}} - p \right| \leq p - \rho \quad (0 \leq \rho < p),$$

for $|s| < R_3$, we have

$$\left| \frac{k'(s)}{s^{p-1}} - p \right| \leq \sum_{n=p+1}^{\infty} n d_n |s|^{n-p}.$$

Thus

$$\left| \frac{k'(s)}{s^{p-1}} - p \right| \leq p - \rho,$$

if

$$\sum_{n=p+1}^{\infty} \frac{n d_n |s|^{n-p}}{p - \rho} \leq 1. \quad (3.3)$$

Then by Theorem (2.1), equation (3.3) is equivalent to

$$\frac{n}{p - \rho} |s|^{n-p} \leq \frac{[(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)}{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)},$$

Hence,

$$|s| \leq \left[\frac{(p - \rho)[(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)}{n[(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]} \right]^{\frac{1}{n-p}},$$

R_3 is obtained by letting $|s| = R_3$ and the proof completes.

4. Extreme Points

The extreme points of the class $\mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$ are discussed in the following theorem.

Theorem (4.1): Let $k_p(s) = s^p$ and

$$k_n(s) = s^p - \frac{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)} s^n,$$

where $s \in \mathbb{U}, \lambda, \alpha, \mu, \xi, \beta \geq 0, 0 \leq \gamma < p, 0 \leq \tau \leq 1, \tau \leq \delta, m \in \mathbb{N}_0, n \geq p + 1$ and $p \in \mathbb{N}$.

Then the function $k(s)$ belongs to the class $\mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$ if and only if it can be written as:

$$k(s) = \mathcal{L}_p s^p + \sum_{n=p+1}^{\infty} \mathcal{L}_n k_n(s), \quad (4.1)$$

such that

$$(\mathcal{L}_p \geq 0, \mathcal{L}_n \geq 0, n \geq p + 1 \text{ and } \mathcal{L}_p + \sum_{n=p+1}^{\infty} \mathcal{L}_n = 1).$$

Proof: Suppose that $k(s)$ that defined in (4.1). Then

$$k(s) = \mathcal{L}_p s^p + \sum_{n=p+1}^{\infty} \mathcal{L}_n$$

$$\begin{aligned}
 & \left(s^p - \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^n \right) \\
 &= s^p - \sum_{n=p+1}^{\infty} \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} \mathcal{L}_n s^n.
 \end{aligned}$$

Hence

$$\begin{aligned}
 & \sum_{n=p+1}^{\infty} \frac{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} \\
 & \quad \times \frac{[(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)]\mathcal{L}_n}{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} \\
 &= \sum_{n=p+1}^{\infty} \mathcal{L}_n = 1 - \mathcal{L}_p \leq 1.
 \end{aligned}$$

Thus $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$.

Conversely, suppose that $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, we may set

$$\mathcal{L}_n = \frac{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} d_n,$$

where d_n is defined in (2.5). Then

$$\begin{aligned}
 k(s) &= s^p - \sum_{n=p+1}^{\infty} d_n s^n \\
 &= s^p - \sum_{n=p+1}^{\infty} \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} \mathcal{L}_n s^n \\
 &= s^p - \sum_{n=1+p}^{\infty} (s^p - k_n(s)) \mathcal{L}_n = \left(1 - \sum_{n=1+p}^{\infty} \mathcal{L}_n \right) s^p + \sum_{n=1+p}^{\infty} \mathcal{L}_n k_n(s) = \mathcal{L}_p s^p + \sum_{n=1+p}^{\infty} \mathcal{L}_n k_n(s).
 \end{aligned}$$

This completes the proof of Theorem (4.1).

5. Arithmetic Mean and Weighted Mean

We shall elaborate that the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ is closed under arithmetic mean in the next theorem.

Theorem (5.2): Let $k_1(s), k_2(s), k_3(s), \dots, k_{\vartheta}(s)$ that defined by

$$k_{\ell}(s) = s^p - \sum_{n=p+1}^{\infty} d_{n,\ell} s^n \quad (d_{n,\ell} \geq 0, \ell = 1, 2, \dots, \vartheta, n \geq 1 + p), \quad (5.1)$$

are in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, then the arithmetic mean of $k_{\ell}(s)$ ($\ell = 1, 2, \dots, \vartheta$) which clarified based on

$$h(s) = \frac{1}{\vartheta} \sum_{\ell=1}^{\vartheta} k_{\ell}(s) \quad (5.2)$$

is also a member of the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$.

Proof: Based on (5.1 and 5.2), we are able to write

$$h(s) = \frac{1}{\vartheta} \sum_{\ell=1}^{\vartheta} \left(s^p - \sum_{n=1+p}^{\infty} d_{n,\ell} s^n \right) = s^p - \sum_{n=1+p}^{\infty} \left(\frac{1}{\vartheta} \sum_{\ell=1}^{\vartheta} d_{n,\ell} s^n \right).$$

Since $k_{\ell}(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. For each $(\ell = 1, 2, \dots, \vartheta)$, so based on Theorem (2.1), we get

$$\begin{aligned} & \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \left(\frac{1}{\vartheta} \sum_{\ell=1}^{\vartheta} d_{n,\ell} \right) \\ &= \frac{1}{\vartheta} \sum_{\ell=1}^{\vartheta} \left(\sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_{n,\ell} \right) \\ &\leq \frac{1}{\vartheta} \sum_{\ell=1}^{\vartheta} (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1) \\ &= (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1). \end{aligned}$$

This ends the proof.

Definition (5.1): Suppose that $k(s)$ and $g(s)$ belong to the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then, the Weighted Mean $E_t(s)$ of $k(s)$ and $g(s)$ is given by

$$E_t(s) = \frac{1}{2} [(1 - t)k(s) + (1 + t)g(s)], \quad (0 < t < 1).$$

Theorem (5.1): Let $k(s)$ and $g(s)$ be in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then the Weighted Mean of $k(s)$ and $g(s)$ is also belong to the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$.

Proof: By definition (5.1), we have

$$\begin{aligned} E_t(s) &= \frac{1}{2} [(1 - t)k(s) + (1 + t)g(s)] = \frac{1}{2} \left[(1 - t) \left(s^p - \sum_{n=1+p}^{\infty} d_n s^n \right) + (1 + t) \left(s^p - \sum_{n=1+p}^{\infty} b_n s^n \right) \right] \\ &= s^p - \sum_{n=p+1}^{\infty} \frac{1}{2} [(1 - t)d_n + (1 + t)b_n] s^n. \end{aligned}$$

Since $k(s)$ and $g(s)$ are in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, so by Theorem (2.1), we get

$$\sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n$$

$$\leq (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)$$

and

$$\sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) b_n$$

$$\leq (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1).$$

Hence,

$$\begin{aligned} & \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) \\ & \times \left[\frac{1}{2}(1-t)d_n + \frac{1}{2}(1+t)b_n \right] \\ & = \frac{1}{2}(1-t) \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) d_n \\ & + \frac{1}{2}(1+t) \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) b_n \\ & \leq \frac{1}{2}(1-t)[(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)] \\ & + \frac{1}{2}(1+t)[(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)] \\ & = (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1). \end{aligned}$$

This shows that $E_t(s) \in \mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$.

6. Integral operator

Theorem (6.1): Let $k(s)$ defined by (1.2) be in the class $\mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$, and let c be a real number such that $c > -p$. Then the function $F(s)$ defined by

$$F(s) = \frac{c+p}{s^c} \int_0^s t^{c-1} k(t) dt \quad (c > -p), \quad (6.1)$$

also belongs to the class $\mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$.

Proof: Form the representation of (6.1) of $F(s)$, it follows from that

$$F(s) = \frac{c+p}{s^c} \int_0^s t^{c-1} \left(t^p - \sum_{n=1+p}^{\infty} d_n t^n \right) dt = \frac{c+p}{s^c} \int_0^s \left(t^{p+c-1} - \sum_{n=1+p}^{\infty} d_n t^{n+c-1} \right) dt$$

$$= s^p - \sum_{n=1+p}^{\infty} \left(\frac{c+p}{c+n} \right) d_n s^n = s^p - \sum_{n=1+p}^{\infty} g_n s^n,$$

where $g_n = \left(\frac{c+p}{c+n} \right) d_n$.

Therefore, we have

$$\begin{aligned} & \sum_{n=1+p}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) g_n \\ &= \sum_{n=1+p}^{\infty} [(\delta n - \delta + 1)(n(\alpha + 1)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) \left(\frac{c+p}{c+n} \right) d_n \\ &\leq \sum_{n=1+p}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu) d_n \\ &\leq (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1), \end{aligned}$$

since $k(s) \in \mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$.

Hence by (2.1), $F(s) \in \mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$.

7. Integral Means Inequalities

Theorem (7.1): Let $\omega > 0$. If $k(s) \in \mathcal{RK}_{\lambda, \mu}^{m, p}(\alpha, \delta, \tau, \gamma)$ and suppose that $k_c(s)$ is defined by

$$k_c(s) = s^p - \frac{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)} s^c.$$

$$(c \geq p + 1; p \in \mathbb{N}),$$

If a holomorphic function $w(s)$ is created and defined based on

$$(w(s))^{c-p} = \frac{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)}{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} \sum_{n=p+1}^{\infty} d_n s^{n-p}.$$

Then, for $s = re^{i\theta}$ and $(0 < r < 1)$,

$$\int_0^{2\pi} |k(s)|^\omega d\theta \leq \int_0^{2\pi} |k_c(s)|^\omega d\theta, \quad (\omega > 0). \quad (7.1)$$

Proof: We show that

$$\int_0^{2\pi} \left| 1 - \sum_{n=p+1}^{\infty} d_n s^{n-p} \right|^\omega d\theta$$

$$\leq \int_0^{2\pi} \left| 1 - \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^{c-p} \right|^\omega d\theta.$$

By applying Lemma (1.3), it suffices to show that

$$1 - \sum_{n=p+1}^{\infty} d_n s^{n-p} < 1 - \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^{c-p}.$$

Set

$$\begin{aligned} 1 - \sum_{n=p+1}^{\infty} d_n s^{n-p} \\ = 1 - \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} (w(s))^{c-p}. \end{aligned}$$

We find that

$$(w(s))^{c-p} = \frac{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} \sum_{n=p+1}^{\infty} d_n s^{n-p},$$

which readily yield $w(0) = 0$.

Furthermore using (2.1), we obtain

$$\begin{aligned} |w(s)|^{c-p} &= \left| \frac{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} \sum_{n=p+1}^{\infty} d_n s^{n-p} \right| \\ &\leq |s| \left| \sum_{n=p+1}^{\infty} \frac{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} d_n \right| \leq |s| < 1. \end{aligned}$$

Next is the proof for the first derivative.

Theorem (7.2): Suppose that $\omega > 0$. If $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ and

$$\begin{aligned} k_c(s) &= s^p - \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2\tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^c, \\ &\quad (c \geq p+1; p \in \mathbb{N}). \end{aligned}$$

Then, for $s = re^{i\theta}$ and $(0 < r < 1)$,

$$\int_0^{2\pi} |k'(s)|^\omega d\theta \leq \int_0^{2\pi} |k'_c(s)|^\omega d\theta, \quad (\omega > 0). \quad (7.2)$$

Proof: It's sufficient to show that

$$1 - \sum_{n=p+1}^{\infty} \frac{n}{p} d_n s^{n-p}$$

$$< 1 - \frac{c((1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1))}{p[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^{c-p}.$$

This follows because

$$|w(s)|^{c-p} = \left| \frac{p[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{c((1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1))} \sum_{n=p+1}^{\infty} \frac{n}{p} d_n s^{n-p} \right|$$

$$\leq |s| \left| \sum_{n=p+1}^{\infty} \frac{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} d_n \right| \leq |s| < 1.$$

Theorem (7.3): Let $g(s) = s^p - \sum_{n=p+1}^{\infty} b_n s^n$, ($s \in \mathbb{U}; b_n \geq 0; n \geq p+1; p \in \mathbb{N}$)

and $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ for $c \in \mathbb{N}$,

$$\frac{Q_c}{b_c} = \min_{n=p+1} \frac{Q_n}{b_n},$$

where

$$Q_n = \frac{[(\delta n - \delta + 1)(n(1+\alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2 \tau - \delta n + 2n\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}.$$

Also, for $c \in \mathbb{N}$, the functions k_c and g_c be defined by

$$k_c(s) = s^p - \frac{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)} s^c,$$

and

$$g_c(s) = s^p - b_c s^c. \quad (7.3)$$

If there exists a holomorphic function

$$(w(s))^{c-p} = \frac{[(\delta c - \delta + 1)(c(1+\alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)]\Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}{(1+\alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)} b_c \sum_{n=p+1}^{\infty} d_n b_n s^{n-p}.$$

Then, for $\omega > 0$, $s = re^{i\theta}$ and $(0 < r < 1)$,

$$\int_0^{2\pi} |(k * g)(s)|^\omega d\theta \leq \int_0^{2\pi} |(k_c * g_c)(s)|^\omega d\theta, \quad (\omega > 0).$$

Proof: Since

$$(k * g)(s) = s^p - \sum_{n=p+1}^{\infty} d_n b_n s^n.$$

from (7.3), we have

$$(k_c * g_c)(s) = s^p - \frac{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1) b_c}{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)} s^c.$$

We need to prove the Theorem by taking $\omega > 0$, $s = re^{i\theta}$ and $(0 < r < 1)$ such that

$$\int_0^{2\pi} \left| 1 - \sum_{n=p+1}^{\infty} d_n b_n s^{n-p} \right|^{\omega} d\theta \leq \int_0^{2\pi} \left| 1 - \frac{((1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)) b_c}{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)} s^{c-p} \right|^{\omega} d\theta.$$

Lemma (1.3) may be used to demonstrate that

$$1 - \sum_{n=p+1}^{\infty} d_n b_n s^{n-p} \prec 1 - \frac{((1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)) b_c}{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)} s^{c-p}. \quad (7.4)$$

If (7.4), holds, then there exists a holomorphic function $w(s)$

$$1 - \sum_{n=p+1}^{\infty} d_n b_n s^{n-p} = 1 - \frac{((1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)) b_c}{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)} (w(s))^{c-p}.$$

We have

$$(w(s))^{c-p} = \frac{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)}{((1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)) b_c} \sum_{n=p+1}^{\infty} d_n b_n s^{n-p},$$

Then $w(0) = 0$.

From (2.1) we have

$$\begin{aligned} |w(s)|^{c-p} &= \left| \frac{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)}{((1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)) b_c} \sum_{n=p+1}^{\infty} d_n b_n s^{n-p} \right| \\ &\leq |s| \left| \frac{[(\delta c - \delta + 1)(c(1 + \alpha)) - (\alpha p + \gamma)(\delta c^2 - c^2 \tau - \delta c + 2c\tau - \tau + 1)] \Omega_{\lambda, \mu}^{m, p}(\xi, \beta, \eta, \nu)}{((1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)) b_c} \sum_{n=p+1}^{\infty} d_n b_n \right| \leq |s| < 1. \end{aligned}$$

8. Neighborhood Property

Now we define the $(n - \varepsilon)$ – neighborhoods for the function $k(s) \in \mathcal{M}_p$ by

$$N_{n,\varepsilon}(k) = \left\{ g \in \mathcal{M}_p : g(s) = s^p - \sum_{n=p+1}^{\infty} b_n s^n \text{ and } \sum_{n=p+1}^{\infty} n|d_n - b_n| \leq \varepsilon, 0 \leq \varepsilon < 1 \right\}. \quad (8.1)$$

For identity function $e(s) = s^p$, $(p \in \mathbb{N})$

$$N_{n,\varepsilon}(e) = \left\{ g \in \mathcal{M}_p : g(s) = s^p - \sum_{n=p+1}^{\infty} b_n s^n \text{ and } \sum_{n=p+1}^{\infty} n|b_n| \leq \varepsilon, 0 \leq \varepsilon < 1 \right\}. \quad (8.2)$$

The concept of neighborhoods was first introduced by Goodman [5] and the generalized by Ruscheweyh [10].

Definition (8.1): A function $k(s) \in \mathcal{M}_p$ is said to be in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, if there exist a function $g(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ such that

$$\left| \frac{k(s)}{g(s)} - 1 \right| < p - \sigma \quad (s \in \mathbb{U}, 0 \leq \sigma < 1).$$

Theorem (8.1): If $g(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ and

$$\sigma = p - \frac{\varepsilon \left([(1 + \delta p)(p + 1)(1 + \alpha) - (\alpha p + \gamma)(\delta p^2 - \tau(p + 1)^2 + \delta p + 2(p + 1)\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \right)}{(p + 1) \left[[(1 + \delta p)(p + 1)(1 + \alpha) - (\alpha p + \gamma)(\delta p^2 - \tau(p + 1)^2 + \delta p + 2(p + 1)\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) - (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1) \right]}.$$

Then $N_{n,\varepsilon}(g) \subset \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$.

Proof: Let $k(s) \in N_{n,\varepsilon}(g)$. Then we have from (8.1) that

$$\sum_{n=p+1}^{\infty} n|d_n - b_n| \leq \varepsilon,$$

this indicates the following coefficient inequality with ease.

$$\sum_{n=p+1}^{\infty} |d_n - b_n| \leq \frac{\varepsilon}{p + 1}.$$

Next, since $g(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$, we have from Theorem (2.1)

$$\sum_{n=p+1}^{\infty} b_n \leq \frac{(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)}{[(1 + \delta p)(p + 1)(1 + \alpha) - (\alpha p + \gamma)(\delta p^2 - \tau(p + 1)^2 + \delta p + 2(p + 1)\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu)}.$$

so that

$$\begin{aligned} \left| \frac{k(s)}{g(s)} - 1 \right| &\leq \frac{\sum_{n=1+p}^{\infty} |d_n - b_n|}{1 - \sum_{n=1+p}^{\infty} b_n} \\ &\leq \frac{\varepsilon \left([(\delta p + 1)(1 + p)(1 + \alpha) - (\alpha p + \gamma)(\delta p^2 - \tau(p + 1)^2 + \delta p + 2(p + 1)\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) \right)}{(p + 1) \left[[(1 + \delta p)(p + 1)(1 + \alpha) - (\alpha p + \gamma)(\delta p^2 - \tau(p + 1)^2 + \delta p + 2(p + 1)\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) - (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1) \right]} \\ &= p - \sigma. \end{aligned}$$

Then by Definition (8.1), $k(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ for each σ given by (8.3).

9. Convex Set

Theorem (9.1): The class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$ is convex set.

proof: Suppose that the functions (k and g) be in the class $\mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma)$. Then for every $0 \leq \Gamma \leq 1$ we must show that

$$(1 - \Gamma)k(s) + \Gamma g(s) \in \mathcal{RK}_{\lambda,\mu}^{m,p}(\alpha, \delta, \tau, \gamma). \quad (9.1)$$

We have

$$(1 - \Gamma)k(s) + \Gamma g(s) = s^p - \sum_{n=p+1}^{\infty} [(1 - \Gamma)d_n + \Gamma b_n]s^n.$$

So by Theorem (2.1), we get

$$\begin{aligned} & \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) [(1 - \Gamma)d_n + \Gamma b_n] \\ & (1 - \Gamma) \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) d_n \\ & + \Gamma \sum_{n=p+1}^{\infty} [(\delta n - \delta + 1)(n(1 + \alpha)) - (\alpha p + \gamma)(\delta n^2 - n^2\tau - \delta n + 2n\tau - \tau + 1)] \Omega_{\lambda,\mu}^{m,p}(\xi, \beta, \eta, \nu) b_n \\ & \leq (1 - \Gamma)[(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)] \\ & + \Gamma[(1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1)] \\ & = (1 + \alpha)(\delta p^2 - \delta p + p) - (\alpha p + \gamma)(\delta p^2 - \tau p^2 - \delta p + 2\tau p - \tau + 1). \end{aligned}$$

References

- [1] E. S. Aqlan, Some problems connected with geometric Function Theory, Ph. D. Thesis (2004), Pune University, Pune.
- [2] W. G. Atshan and N. A. Jiben, On a new class of meromorphic multivalent functions defined by fractional differ – integral operator, *Journal of kufa for mathematics and computer*, 5(2018), 12-20.
- [3] R. Bharati, R. Parvatham and A. Swaminathan, On subclass of uniformly convex functions and corresponding class of starlike functions, *Tamkang J. Math.*, 28(1)(1997), 17-32.
- [4] P. L. Duren, *Univalent Functions*, In: *Grundlehren der Mathematischen Wissenschaften*, Band 259, Springer-Verlag, New York, Berlin, Hidelberg and Tokyo, (1983).
- [5] W. Goodman, Univalent functions and analytic curves, *Proc. Amer. Math. Soc.*, 8(3)(1957), 598-601.
- [6] I. A. Hasoon and N. A. J. Al-Ziadi, New class of multivalent functions defined by generalized (p,q)-Bernard integral operator, *Earthline Journal of Mathematical Sciences*, 14(5)(2024), 1091-1118.
- [7] S. M. Khaimar and M. More, On a subclass of multivalent β -uniformly starlike and convex functions defined by linear operator, *LAENG Internat. J. Appl. Math.* 39(3)(2009), Article ID IJAM_39_06.
- [8] S. Owa, On certain classes of p-valent functions with negative coefficients, *Simon Stevin.*, 59(4) (1985), 385-402.
- [9] A. M. Ramadhan and N. A. J. Al-Ziadi, New class of multivalent functions with negative coefficients, *Earthline Journal of Mathematical Sciences*, 10(2)(2022), 271-288.
- [10] S. Ruscheweyh, Neighborhoods of univalent functions, *Proc. Amer. Math. Soc.*, 81(4)(1981), 521-527.
- [11] B. Sambo and A. O. Lasode, Differential Subordination and Superordination for a Family of Analytic Functions Defined by a New Multiplier Differential Operator, *Ann. Math. Comput. Sci.*, 17(2023), 40-49.
- [12] H. Silverman, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, 51 (1975), 109-116.

- [13] A. K. Wanas and H. K. Radhi, A certain subclass of multivalent functions associated with Borel distribution series, *Earthline Journal of Mathematical Sciences*, 10(2)(2022), 341-353.
- [14] J. Yamini, Certain subclasses of convex and starlike functions with negative coefficients. *International Journal of Science and Research*, 11(7) (2022), 1188-1191.
- [15] A. A. Yusuf and A. O. Abdulkareem, Defining novel integral operator on the class of multivalent functions, *Int. J. Open Problems Compt. Math.*, 18(1)(2025), 35-55.
- [16] A. A. Husien and Q. A. Shakir, "On a Certain Subclass for Multivalent Analytic Functions with a Fixed Point Involving Linear Operator." *Earthline Journal of Mathematical Sciences* 2.2 (2019): 515-526.