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1. Introduction

Let A, be denote the class of all functions of the form
K)=sP+ ) dysh  GEN={12,.}), (L.1)
n=p+1
which are holomorphic and multivalent in the open unit disk U = {s : s € Cand |s| < 1}.

Let M, be denote the subclass of A, consisting of functions of the form

k(s) =sP — Z d,s", (d, =0,p EN). (1.2)

n=p+1
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For the function k(s) € M, given by (1.2) and the function g(s) € M, defined by

[oe]

g(s) =sP — Z b,s", (b, =0,pEN) (1.3)

n=p+1

we defined Hadamard product (or the convolution) of k(s) and g(s) by

[oe]

(kx)©) =sP = ) dubys™ = (g + 1)) (14)

n=p+1

A function k(s) € A, is told to be p-valently starlike of order p if it fulfills the inequality

re[SK©Y (sEV;0<p<p;p€eN) 15
e k(s) ,0; S ) — p p' p . ( ) )

We represent the class of all p-valently starlike functions of order p by S;; (p, p).

Also, the function k(s) € A, is told to be p-valently convex of order p if it fulfills the inequality

sk"(s)
Re 1+k’—(s) >p, (seEU;0<p<p;p€EN). (1.6)

We represent the class of all p-valently convex functions of order p by C,(p, p). The class S;;(p, p) and C,,(p, p) are
studied by Owa [8].

A function k(s) € A, is told to be p-valently close-to-convex of order p if it fulfills the inequality

k'(s)
Re = >p (seU;0<p<p;peN). 1.7)

Recently, Sambo and Lasode [11] present novel multiplier differential operator as follows:

Definition (1.1)[11]: Letp e N;me N, ={0,1,2,..}; ¢, 8, u,A1=0;0sn <A;0<v<land &+ B >0, then for
k € A, We defined the multiplier differential operator D;Zp ¢, B,n,v): A, > A, by

Dyn & B, v)k(s) = k(s) (1.8)

€+ B)Di'ﬁ(f, Bnvk(s) =+ +n—Qv—1D@A+wlk(s) — (p —DAns?
1
+E [((217 - DA+ - n)k(s)’ + Anszk(s)"] (1.9)

therefore

DP (£, 6,1, 0)k(s) = Dy (€, 8,0, 0) (Df (6, B vIk(s)),  m €N, (1.10)

and in general we have that

> lE+|@r-DA+w+nmri-1D(2-1 ﬂm
ST ORI o G LA Al R

n=p+1

d,s" (1.11)
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or for brevity we have
Dy &, B v)k(s) = sP + Z 00L& B, v)dys™,
n=p+1

where

§+[@v—D0+w+n0a-1 (2=1)+p] "
$+B '

Q;’,;LP (fl BI 77' v) =

Now, by using multiplier differential operator Dzlf (¢,8,n,v), we define the following:

Definition (1.2): A function of the form (1.2) is said to be in the class RX; " (, 6,7, y); if the following condition is

met:
; s (D" (&, B.m vIK(s)) + 852 (DP (€, B, Ik(s))
e 7 "
(L= DD €80, KS) + 75 (DL 6.1, vK(S)) + (6 = D52 (D (,8m, vK(S))
> s (D17 €, B, () + 652 (DI €, B,m vIK(S))
a

7 T—p|+y, (112)
(U= DD B, 0)(s) + 75 (D (6, B, 0D(s)) + (6 = D)5 (D], B, vk ()

where s € U4, o, 1, &, =20,0<y<p0<7t<1l,t<fmeNy,n=p+1landp€N.
Remark (1.1): When m = 0, the following distinct subclasses have been examined by different authors.

1) Forp =1, the subclass R?Cf;p(a, 8,7,y) shortens to the subclass TS(A, u, a, k,j) introduced and studied by
Yamini [14].

2) Foré = 1landt = 1, the subclass R?C;L’p (a, 8, 1,v) shortens to the subclass UCV (p, a, B) introduced and studied
by Khairmar and More [7].

3) Forp=1,6 =1and7 =1, the subclass R?C;Zp(a, 6,7,7) shortens to the subclass UCT(a, B) introduced and
studied by Bharati et al. [3].

4) Fora=0, t=1andd =1, the subclass R?C;";p(a, 8,7,v) shortens to the subclass C,,(p, @) introduced and
studied by Owa [8].

5) Forp=1,7=1,6 = 1anda =0, the subclass R?C/{"Zp (a, 8,7,7) shortens to the subclass C(a) introduced and
studied by Silverman [12].

6) Fort = 0andd = 0, the subclass R?C;Z;p(a, 8,7,y) shortens to the subclass UST (a, B, p) introduced and studied
by Khairmar and More [7].

7) Forp =1,6 = 0and7 =0, the subclass R?C/{Z’p(a, 8,7,y) shortens to the subclassS,T(a, B) introduced and
studied by Bharati et al. [3].

8) Fora=0,6 =0and7 =0, the subclass R?C/{Z’p(a, 8,7,v) shortens to the subclass S*(p, @) introduced and
studied by Owa [8].

9) Forp=1,7=0,6 =0anda = 0, the subclass R?C/{_';p (a, 8,7,7) shortens to the subclass 7*(a) introduced and
studied by Silverman [12].

In order to arrive to our primary conclusions, we must remember the following lemmas.
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Lemma (1.1)[1]: Lety = v + iu, be a complex number and @, ¢ € R. Then Re(y) = ¢ if and only if [y — (p + ¢)| <
ly + (p — @)|, where ¢ > 0.

Lemma (1.2)[1]: Lety = v + iu, be a complex number and «, ¢ € R. Then Re(y) = a|y — p| + ¢ if and only if
Re(y(1+ ae®®) — pae®®) = ¢.

Lemma (1.3)[4]: If k and g are holomorphic in U, with k < g, then

2m 2m
[ leGe)|"a0 < [ 1g(re)"as,
0 0

where w > 0,s =rel? , (0 <r < 1).
The features listed below were examined for different classes in [2,6,9,13,15,16].
2. Coefficient Estimate

Theorem (2.1): The function k(s) € quf‘l;p (a, 8,71,7), if and only if

Z [(6n— 6 + D(n(1 + @) — (ap +Y)(6n® — n’t — Sn+2nt — T+ 1)].(2:{:;”(5, B,n,v)d,

n=p+1
<A+a)p>—6p+p)—(ap+y)(6p?—tp?—6p+2tp— T+ 1), 2.1
where s € U,4,a,11,,=20,0<y<p,0<7t<1,,t<fmeNy,n=p+1landp €N.

The inequality is sharp for the extremal function

1+ a)(6p*> —6p+p) — (ap +y)(6p? —tp* —p+21tp— 7+ 1) " 2.2)

B [(6n— 6 + D(n(1 + @) — (ap + ¥)(6n? —n27 — dn+ 2nt — T + 1)].(2;2”(5,&77, V) o

k(s) = sP
Proof: Since k(s) € R?C/{Z’p(a, 8,7,7), when Lemma (1.2) is applied, inequality (1.12) equals

(s (Dﬂp(f, B.n, v)k(s))’ + &s? (Dﬂp(f,ﬂ,n, v)k(s))”) (1+ ae'?)

Re 7
(1= DD} €80, 0K + 75 (DL B.0, K ) + (0 = )52 (D (6,81, vK(S))

" _paeie > Y

seUdauéB=00<y<pl0<t<l,t<§meNyn=p+land —w <0 <mn).

So that

[s (D", B.m, )k () + 652 (DF (&, B wIk(s)) | (1 + ae?®)
(1 = DD E B n,wk(s) + 75 (DT E B k() + (5 = )52 (D76 Bum, wIk(s))
pac’® [(1 — D} (&, B,n, vIk(s) + s (DJF (&, 8,1, 0)k(s)) + (6 — s (DI (&, B,m, vIK()) |
(1~ D€, B m, k() + 75 (D7 (6 B k(s)) + (6 =052 (DI fm k()

Re r=>v.(2.3)

Let

N(s) = [s (Dﬂp(g‘,[)’,n, v)k(s)), + §s2 (Dﬁp(f, B, v)k(s))”] (1 + ae'?)
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—pae®® [(1 — D)D", B,n, v)k(s) + 75 (DIP &, B, )k()) + (6 — D)s? (DI (€, B k() |
and
N(s) = (1= DD (€, B,m,v)k(s) + s (DJF B0, k() + (6 — Ds? (DI (&, B, IK(S) )
Using the Lemma (1.1) in (2.3), we have
IN(Gs) + (p —yIM(s)| = IN(s) — (p + YIM(s)I.
We have
INCs) + (p —IM(5)]

(psp— Z 050 (& B, 1, v) ndys™ + (8p* — 8p)s? — Z 0P (6, B,m,v) (6% — 6n)dys >(1+aei9)
n=1+p

n=1+p

/(1—1)5”— Z Qmp(fﬁn,v) (1—=1)d,s™ + tps? — Z Qm”(fﬁn,v) md,s" + (6 — 1) (p? —p)s”\
n=1+p n=1+p |
—pae'® | |
= \ = ) APPE AN ) (0 - D~ n)dys" / :
n=1+p
/(1—1)57"— Z .(2/1 P (&, 8,m,v) (1 —1)d,s™ + psP — Z .(2/1 P (&, 8,1, v)tnd,,s™ + (6 — ) (p? —p)s”\
n=1+p n=1+p |
+( - y)| o |
\ = ) APPEAN VG - DO — n)dys” /
n=1+p

psP — Z .(2 (fﬁr),v)nd s™ + (6p? — 6p)sP — Z .Qmp(fﬁn,v) (6n? — 6n)d,s™ | (1 + ae?)
n=1+p n=1+p
+

(p — pae'® — V)

(1 —1)sP — Z .Q (fﬁr),v)(l—r)d s™ + tpsP — Z .Qmp(fﬁn,v)rnd s+ (6 —1)(p? —p)sP

| n=1+p n=1+p
| o

= DL AIIE ) (D@ —)dys"

n=1+p

N

(6p? — 6p +p)(1 + ae®)s? + (p — y — pae®)(6p? — tp? — 8p + 21p — T + 1)sP

- Z (bn—6+1) (n(l + aeie)) Q;flﬁ’tp(f,ﬁ,n, v) d,s"

n=p+1

- Z (p—y —paei®)(6n® —n T—6n+2n‘r—‘r+1)!2 (fﬁn,v)ds

n=p+1

> ((6p*—ép+p)AL+a)+(—y—ap)(6p? —tp* —Sp+2tp — 7+ 1)ISIP

Z [(6n §+D(n(l+a)+(@-y—pa)(én®>—n T—6n+2nr—r+1)].(2 P(E, B, v)d,|s|™

n=p+1
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Equivalently, [N(s) — (p + y)M(s)|

psP — Z .Q (fﬁn,v)nd s™ + (6p? — &p)sP — Z .(2 (f[)’n,v) (6n? — sn)d,s™ | (1 + ae')

n=1+p n=1+p

—(pae®® +p + y)

B /(1—7)57’— Z !2 (fﬁn,v)(l—'r)d s™ + 1psP — Z !2 (fﬁn,v)rnd s+ (6 — 1)(p? —p)sp\

n=1+p n=1+p |

I

\ = ) PPE RN Y) (B - D — n)ds” /
n=1+p

< ((p +y+pa)(Sp? —1p? —Sp+2tp—1+1)—(6p?—Sp+p)A + a))lslp

+ Z [n—6+D(n(@+ 1)+ -y —pa)(6n?—n?t—n+2nt—7+ 1)][2"””(5 B,n,v)d,|s|™
n=p+1
Hence

IN(Gs) + (= YI)M ()| = IN(s) = (v + PIM($)| = (1 + @) (6p* — Sp +p) — (ap +y)(Sp* —p* —Sp +2tp — T+ 1)
- i [(6n — 6 + D(n(1 + @) — (ap + ) (6n? —n*t = 6n + 2nt — 7+ D[0P (&, B,n,v)d,, = 0.
nSpt1
Therefore
Z [6n— 6+ D(n(1 + ) — (@p +Y)(6n? —n?t — n + 2n7 — 7 + D] (&, B, v)d,
nSpi1
<A+ a)(6p?—dp+p)— (ap +y)(6p? —tp*> —p+21p — T+ 1).

Conversely, by inequality (2.1), we need to show that

( [s (D" €, B.m, )k () + 652 (DF (&, B wIk(s)) | (1 + ae?®)
(1 = DD E Bn,w(s) + 75 (DT E B k() + (5 - )52 (D76 Bm, wdk(s)) - oon

paet® [(1 = DDPPE B K + 75 (DIF 6,80 DKE) + 6 =5 (DF G A k@) ||

| - 0DPE RS + 15 (DIPE A ) + 6= 0s? (DIFE B k()

Re

Let 0 < s =71 < 1,such thatRe(—e?) > —|e!’| = =1 and r - 17, (2.4) is obtained from (2.1).
Corollary (2.1): Suppose the function k(s) defined based on (1.2) be in the class R?C/{Zp (a,68,7,7). Then

i < (1 4+ a)(6p? — 6p +p) — (ap + y)(6p* — p* = Sp + 2tp — T+ 1)
"T[n-6+1D(nA+a) - (ap +y)(Sn?—n?t—Sn+2nt—1+ 1)]!2;2’”(5, B.n,v)

(2.5)

where s e U4, a, 1, §,=20,0<y<p0<7t<1l,t<dmeNy,n=p+landp €eN.

3. Radii of Starlikeness, Convexity and Close-to-Convexity
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Theorem (3.1): Letk(s) € RX; "(a,8,7,¥). Thenk(s)is starlike of orderp (0 <p <p)in the diskls| <R,

wherever

(p—p)[6n—-6+1D(n(1 +a)) — (ap +Y)(6n® —n’t —n+2nt — 7+ 1)].(2:12‘]”(5,,8, n,v) ﬁ
(n—p)[(1+ a)(6p* —p+p) — (ap +y)(6p? —p* —p + 2tp — T+ 1)]

)

R, =inf
n

where s €€ U,4,a,1,§, 20,0y <p,0<7t<,,t<ImeNy n=p+1landp €N.
The outcome is sharp for the function k(s) specified based on (2.2).

Proof: It's sufficient to show that

k!
%—p|3p—p O0<p<p)

for |s| < R,, we have

|sk’(5) |<Z,‘;°=1+p(n—p)dn|s|""’

k) P| T T X, dalsr
Thus
sk'(s)
M pl<p—
k(s) p‘_p P
if
Z Mdnmn—p <1. (3.1)
e (p=p)
=1+p

Then by Theorem (2.1), equation (3.1) is equivalent to

(n—p) 5[ [(6n -6 + D(n(1 + @) — (ap + Y)(6n? — n®t — 6n+2nt — T+ 1)].(2;"1:’(5, B,1,v)
G- = 1+ a)(6p® —p+p) — (ap +y)(6p* —tp* —ép+2tp—T+ 1)

Hence,

Is| < (p-p)[6n—-6+1)(n(1+a)) — (ap +Y)(6n® — n®t— 6n+2nt — T+ 1)].(2;2”(5, B,1,v) =
o= (n— P+ a)(6p? — 5p + p) — (ap + V) (8p? — p? — Sp + 21p — T + )] '

R, is obtained by letting |s| = R, and the proof completes.

Theorem (3.2): Letk(s) € R?C/{:;p(a, 8,7,7). Thenk(s)is convex of orderp (0 <p <p)in the disk|s| <R,,

wherever

[ = p)lEn -6+ D(n(1 + @) — (ap +y)(En? —nPt - n+ 207 — T+ D]O] (£, 6,1, v) =
= n(n —p)[(A + a)(6p* — 6p +p) — (ap +y)(6p? —p? — 6p + 21p — T+ 1)] '

where s e U,A,a,1,§,=20,0<y<p0<7t<1L,t<fmeNjy ,n=p+1landp €N
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The outcome is sharp for the function k(s) specified based on (2.2).

Proof: It's sufficient to show that

sk”(s)
K'(s)

|1+ p|Sp—p O<p <p)

for |s| < R,, we have

" oo _ n-p
|1+Sk (S)_ |<Zn=1+pn(n p)dnlsl

K P~ Tiirp I
Thus
sk”(s)
1 —-pl<p-
| g p‘_p P,
if
n(n —
Z Mdnmn—p <1. (3.2)
S po—p)
=1+p

Then by Theorem (2.1), equation (3.2) is equivalent to

nn—p) 5[ [(6n— 6+ 1D(n(1 + @) — (ap + ¥)(6n? —n’t — 6n+ 2nt — T+ 1)].(22;”(5,&71, V)
(0 —p) 1+ a)(6p*—8p+p) —(ap +y)(6p* —p* —dp+2tp—7+ 1)

Hence,

Is| < p(p —p)[Bn—6+1)(n(1 +a)) — (ap + y)(6n® —n’t —n+2nt—7 + 1)].(2;7;?(5,,8,77, V) ”Tlp
o= n(n—p)I( + @) (Ep? — 8p +p) — (ap + y) (Op? — tp? — op + 2tp — T + 1] '

R, is obtained by letting |s| = R, and the proof completes.

Theorem (3.3): Letk(s) € R?Cf;p(a, 8,7,7). Then k(s) is close to convex of order p (0 < p < p)in the disk |s| <

R;, wherever

_[e=-p[6n-5+D(n( +®) - (ap +y)(En? = n? - 6n + 2n7 — 7+ D]} ¢, B,7,v) =
fa=m n[(1+ a)(6p? = 8p +p) — (ap +y)(6p® —1p? — 6p + 21p — T+ 1)] '

where s e U,4,a,1,§,=20,0<y<p,0<7t<1,,t<fmeN,n=p+1landp €N.
The outcome is sharp for the function k(s) specified based on (2.2).

Proof: It's sufficient to show that

k'(s)
o= —P‘ sp-p 0=<sp<p),

for |s| < R3;, we have
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k'(s)
1 P < Z nd,|s[*7P.
n=p+1
Thus
k'(s)
1 PSP,
if
nd,|s|"7P
% <1 (3.3)
n=p+1 p=p
Then by Theorem (2.1), equation (3.3) is equivalent to
N [(6n— 6 + D)(n(1 + @) — (ap +Y)(6n? —n*t — 6n+ 2nt — 7 + DT (€, B,n,v)
P < ,
p-p = 1+ a)(6p*—bp+p) — (ap +y)(6p* —p* —Sp+2tp—7+ 1) ’
Hence,
1
5| (p—p)[(6n—6+1D)(n(1 +a)) — (ap +Y)(6n® — n’t — én+2nt — T+ 1)].(2%”(5, B,n,v)|+?
s| < ,

n[(1+ a)(6p® — 6p + p) — (ap +y)(6p? —p* — 6p + 2tp — T + 1)] '
R, is obtained by letting |s| = R; and the proof completes.
4. Extreme Points
The extreme points of the class R?C;L’p (a, 8,7,7) are discussed in the following theorem.
Theorem (4.1): Let k,,(s) = s? and

A+ a)(6p?>—6p+p) —(ap+y)(p? —tp?> —Sp+2tp— 1+ 1) "

n(s) = s = [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? — n?t — Sn+ 2nt — T+ 1)].(2;"1:’(5, B,1,v) S

where s e U,A,a,1,§,=20,0<y<p0<7t<1l,t<dmeNy,n=p+landp€eN.
Then the function k(s) belongs to the class R?C;"Zp (a, 8,7, y) if and only if it can be written as:

k(s) = L,sP + Z L,k (s), 4.1)

n=p+1
such that

(£,20,£,>20n=>p+1and L, + X% 41 L, = 1).
Proof: Suppose that k(s) that defined in (4.1). Then

k(s) = L,s? + Z L,

n=p+1
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- 1+ a)(6p® = p+p) — (ap +y)(6p* —tp* = Sp+2tp—1+1) -
[(5n o+ 1)(n(1 + a)) —(ap+y)(6n? —n?t—én+2nt—71+ 1)] (f B.m, 17)
i A+ a)(6p?—8p+p)—(ap +y)(p? —1p? —6p+2tp— T+ 1)
WS [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? — n2t — Sn+ 2nt — T+ 1)]!2 P(& 8,1, v)
Hence

[(6n = 6 + D(n(1 + @) = (ap +y)(n? = n?T = 6n + 2nt — 7+ D]Q]'P (€, B,7,)
1+a)(6p?—6p+p)—(ap+y)(6p? —?—S6p+2tp—7+1)

n=p+1

y [(1+a)(6p? — 6p +p) — (ap + V) (6p* —p* = Sp + 2tp — T + DL,
[(6n -6 + D(n(1 + @) — (ap +¥)(6n? — n2t — 6n+ 2nt — T+ 1)][2"””(5 B,1,v)

Thus k(s) € R?Cﬂp(af, 8,1,7).
Conversely, suppose that k(s) € RX;, " (a,8,1,y), we may set

[(6n— 6 + D(n(1 + @) — (ap + ¥)(6n? —n’t — dn+2nt — T + 1)].(2"”’(5 8,1, v)
n= 1+a)(6p?2—6p+p)—(ap+y)(p?—tp2 —6p+2tp—1+1) "

where d,, is defined in (2.5). Then

[oe]

k(s) = sP — Z d,s™

n=p+1

i A1+a)0p?—6p+p)—(ap+y)(p?> —1p? —Sp+2tp—T+ 1)
& [(6n— 6 + D(n(1 + @) — (ap + y)(6n? — n? T—6n+2nr—r+1)].(2mp(§,8n,v)

=sP — z (s? —kp(s))L,=|1- Z L, |sP+ Z Lok, (s) = L,s? + Z Lk, (s).
n=1+p n=1+p n=1+p n=1+p

This completes the proof of Theorem (4.1).
5. Arithmetic Mean and Weighted Mean
We shall elaborate that the class R?C/{Zf (a, 8,7,7) is closed under arithmetic mean in the next theorem.

Theorem (5.2): Let k, (s), k, (s), k3(s), ..., ky(s) that defined by

ky(s) = sP — Z dpps®  (dny 20,£=12,.,0,n>1+p), (5.1)

n=p+1

are in the class R?C;Zp (a,8,1,7), then the arithmetic mean of k,(s) (£ = 1,2, ...,9) which clarified based on
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9
1
h(s) =5 ) k() (5.2)
£=1

is also a member of the class R.‘Ki’;p (a,6,7,7).

Proof: Based on (5.1 and 5.2), we are able to write

9 0 [ 9
1 1
033 (- 3 )= 3 (330
£=1 n=1+p n=1+p £=1

Since k,(s) € R?C/{_'L'p(a, 8,7,y).Foreach (£ = 1,2, ...,9), so based on Theorem (2.1), we get

) 9
Z [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? — n?t — Sn + 2nt — T + 1)] !Zﬁp(f, £,1,v) %Z dne
=

n=p+1

9 o
= %Z Z [(6n— 6+ D(n(1 + ) — (ap +Y)(6n® —n?tr—dn+2nt — T+ 1)][2;”"’(5, B,1,v)dn

M
¢=1 \n=p+1
" 9
< 52(1 +a)(6p?—6p+p)—(ap+y)(6p? —tp?—6p+2tp—7T+1)
=1
=1+ a)6p?—6p+p)—(ap +y)(6p? —tp? —6p+ 21p — T+ 1).
This ends the proof.

Definition (5.1): Suppose that k(s) and g(s) belong to the class R?C/{Z;p(a, 8,7,7). Then, the Weighted Mean E,(s)
of k(s) and g(s) is given by

E.(s) = % [A-ks)+A+g(s)], ((O<t<).

Theorem (5.1): Let k(s) and g(s) be in the class R?C;L‘p (a,6,7,7). Then the Weighted Mean of k(s) and g(s) is also
belong to the class RJCZZ” (a,6,1,7).

Proof: By definition (5.1), we have

E.(s) = %[(1 — Ok(s) + (1 + g (s)] =% 1—0)f s? - n;p ds" |+ @ +0)|s? - n;p b,s"

[oe]

=P — z %[(1 —0)d, + (1 + )b, ]s™.

n=p+1

Since k(s) and g(s) are in the class R?Cﬁ’p (a,8,1,7), so by Theorem (2.1), we get

z [(6n -5+ 1D)(n(1+a) - (ap+y)(6n®? —n?t—n+2nt— 1+ 1)]!22;”(6, B,nv)d,

n=p+1
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<A+a)p?—6p+p)—(ap+y)(6p:—tp?—6p+2tp—T+ 1)

and

z [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? — n?t — Sn+2nt — T+ 1)]!223’}’(5, £,1,v) b,

n=p+1
<A+a)(6p? —6p+p)— (ap +y)(6p? —tp? —b6p+ 21p — T + 1).

Hence,

Z [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? — n?t — Sn + 2nt — T + 1)] !Zﬁp(f, £,1,v)

n=p+1

x [3 (1= 0)d, +=(1 + t)bn]
2 2

= %(1 —t) Z [(6n— 6 + D(n(1 + @) — (ap + ¥)(6n? —n’t — dn+ 2nt — 7+ 1)] Qﬁp(g‘,ﬁ,n, v)d,

n=p+1

1 N 2 2 m,p
+§(1 +1t) Z [(611 -6+ 1)(n(1 + a)) —(ap+y)(6n*—n?*t—6n+2nt—1+ 1)][2/1# (&,B8,n,v)b,

n=p+1

<=1 -1+ a)(p®—6p+p) — (ap +y)(6p® —p* = Sp + 21p — T + 1)]

N| =

+%(1 + [ + a)(6p? — 6p +p) — (ap + y)(6p? —p? — 6p + 21p — T+ 1)]

=1+ a)p?>—6p+p)—(ap +y)(6p? —1p? —Sp+2tp — 7+ 1).

This shows that E,(s) € RJC){TZP (a,6,1,7).

6. Integral operator

Theorem (6.1): Let k(s) defined by (1.2) be in the class R?Cf;p(a, 8,7,7),and let c be a real number such that
¢ > —p. Then the function F(s) defined by

o) =P [k > -p), ©.1)
0

also belongs to the class R?C;"Zp (a,6,1,7).

Proof: Form the representation of (6.1) of F(s), it follows from that

[ee] N

s [ee]
ct z : c+
F(s) = Scpftc‘l tP — d,t" |dt = scpf gpte-1 _ E d, t"+e1 | de
0

n=1+p 0 n=1+p
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= sP — (C+p)d st =sP — 9nS ;
z c+n Z n
=1+p

n=1+p

where g, = (H—p) d,.

ctn

Therefore, we have

z [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? — n?t — Sn + 2nt — T + 1)] !Zmp(f B,1,)gn

n=1+p

2)d,

= Z [(6n — 6 + D(n(a + 1)) — (ap +¥)(6n? —n’t — dn+2nt — T+ 1)].(2"”’(5 £,1,v) (

n=1+p

< Z [(6n— 6 + D(n(1 + @) — (ap +¥)(6n? —n’t — dn+2nt — T+ 1)].(2"”’(5 B,n,v)d,

n=1+p
<A+ a)(6p*—dp+p)—(ap +y)(p? —tp* —p+2tp — 7+ 1),
since k(s) € R?Cm”(a 8,7,7).

Hence by (2.1), F(s) € Rijp(a 6,7,7).

7. Integral Means Inequalities

Theorem (7.1): Let w > 0.Ifk(s) € Rﬂ(ﬁp (a, 8,7,7) and suppose that k. (s) is defined by

1+a)(6p?—6p+p)—(ap+y)(6p? —tp? —Sp+2tp—T+ 1)
[(6c =6+ 1)(c(1+a) — (ap +y)(8c? — 21— Sc+ 2ct—T + 1)].(2"”’(5 B, v)

C

k.(s) =sP —

(c=zp+1;p€eN),

If a holomorphic function w(s) is created and defined based on

(W) " =

[(60 6+1)(c(1+a)) (ap +y)(6c? —¢ T—6€+2€T—T+1)].(2 P&, B,n,v) = nep
1+ a)(6p? — 6p +p) — (ap +y) (6p? — p? —8p+2‘rp—r+1) Z dns" 7P

n=p+1

Then, fors = re® and (0 < r < 1),

27 2T
f Ik(s)|“ df < f k.()l°do, (0> 0). 7.1)
0 0

Proof: We show that

f1—2dsnv o

n=p+1
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2m
S-l-
0

By applying Lemma (1.3), it suffices to show that

w

A+a)(6p?—6p+p)—(ap +y)(6p? —1p? —6p+2tp— T+ 1) P

1= [(c—6+1D)(c(1+a) — (ap +y)(Bc? — 2t — Sc+ 2ct— T+ 1)].(2:{:}’(5,[)’, n,v) s

(o0}

2 _ — 2 2 _
1- z d,s" P <1-— (1+a)(8p*—bp+p)—(ap +y)(6p® —1p* —bp+2tp—1+1)

[(c—6+1D(c(1+a)— (ap +y)(Bc? — 2t — Sc+ 2ct— T+ 1)].(23‘}”(5, £,1,v) s

n=p+1

Set

1= g
n=p+1

AQ+a)(6p?>—8p+p)—(ap +y)(6p? —1p? —Sp+2tp— 7+ 1)

1 c-p
=1 [(6c—6+1D(c(1+a) — (ap +y)(8c2 — 2t — Sc + 2ct— T+ 1)].(222”(5, B,1,v) W)™~

We find that

[(6c—6+1D)(c(1+a)) — (ap +¥)(6c? — >t — c+ 2ct — T+ 1)].(2,71’3;”(5;[3;7]» v) i 4 snP

c=p _
W) " = 1+ a)(6p?—dp+p)—(ap +y)(p? —tp* —Op+2tp—1+1)

n=p+1
which readily yield w(0) = 0.

Furthermore using (2.1), we obtain

lw(s)|¢P =

[(c—6+1)(c(1+a) — (ap +¥)(8c? — 21— Sc+ 2ct — T+ 1)].(2;'3‘4”(5, B w— -
1+a)(6p?—6p+p)—(ap+y)(6p? —1p? —b6p+2tp—1+ 1) Z n$

n=p+1

<ls| i [(6c—6+1D(c(1+a)) — (ap +¥)(6c? — >t — Sc + 2ct — T+ 1)].(22?(5,,8,7], V) al<isi <1

1+ a)(6p?—6p+p)—(ap +y)(6p? —tp? —6p+2tp—1+ 1)

Next is the proof for the first derivative.

Theorem (7.2): Suppose that w > 0.If k(s) € R?C){Zp(a, 8,7,v) and

A+ a)(6p?>—6p+p) —(ap +y)(6p? —tp?> —Sp+2tp— T+ 1) .
s,
[6c—6+1D)(c(1+a) - (ap +y)(8c? — 21— Sc+2cTt—T + 1)].(2;2”(5, B,1,v)

k.(s) =sP —

(czp+1;p€eEN).

Then, fors = re® and (0 < r < 1),

21 21
f k' (s)]° do < f K.l do, (> 0). 7.2)
0 0

Proof: It's sufficient to show that
— n
1-— z —d,s"P

n=p+1
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c((l +a)(6p? —6p+p)— (ap +y)(6p? —tp? —6p+2tp— T+ 1))

B p[(6c =8+ D(c(1+ ) — (ap +¥)(6c? — 2t —Sc+ 2ct — T + 1)]!2:{:}’(5, B,1n,v) s

<1

This follows because

(e[ p[(6c =8+ D(c(1 + ) — (ap +¥)(6c? — c?t—Sc+ 2ct — T + 1)]!2:17!;p(€,ﬂ,n,v) i nd nep
s = —d,s
v c(A+a)6p2—8p+p)— (ap +y)(Bp? —tp*> —Sp + 2tp — T+ 1)) S, P "
5| i [(6c—6+1)(c(1+a)) — (ap +¥)(Bc? — c?t— Sc+ 2ct — T+ 1)].(2:{2”(5,,8,7], v)d sl<1
< ' < ,
=1 A+ @)(@p2 —p+p) — (ap + 1P —p? —op+21p — 7 + 1) | =S

Theorem (7.3): Let g(s) = sP — X3, 41 bys™, (s €U;b, 2 0;n=p+1;p EN)

and k(s) € R?C/{_'L'p(a, 8,1,y) forc €N,

where

_[Gn =68 +1D(n(1 + @) — (ap +y)(6n* = n*t —n + 2nt — 7 + D] (€, 8,1,v)
n= 1+ a)(6p*—dp+p)—(ap+y)(6p* —tp*—6p+2tp—T+ 1)

Also, for ¢ € N, the functions k. and g, be defined by

A+ a)(6p?—6p+p)—(ap +y)(Op? —Tp?> —Sp+2tp—71T+1)

ke(s) =s? = [(6c—6+1)(c(1+a)) — (ap +y)(6c? — c2T — Sc + 2ct — T+ 1)].(2;'3;”(5, B,n,v) s

and
gc(s) = sP — b.s®. (7.3)

If there exists a holomorphic function

W) " =

[(c—6+1)(c(1+a)) — (ap +y)(6c? — c?T— Sc + 2ct — T+ 1)].(22?(5,[)’,17, V) — A
1+ a)(6p?—6p+p)—(ap +y)(6p? —tp? —6p+2tp — T+ 1) b, Z nOnS "

n=p+1

Then, forw > 0,s =re®and (0 <r < 1),

27 21
f|(k*g)(s)|wdegf|(kc*gc>(s)|wde, (@ > 0).
0 0

Proof: Since

(k * g)(s) = s? — Z d, b, s"

n=p+1

from (7.3), we have
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A+ a)(6p?—6p+p)—(ap +y)(6p? —tp? —Sp+21p—T1+ 1) b, .

B [(6c— 6+ 1D(c(1+a)) — (ap +y)(6c? — c2t — Sc + 2ct — T+ 1)].(2;1”({, B, v)s '

(ke * gc)(s) = sP

We need to prove the Theorem by taking w > 0,s = re'® and (0 < r < 1) such that

2 w

f 1- Z d,b,s"?| do <
0 n=p+1
21
(1 +a)(6p? — 6p + p) — (ap +¥)(6p? —p> — Sp + 2tp — T + 1)) b, o ©
f — i s¢7P| de.
) [(6c -6+ 1)(C(1 + a)) —(ap +y)(6c? —c?t—b6c+2ct—T+ 1)].(2/1# (& B,n,v)
Lemma (1.3) may be used to demonstrate that
1- Z d, b, s™P
n=p+1
1 (1 +a)(6p*>—6p+p)— (ap + );)(5;722 —1p?—Sp+2tp—1 +m1p)) b, v, 7.4)
[(60 -6+ 1)(0(1 + a)) —(ap+y)(6c? —c?t—6c+2ct—1+ 1)].(2/1"’1 ¢&.B.mv)
If (7.4), holds, then there exists a holomorphic function w(s)
1- Z d, b, s"P
n=p+1
1o ((1 +a)(6p?—6p+p)—(ap +y)(6p? —tp? —6p+2tp—1 + 1)) b, (W(S))c—p
[(6c—6+1)(c(1+a)— (ap +y)(8c?2 — 21— Sc +2ct—T + 1)].(2;'3’4”(5, B,1,v) '
We have
eep [Bc=8+D(c(Q+a))— (ap +¥)(Fc? —c?r—8c+2ct —T+ 1)].Q/Tlnp‘tp(§,ﬁ,n, V) —
(w) = = ' d,b,s"?,
((1 +a)(6p?—6p+p)—(ap+y)(6p? —tp?—S6p+2tp— T+ 1)) b, WS
Then w(0) = 0.

From (2.1) we have

lw(s)|cP =

[c—6+1)(c(1+a) - (ap +¥)(8c? —c?t— Sc+2ct—T + 1)].(2;?(5,[3,17, V) R
((1 +a)(6p?—6p+p)— (ap +y)(6p> —tp?> —6p+2tp—T+ 1)) b, Z nInS

n=p+1

[(c—6+1D)(c(1+a) - (ap +y)(8c? — c?t—Sc+2cTt— T+ 1)]!2;?(5. B.1.v) <

((1 +a)(6p?—6p+p)—(ap+y)(6p? —p?> —6p+2tp— T+ 1)) b,

<l|s d,b,| < sl < 1.

n=p+1
8. Neighborhood Property

Now we define the (n — £) —neighborhoods for the function k(s) € M, by
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N, (k) = {g € M,: g(s) = sP — Z b,s™ and Z nld, — b, <e,0<e< 1}. 8.1

n=p+1 n=p+1
For identity function e(s) = s?, (p € N)
N, (e) = {g € M,:g(s) =s? — Z b,s™ and Z nlb,|<e,0<e< 1}. (8.2)
n=p+1 n=p+1
The concept of neighborhoods was first introduced by Goodman [5] and the generalized by Ruscheweyh [10].

Definition (8.1): A functionk(s) € M, is said to be in the class R%ﬁp(a, 8,7,y), if there exist a function
g(s) € RJCA’ZP (a,8,7,7) such that
k(s)

——-1|<p-—-o0 sel,0<0<1).
76) | 14 ( )

Theorem (8.1): If g(s) € R?Cﬁl'p(a, 8,7,7) and

(I +8p)(p + DA + @) = (ap + V)P — 1(p + 1) + 6p + 2(p + DT — T + DI (5,1, v))
1) [(A+p)p+ DA +a)—(ap +Y)(Gp* —tlp+ D*+p+2(p+ Dr—1+ 1)]f2 L& B, v)]
-1+ a)6p?=6p+p)—(ap+y)(6p? —1p?—6p+2tp—7+1)

Then N, .(g) RJC;_L’” (a,6,1,7).

Proof: Let k(s) € N, .(g). Then we have from (8.1) that

[oe]
nld, — b,| < ¢,
n=p+1
this indicates the following coefficient inequality with ease.

[oe]

Z d, — b, | <

n=p+1

£
p+1
Next, since g(s) € RJCA’TZ” (a, 6,7,7), we have from Theorem (2.1)

[oe]

z - 1+ a)(6p?>—6p+p)—(ap +y)(6p?> —tp* —6p+2tp—1+1)
LT+ + DA+ @) — (ap + P — T+ 1+ 8p+ 200+ DT -1+ DI B v)
so that

k(S)_ ‘< ;?=1+p|dn_bn|

g(s) 1= X0 iipbn

e ([ + DA +p)(1+ @) = (ap +Y)(6p> = T(p + 1)? + 6p + 2(p + D1 — 7+ DI B,1,v))
[(A+6p)p+DA+a)—(ap+ V)2 —tlp+ D2 +6p+2(p+ D1 —7+ 1)]!2'"”(5 B.n, V)]
-1+ a)(6p?—6p+p)—(ap +y)(6p* —tp?—6p+2tp—T1+ 1)

+1)

=p-—o.
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Then by Definition (8.1), k(s) € RX;,"(a,,7,y) for each o given by (8.3).
9. Convex Set

Theorem (9.1): The class RX; " («, 8, 7,) is convex set.

proof: Suppose that the functions ( k and g ) be in the class R?Cﬂp(a, 6,7,7). Then for every 0 < I' < 1 we must
show that

(1 -=Dk(s)+Tg(s) € R?Cﬂp(a, 5,7,7). 9.1)
We have
(1 — Mk(s) + T'g(s) = s? — Z [(1 = )d,, + T'b,]s™
n=p+1
So by Theorem (2.1), we get

Z [(6n— 6 + D(n(1 + @) — (ap +Y)(6n® — n?t — Sn+2nt — T+ 1)].(2/’1"1‘;”(5, B,m,v) (1 —I)d, +b,]

n=p+1

a1-n Z [(6n— 6 + D(n(1 + @) — (ap +Y)(6n® —n?t — dn+2nt — T+ 1)].(2;3;”(5, B, n,v)d,

n=p+1
+T Z [(6n— 6 + D(n(1 + @) — (ap +Y)(6n® —n?t— dn+2nt — T+ 1)].(22:’4”(5, B,n,v) b,
n=p+1
<1 -DI[A+a)(6p*—8p +p) — (ap +y)(6p* — 1p* = Sp + 21p — T + 1)]
+I'[(1 + a)(6p? — Sp +p) — (ap + y)(6p? —1p? — 8p + 2tp — T + 1)]
=1+ a)p?>—6p+p)—(ap +y)(6p? —1p? —Sp+ 2tp — 7+ 1).
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