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ARTICLEINFO ABSTRACT

Article history: Modern biometric systems have relied on face recognition as it is precise, convenient and
Received: 00 /mm/2025 unobtrusive. However, standard visible-spectrum face recognition systems are very much
Rrevised form: 00 /00,2025 sensitive to changes in lighting, facial expressions, and surroundings and at the same time
have no ability to conduct physiological measurements in tandem. Within the framework of
Accepted : 29/12/2025 . . L
access control and overall safety needs in the post-pandemic context, these restrictions have
Available online: 30/12/2025 indicated a gap in research that is urgent: the lack of integrated frameworks that carry out the
functions of identity verification and health-related screening in tandem with each other. This
article is a critical survey of the state-of-the-art in the field of thermal-sensitive face
recognition, which integrates the visible RGB imaging with biometric recognition and long-
wave infrared (LWIR) thermal sensing with the purpose of estimating body temperature. We
syntactically examine the available architectures, sensing configurations, fusion strategies,
datasets, and evaluation protocols found in the literature. The review emphasizes the fact that
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Health monitoring, dual-modal systems have the potential to allow real-time and contactless identity verification
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implications, with the aim of informing the researchers and practitioners of the creation of
effective, scalable, and privacy-aware solutions.
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Introduction
Among these biometrics modalities, facial recognition has become one of the most embraced modalities due to its ease of

use, hygienic nature, and broad-based use that cut across many fields like surveillance, access control, border security, and
human-computer interaction [1]. Traditional authentication based on passwords and keycards is becoming vulnerable to
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theft and their misuse; thus, the interest is shifting toward biometric systems that verify identity based on unique biological
features [2].

The demand for touchless biometric solutions was further accelerated by the COVID-19 pandemic, with thermal detection
gaining prominence for being a non-invasive tool for health screening and fever detection in public space [3].

Despite rapid development, computer vision and deep learning still cannot avoid several issues with the traditional face
recognition system using visible-light imaging, such as susceptibility to illumination variation, spoofing attacks, and low
accuracy for highly pigmented skin color individuals [4, 5].

Thermal imaging is a promising alternative since the heat patterns it captures from the human face are invariant to lighting
and difficult to reproduce, hence making this modality more robust and spoof resistant [6, 7].

This paper critically reviews the evolution of thermal-aware face recognition technologies, from earlier machine learning
models that depend on hand-crafted features to modern deep learning architectures that are able to extract discriminative
representations directly from raw thermal data [8].

The paper focuses on higher levels of integration of methods in computer vision, including YOLO models and super-
resolution algorithms, to overcome such issues of thermo-imaging as poor resolution and noise [9]. The use of specialized
optimizers like AdamW also boosted the convergence of the model and enhanced its results on thermal datasets [10, 11,
12]. In addition, the combination of thermal and visible spectrum information in multi-modal biometric systems is highly
promising to improve the recognition accuracy, reliability, and security [3]. The higher quality and fineness of the images
of the facial representation has made possible the methods such as super-resolution of thermal images with the help of deep
learning or multi-modes fusion which boosts the detection in real-world applications [13, 14].With the rapid expansion of
the biometric technologies market, which is projected to reach approximately USD 7.76 billion by 2025, with an estimated
compound annual growth rate (CAGR) of 15.3% [1].

2. Review Methodology

This review was done on the basis of a systematic approach in order to provide a complete, transparent, and
repeatable study of the literature on thermal-based face recognition. It involved four major steps of planning,
search, screening, and synthesis.

e Literature Search Strategy: A systematic search was carried out to find out suitable peer-reviewed articles,
conference proceedings, seminal books. Keywords and Boolean operators, such as: (thermal imaging OR
infrared face recognition OR LWIR face recognition) AND (biometrics OR authentication) AND (multimodal
fusion OR RGB-IR) AND (deep learning OR computer vision), were used in the search.

e Databases Consulted: The main scientific databases that were searched were IEEE Xplore, Scopus, Web of
Science, and Google Scholar. The choice of these platforms was due to their wide search of engineering,
computer science, and interdisciplinary literature.

e Alist of inclusion and exclusion criteria were used to make sure the review is focused on the relevant and high
quality literature. Peer-reviewed articles in English were restricted to 2018-2024 to be able to capture recent
developments. To be included, the studies should have focused on thermal or long-wave infrared (LWIR) face
recognition or physiological feature extraction studies, but with a specific interest in those that mention a fusion
approach with visible-spectrum (RGB) modalities. The research papers have been filtered out in case they were
limited to visible-light recognition only, or other unrelated biometric modalities, used thermal imaging not in
the context of biometric but purely in the context of medical diagnosis, available only in abstract form, or
otherwise non-peer-reviewed articles, like technical reports or theses.

e Screening and Selection Process: The first search results were de-duplicated, and titles/abstracts were filtered
according to the inclusion criteria. The rest of the articles were then critically appraised in their entirety. This
repeated procedure made sure that the ultimate compilation of literature that has been critically reviewed in
this review is the literature that directly covers the main themes of thermal-face recognition structures, fusion
techniques, and datasets as well as the emerging issues.

3. Thermal Face Recognition Fundamentals

Thermal imaging relies on analyzing the infrared (IR) spectrum to capture the heat patterns naturally emitted by
the human face, making it a powerful alternative to conventional visible-light imaging. Unlike traditional systems
that depend on reflected light, thermal imaging detects emitted radiation, which allows it to remain largely
unaffected by changes in ambient illumination, facial expressions, or partial occlusions such as masks or eyeglasses
[15].
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3.1 Infrared Spectrum and Imaging Modalities

The infrared spectrum extends approximately from 0.7 to 14.0 pum. For facial recognition applications, this range is
typically divided into two primary bands, each offering distinct characteristics and advantages for thermal-based
analysis:

e Reflected IR Band (0.7-2.4 pum): it includes Near-Infrared and Short-Wave Infrared, which capture reflected
solar radiation. These bands are useful in low-light conditions and use reflected radiation. However, they cannot
provide thermal properties of the face.

e Thermal IR Band (2.4-14.0 pm): including both MWIR (3-5 um) and LWIR (8-14 pm), records the radiation emitted
from the skin surface to highlight physiological features like blood vessel patterns or heat distribution. This
modality is practically invariant to lighting and less affected by environmental factors like smoke or dust. Face
detection and localization are simplified under thermal IR due to reduced background clutter, since no biological
surfaces emit much less thermal radiation, hence enhancing segmentation accuracy and reducing false positives in
complex scenes. Figure 1, shows main divisions in the IR spectrum that describe its relation to thermal imaging
applications.
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Fig. 1 - Definition of IR Spectral Band [16].

3.2 Physiology-Based Feature Extraction

Thermal face recognition systems rely on a specific individual's thermal signature, modulated through vascular
structure, metabolic activity, and skin emissivity. Feature extraction usually consists of finding the main thermal
points of interest, like those lying on veins and capillaries, encoding them into discriminative vectors for classification
[17].

Traditional methods have, therefore, employed handcrafted features in conjunction with statistical models, like
Random Forest classifiers, to distinguish between subjects based on selected thermal landmarks. Indeed, these have
proven robust under challenging conditions, including occlusions, noise, and facial accessories such as masks and
eyeglasses. Thermal face recognition systems rely on physiological features underlying the vascular pattern, metabolic
activity, and skin emissivity. Image processing techniques such as white top-hat segmentation and morphological
filtering are applied for feature extraction.

Figure 2 shows the process of vascular feature extraction from thermal images in order to produce TMPs that will
be used for classification, much like fingerprint features.
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Fig. 2 - Vascular network extraction. (a) Original segmented image, (b) Anisotropically diffused image, (c)
Blood vessels extracted using white top hat segmentation [18].

3.3 Synthetic Thermal Data Augmentation

Recent advances have enabled the use of deep learning-based generative frameworks for the synthesis of thermal
imagery. Approaches such as StyleCLIP and GANs N’ Roses have been employed to transform visible-spectrum images
by embedding thermal-like characteristics. The resulting large-scale synthetic thermal datasets provide valuable
resources for training more robust face recognition models [18].

4. Learning-Based Thermal Analysis

In the development process, thermal-aware face recognition gets immense support from ML and DL techniques for
improving its performance. These techniques have facilitated the ability of systems to extract meaningful features
from thermal data, overcome challenges such as low resolution and noise, and thus improve recognition accuracy in
unconstrained conditions.

4.1 Traditional Machine Learning Techniques

Early thermal face recognition systems relied on feature engineering in a hand-crafted style, and conventional
machine learning algorithms, such as Support Vector Machines, k-Nearest Neighbors, and Random Forests. The
statistical descriptors exploited in these models include Local Binary Patterns, Histogram of Oriented Gradients, and
thermal minutiae points which are used to classify people according to thermal patterns. Although quite useful in
controlled settings, they could not be generalized to different settings and were vulnerable to occlusions and spoofing.

4.2 Deep Learning Architectures

In recent years, there has been a shift to hierarchical deep learning models, in the form of Convolutional Neural
Networks, which are capable of learning hierarchical features on raw thermal images, in a self-taught way. Though
thermal modalities have been developed with various architectures, such as ResNet, VGGNet and MobileNet, which are
pre-trained on visible data, and then fine-tuned on thermal data. The models demonstrate state of art performances
on face detection, alignment, and recognition. They are however superior depending on the quality and quantity of
data. CNNs are excellent at discriminative, high-complexity feature learning on well-curated thermal imaging, but are
extremely vulnerable to system performance failure when input resolution is low, there is a lot of noise, and there is a
domain shift, which are typical in real-world thermal imaging. This is in contrast to the traditional ML techniques,
which, although less potent, can be more predictable and resistant to particular, known image degradation. Farooq et
al. [10] demonstrated that training thermal-aware convolutional neural networks using the AdamW optimizer
significantly enhanced convergence speed and generalization performance. Similarly, Persiya and Anbalagan [12]
applied the YOLOvV5 framework to thermal image datasets, achieving improved object detection and localization
accuracy, primarily in scenarios with medium-to-high resolution frontal faces, as summarized in Table 1.
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Table 1 - Summary of Key ML /DL Approaches in Thermal Face Recognition.

Technique / R R T
Authors / Ref. Year Model Used Contribution / Findings Limitation
. Enhanced detection and .
Persiya & 2025 YOLOv5 localization in  thermal Struggles Wlth. small-scalg faces
Anbalagan [12] . . and low-resolution thermal inputs
biometric systems
SpringerOpen - CNNs on Visible Cor.npar.ed soft blome-t.rlc Limited generalization across
LVT Dataset 2024 vs Thermal estimation across modalities ethnic erouns and ace ranges
Study [15] under varied conditions group § §
Farooq et al. CNN + AdamW Improved convergence and Limited dataset . diversity;
2023 - accuracy in thermal face performance drops in extreme
[10] Optimizer e . .
recognition occlusion scenarios
Huang et al. SRGAN / Applled super-resolut19n to .Computatlonal.ly 1nt.en51\./e; may
2022 improve  thermal image introduce artifacts in high-noise
[14] ESRGAN : o s
clarity and recognition conditions
GAN-based Generated synthetic thermal Synthetic images may lack
MDPI - GANs ) L : . : :
) 2022 Thermal images for robust training physiological realism; domain gap
N’ Roses [18] : . .
Synthesis and augmentation remains

5. Multimodal Fusion and Anti-Spoofing Methods

The use of biometric systems in the security, healthcare, and consumer applications points to the growing demand of
the use of strong and spoof resistant face recognition systems. Thermal-aware FR has some inherent advantages in
resisting presentation attacks because it is capable of capturing the emitted heat patterns. However, low resolution,
limited texture. To overcome these limitations, researchers often combine thermal data with visible spectrum
information. Moreover, the quality of thermal inputs is improved with the use of the techniques such as super-
resolution. In this section, strategies that combine multimodal data and expert processing to enhance recognition
accuracy and system resilience are reviewed.

5.1 Multimodal Fusion Strategies

Multimodal fusion is a combination of complementary data of thermal and visible light imaging to form richer
representations. Another activity related to enhancing the quality of thermal data is the application of super-
resolution (SR) techniques. The idea behind SR is to synthesize high-resolution images out of the low-resolution
images and restore fine details, which are important to recognize. SRGAN and ESRGAN deep learning models have
been successfully used on the thermal face images [14]. Moreover, generative architectures like StyleCLIP and GANs
N' Roses, have been applied to generate thermal images based on visible images, which has been utilized in data
enhancement and domain adaptation [18]. It can be achieved by a number of methods:

o Data-Level Fusion: It is a type of fusion that incorporates raw pixel data of the two modalities. It is a simple

problem that is normally burdened with the issue of misalignment and transmission of noise.

e Feature-Level Fusion: This involves the independent extraction of features from each modality, which is then
combined into one unified representation. In this approach, the strength of each modality is still retained, and this
finds wide applications in deep learning pipelines.

» Decision-Level Fusion: It fuses the outputs of separate classifiers independently trained on each modality. It is
computationally very efficient but it loses fine-grained interaction among features.

As reported by Lai et al. [2], thermal-visual feature fusion significantly improves recognition accuracy under poor

lighting conditions and partial occlusions. Yu et al. [7] demonstrated enhanced anti-spoofing capability through the

fusion of thermal and RGB data, as it enables the detection of abnormal heat distribution patterns that are absent in
printed or replayed attacks..

Recently, large-scale deep models make use of attention mechanisms and cross-modal transformers that dynamically

weight the contribution of each modality. These architectures let the system give more importance, for example, to

thermal data when the light is very low or to visible data when the texture is important, reaching adaptive robustness.

5.2 Anti-Spoofing Techniques

Presentation attacks involving printed photos, video replays, and 3D masks are considered serious threats to
biometric systems. Many of these attacks are inherently resisted by thermal imaging, where the artificial medium
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often lacks the physiological heat patterns from a human face. We do have advanced spoofing technologies, however,

whether in the form of heated masks or thermal overlays, and of course require more advanced countermeasures.

Some uses of anti-spoofing in thermal-sensitive systems involve:

e Liveness Detection: There are micro-movement, blink patterns, and heat changes done to determine the presence of
a live person.

e Physiological Feature Analysis: It identifies vascular features and thermal minutiae sites, which are barely man-
made.

e Temporal Consistency Checks: Checking of thermal signature against time to detect the existence of unnatural
stability or sharp events. Despite its importance already mentioned, the use of thermal imaging in the screening in
the times of COVID-era was retold with contactless features and spoof-resistant features of the paramount
importance [3]. Their contribution focused on how thermal-based liveness detection has been efficient within the
scope of helping to promote health to the masses.

In addition to that, a GAN-based synthetic technique of spoofing detection is considered to be a frontier technique.
These systems can be trained by means of adversarial models that are intended to construct spoof attempts and detect
them simultaneously in order to learn to detect tiny abnormalities in thermal patterns. Added this adversarial training
to CNNs that augmented the frequency of detection rates under advanced spoofing conditions [10].

5.3 Limitations of Multimodal Fusion Systems
The following are the challenges of multimodal fusion systems although they show some promising performances:

e Sensor Calibration and Synchronization: Still, co-registration is a difficult process in space and time of thermal and
visible data.

o Computational Overhead: Deep architecture models, in particular fusion models, demand hefty processing.

e The generalization can be restricted by the fact that the publicly available datasets about the scenarios of
multimodal spoofing are rather rare.

Future research needs to be directed at lightweight fusion architectures for edge deployment, standardization of
benchmarks for spoof detection, and techniques for privacy-preserving fusion with minimum data exposure.

6. Advances in Super-Resolution and Optimization

Thermal face images very often come with low spatial resolution, limited texture, and noise artifacts due to sensor
limitations and environmental conditions. These may degrade the recognition performance, especially in deep
learning models that require rich feature representations. Recent works have focused on two complementary
strategies: super-resolution techniques and optimization methods tailored for thermal data.

6.1 Super-Resolution Techniques

Super-resolution is intended to reconstruct high-resolution images from their low-resolution inputs to improve
details and hence enhance feature extraction. Deep learning-based super-resolution models such as SRGAN and
ESRGAN have been very effective in restoring fine-grained facial features in thermal images. In this regard, [14]
demonstrated that the application of ESRGAN on thermal face datasets improved the recognition accuracy
significantly by enhancing edge clarity and texture fidelity, recovering discriminative features like eye contours and
vascular patterns critical to biometric matching. There also have been several recent multimodal SR schemes, which
fuse thermal images with visible light data to guide the reconstruction process [13]. Suggested a hybrid SR
architecture, which uses visible spectrum guidance to improve thermal resolution, which performs better than single-
modality SR. There is a trade-off in the use of SR though. Although the ESRGAN [14] algorithm is capable of
dramatically improving the original recognition score of low quality data, it is computationally expensive, which
increases the latency. This might rule out real time use in edge-device applications. Furthermore, super-resolving
extremely noisy thermal images can sometimes introduce hallucinated artifacts that mislead subsequent feature
extraction, potentially increasing False Acceptance Rates (FAR). The decision to use SR must therefore balance the
expected gain in feature clarity against the cost in processing time and the risk of artifact generation.

6.2 Optimization Methods

Meanwhile, optimization techniques have been refined with the aim of enhancing the stability and generalization
ability of model training on thermal datasets. Among them is the AdamW optimizer proposed by [10], which
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decouples weight decay from gradient updates within the classic algorithm of Adam. In this way, overfitting can be
avoided, and convergence speeded up in CNNs trained on noisy thermal inputs. Other works investigated learning rate
scheduling, gradient clipping, and regularization strategies that stabilize the training in low-data regimes. These are
particularly useful when the available thermal datasets are small or imbalanced, as is often the case in biometric
research.

7. CRITICAL ANALYSIS & COMPARATIVE DISCUSSION

As earlier parts outlined the technical environment of thermal face recognition (TFR), synthesis of the crucial nature is
needed to inform the selection of methods as well as to point out the gaps in research. The effectiveness of a TFR
system is determined by a set of factors: accuracy in recognition, efficiency in computation, stability to real-life
scenarios, and privacy issues. It will be a comparative analysis within the framework of methodological paradigms,
with reference to the presented findings.

7.1 Performance Drivers and Failure Modes

The underlying difference between Traditional Machine Learning (ML) and Deep Learning (DL) can serve as an
example of an essential trade-off. Conventional techniques (e.g. LBP/HOG using SVM) use manually defined features
which are computationally efficient and understandable. They can handle low power hardware, and are better when
data is sparse, compared to DL. Nevertheless, they do not perform with high accuracy to large differences in pose
(even though thermal images are invariant to visible light), non-uniform changes in illumination (although thermal
images are invariant to temperature), and when major physiological detail in the system is obscured (e.g. a mask over
the vascular beds in the mouth and nose). Their accuracy limit is usually smaller because handcrafted features have
low representational power.

CNNs and Transformers are an example of DL methods that addresses these limitations by having to learn
hierarchical, robust feature representations directly based on data. They are more accurate and generalizable in
various situations. Their main failure modes are data-dependent: performance decays because of domain gap (e.g.
models trained on synthetic data [18] fail on actual sensor data) and dataset bias (e.g. poor cross-ethnicity
generalization as observed in [15]). They also need a large amount of computational resources and, without model
compression, it is difficult to implement them in real-time on edge devices.

7.2 Quantitative & Qualitative Trade-offs

Table 2 brings to the fore a comparative evaluation of the principal TFR methods with inclusion of the metrics of the
reviewer. The reported Accuracy, False Acceptance Rate (FAR) and False Rejection Rate (FRR) show a definite way of
going: the higher the performance, the more costly it would be. Multimodal fusion is the most accurate and resilient to
spoofing as the system integrates RGB data and thermal data, complementary and thus the most effective, but it is the
most computationally complex method, is sensitive to sensor synchronization and privacy is doubled.

The robustness column identifies contextual strengths. DL is resistant to illumination, and data shift, traditional ML
resistant to certain noise but not to occlusion. Super-resolution (e.g. ESRGAN [14]) adds detail, but with latency and
can create artifacts. Synthetic data generation [18] can mitigate the problem of data scarcity but again, it poses a risk
of a realism gap.
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Table 2 - Comparative Study of Thermal Face Recognition Strategies.

Typical FAR /
Accuracy Computationa Key Weaknesses &
A h Cat
pproach Lategory (Reported Pf(l:fl;e 1 Complexity Key Strengths Failure Conditions
Range)
Traditional Higher Low cos; B2d generalization; does
FAR under interpretable; .
ML (LBP+SVM, 85-92% ) Low - pose/expression
occlusion/ efficient on edge A
HOG+RF) . change; limitation of
variation. hardware.
manual features.
Lower :
_ FAR  but High accuracy; Large data
Deep Learning FRR.  can robust to requirements; low res /
(CNN) (ResNet, VGG 94-98% spike with Medium-High  appearance noisy data performance;
on thermal) nzise /do changes; automatic large compute
. . feature learning. requirements.
main shift.
Specialized Erelpends Medium Solves specific Pipeline complexity; SR
DL (YOLO  for Varies (Det: . . bottlenecks P plexity; -
. primary (YOLO) / High . adds latency & potential
detection [12], >95% mAP) task (SRGAN) (detection, artifacts
SRGAN [14]) quality. resolution). '
Multimodal E\TZEall Maximum Most expensive;
Fusion (RGB- robustness & requires calibration /
- 0, i
Thermal 98-99.5% })Oa‘}jenscte’ Very High accuracy; spoof- positioning; complicated
feature/score fusion) spoof FAR. resistant. implementation.

7.3. The Privacy-Performance-Computation Trilemma

One of the major lessons of this analysis is a trilemma of privacy, performance and cost of computation that is
implicit. Most systems that perform highly tend to use detailed physiological information (vascular patterns), which
is a major privacy issue. Equally, high accuracy usually demands elaborate DL or fusion models, which is more

expensive to compute.

e High-Performance, High-Privacy: A highly detailed multimodal fusion system that uses thermal vasculature is
based on providing the highest accuracy and maximum spoofing resistance but reveals sensitive health

information and is computationally intensive.

e Private, Low-Cost: A standard ML system based on gross thermal features is computationally inexpensive, and
therefore provides privacy protection to a greater extent, but has lower accuracy and is susceptible to spoofing.

e High-Performance, Low Cost (Compromised Privacy): Synthetic data to train a DL model is less costly to collect
data and less invasive to privacy in training, although the resulting model still can hold sensitive attributes, and
synthetic data may continue to fail to close the reality gap System architects will have to make these trade-offs
according to specific constraints of the application (e.g., border security vs. office attendance.

8. Challenges and Future Perspectives

With the subsequent discussion elaborating on the comparative study in Section VII, the issues surrounding
thermal-sensitive face recognition can be interpreted as being symptoms of the fundamental trade-offs. Although
significant improvements have been made, thermal-conscious face recognition has a number of challenges that
make its use not as common. Technically, thermal sensors are still expensive, sensitive to the environment and
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usually deliver low resolutions of noisy images, which makes it a challenge to extract robust features and skews the
cost-benefit analysis towards the simpler systems. Furthermore, the small scale and heterogeneity of publicly
accessible datasets of thermal faces pose a negative influence on the generalization of deep models, which solidifies
reliance on data of high-performance models. Practically, it is difficult to implement such systems in the real time
because they involve high computation cost of multimodal fusion and super-resolution models which are major
strategies to high accuracy especially in edge and mobile settings. Moreover, correct matching of thermal and visible
modalities in dynamic scenes as well as resistance to advanced spoofing attacks are yet to be solved. There are also
ethical and privacy issues, as the thermal images have a potential to accidentally expose sensitive health-related
facts, which is more likely to occur in the case of more detailed physiological features that are required to achieve a
higher level of security, and the imbalance of datasets can contribute to the biased performance of various
demographic groups. Future studies should thus aim at creating lightweight and efficient models which can be
deployed to real-world environments, utilizing synthetic thermal data generation to supplement training data and
integrate explainable Al methods to enhance transparency and come up with standardized benchmarks to facilitate
even and equitable evaluation and development of this area.

9. Conclusion

Thermal-aware FR is one of the latest biometric modalities created to be among the most powerful in responding to
varying illumination levels, spoofing attacks, and other environmental issues. The paper has discussed concepts
related to thermal imaging and a recent development in the field of machine learning and deep learning and
established that multimodal fusion and super-resolution can contribute significantly to the performance of a system.
In addition to description, we have given a critical comparison analysis where we analyzed the tradeoffs between
accuracy, computation cost and privacy which form the design space of such systems and further improvement on
the robustness and generalization of the models can be achieved by recent advancements in optimization
techniques and synthetically induced data. However, there are still numerous issues regarding sensor constraints,
the lack of data, and the ethical issues. To beat those, there must be an interdisciplinary response of computer
vision, hardware engineering, and privacy law.

In the future, lightweight architecture, explainability in Al, and benchmark standardization will be used to provide
scalability to thermal-conscious biometric systems in practice. Thermal face recognition is at the core of the next
generation biometric solutions due to the overall demand of having secure contactless authentication.
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