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A B S T R A C T 

Modern biometric systems have relied on face recognition as it is precise, convenient and 
unobtrusive. However, standard visible-spectrum face recognition systems are very much 
sensitive to changes in lighting, facial expressions, and surroundings and at the same time 
have no ability to conduct physiological measurements in tandem. Within the framework of 
access control and overall safety needs in the post-pandemic context, these restrictions have 
indicated a gap in research that is urgent: the lack of integrated frameworks that carry out the 
functions of identity verification and health-related screening in tandem with each other. This 
article is a critical survey of the state-of-the-art in the field of thermal-sensitive face 
recognition, which integrates the visible RGB imaging with biometric recognition and long-
wave infrared (LWIR) thermal sensing with the purpose of estimating body temperature. We 
syntactically examine the available architectures, sensing configurations, fusion strategies, 
datasets, and evaluation protocols found in the literature. The review emphasizes the fact that 
dual-modal systems have the potential to allow real-time and contactless identity verification 
and support a large-scale approach in high-traffic settings. Moreover, this paper addresses the 
main technical and practical issues that are limiting the large-scale implementation, such as 
sensor calibration, cross-modular data alignment, environmental bias, data privacy, as well as 
ethical factors. Last but not the least, we describe the new research directions and future 
outlooks of the unified biometric and health-conscious access control systems through a 
critical lens that analyzes performance trade-offs, computational costs, and ethical 
implications, with the aim of informing the researchers and practitioners of the creation of 
effective, scalable, and privacy-aware solutions. 

 

MSC.. 

https://doi.org/ 10.29304/jqcsm.2025.17.42580.

Introduction 

Among these biometrics modalities, facial recognition has become one of the most embraced modalities due to its ease of 

use, hygienic nature, and broad-based use that cut across many fields like surveillance, access control, border security, and 

human-computer interaction [1]. Traditional authentication based on passwords and keycards is becoming vulnerable to 
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theft and their misuse; thus, the interest is shifting toward biometric systems that verify identity based on unique biological 

features [2]. 

The demand for touchless biometric solutions was further accelerated by the COVID-19 pandemic, with thermal detection 

gaining prominence for being a non-invasive tool for health screening and fever detection in public space [3].  

Despite rapid development, computer vision and deep learning still cannot avoid several issues with the traditional face 

recognition system using visible-light imaging, such as susceptibility to illumination variation, spoofing attacks, and low 

accuracy for highly pigmented skin color individuals [4, 5]. 

Thermal imaging is a promising alternative since the heat patterns it captures from the human face are invariant to lighting 

and difficult to reproduce, hence making this modality more robust and spoof resistant [6, 7].  

This paper critically reviews the evolution of thermal-aware face recognition technologies, from earlier machine learning 

models that depend on hand-crafted features to modern deep learning architectures that are able to extract discriminative 

representations directly from raw thermal data [8].  

The paper focuses on higher levels of integration of methods in computer vision, including YOLO models and super-

resolution algorithms, to overcome such issues of thermo-imaging as poor resolution and noise [9]. The use of specialized 

optimizers like AdamW also boosted the convergence of the model and enhanced its results on thermal datasets [10, 11, 

12]. In addition, the combination of thermal and visible spectrum information in multi-modal biometric systems is highly 

promising to improve the recognition accuracy, reliability, and security [3]. The higher quality and fineness of the images 

of the facial representation has made possible the methods such as super-resolution of thermal images with the help of deep 

learning or multi-modes fusion which boosts the detection in real-world applications [13, 14].With the rapid expansion of 

the biometric technologies market, which is projected to reach approximately USD 7.76 billion by 2025, with an estimated 

compound annual growth rate (CAGR) of 15.3% [1]. 

2. Review Methodology 

This review was done on the basis of a systematic approach in order to provide a complete, transparent, and 
repeatable study of the literature on thermal-based face recognition. It involved four major steps of planning, 
search, screening, and synthesis. 

• Literature Search Strategy: A systematic search was carried out to find out suitable peer-reviewed articles, 
conference proceedings, seminal books. Keywords and Boolean operators, such as: (thermal imaging OR 
infrared face recognition OR LWIR face recognition) AND (biometrics OR authentication) AND (multimodal 
fusion OR RGB-IR) AND (deep learning OR computer vision), were used in the search. 

• Databases Consulted: The main scientific databases that were searched were IEEE Xplore, Scopus, Web of 
Science, and Google Scholar. The choice of these platforms was due to their wide search of engineering, 
computer science, and interdisciplinary literature. 

• A list of inclusion and exclusion criteria were used to make sure the review is focused on the relevant and high 
quality literature. Peer-reviewed articles in English were restricted to 2018-2024 to be able to capture recent 
developments. To be included, the studies should have focused on thermal or long-wave infrared (LWIR) face 
recognition or physiological feature extraction studies, but with a specific interest in those that mention a fusion 
approach with visible-spectrum (RGB) modalities. The research papers have been filtered out in case they were 
limited to visible-light recognition only, or other unrelated biometric modalities, used thermal imaging not in 
the context of biometric but purely in the context of medical diagnosis, available only in abstract form, or 
otherwise non-peer-reviewed articles, like technical reports or theses. 

• Screening and Selection Process: The first search results were de-duplicated, and titles/abstracts were filtered 
according to the inclusion criteria. The rest of the articles were then critically appraised in their entirety. This 
repeated procedure made sure that the ultimate compilation of literature that has been critically reviewed in 
this review is the literature that directly covers the main themes of thermal-face recognition structures, fusion 
techniques, and datasets as well as the emerging issues. 

3. Thermal Face Recognition Fundamentals 

 Thermal imaging relies on analyzing the infrared (IR) spectrum to capture the heat patterns naturally emitted by 
the human face, making it a powerful alternative to conventional visible-light imaging. Unlike traditional systems 
that depend on reflected light, thermal imaging detects emitted radiation, which allows it to remain largely 
unaffected by changes in ambient illumination, facial expressions, or partial occlusions such as masks or eyeglasses 
[15]. 
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3.1 Infrared Spectrum and Imaging Modalities 

The infrared spectrum extends approximately from 0.7 to 14.0 μm. For facial recognition applications, this range is 
typically divided into two primary bands, each offering distinct characteristics and advantages for thermal-based 
analysis: 

• Reflected IR Band (0.7–2.4 μm): it includes Near-Infrared and Short-Wave Infrared, which capture reflected 
solar radiation. These bands are useful in low-light conditions and use reflected radiation. However, they cannot 
provide thermal properties of the face. 

• Thermal IR Band (2.4-14.0 μm): including both MWIR (3-5 μm) and LWIR (8-14 μm), records the radiation emitted 
from the skin surface to highlight physiological features like blood vessel patterns or heat distribution. This 
modality is practically invariant to lighting and less affected by environmental factors like smoke or dust. Face 
detection and localization are simplified under thermal IR due to reduced background clutter, since no biological 
surfaces emit much less thermal radiation, hence enhancing segmentation accuracy and reducing false positives in 
complex scenes. Figure 1, shows main divisions in the IR spectrum that describe its relation to thermal imaging 
applications. 

 
Fig. 1 - Definition of IR Spectral Band [16]. 

 

3.2 Physiology-Based Feature Extraction 

Thermal face recognition systems rely on a specific individual's thermal signature, modulated through vascular 
structure, metabolic activity, and skin emissivity. Feature extraction usually consists of finding the main thermal 
points of interest, like those lying on veins and capillaries, encoding them into discriminative vectors for classification 
[17]. 

Traditional methods have, therefore, employed handcrafted features in conjunction with statistical models, like 
Random Forest classifiers, to distinguish between subjects based on selected thermal landmarks. Indeed, these have 
proven robust under challenging conditions, including occlusions, noise, and facial accessories such as masks and 
eyeglasses. Thermal face recognition systems rely on physiological features underlying the vascular pattern, metabolic 
activity, and skin emissivity. Image processing techniques such as white top-hat segmentation and morphological 
filtering are applied for feature extraction. 

 Figure 2 shows the process of vascular feature extraction from thermal images in order to produce TMPs that will 
be used for classification, much like fingerprint features. 
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Fig. 2 - Vascular network extraction. (a) Original segmented image, (b) Anisotropically diffused image, (c) 

Blood vessels extracted using white top hat segmentation [18]. 
 

3.3 Synthetic Thermal Data Augmentation 

Recent advances have enabled the use of deep learning–based generative frameworks for the synthesis of thermal 
imagery. Approaches such as StyleCLIP and GANs N’ Roses have been employed to transform visible-spectrum images 
by embedding thermal-like characteristics. The resulting large-scale synthetic thermal datasets provide valuable 
resources for training more robust face recognition models [18].  

4. Learning-Based Thermal Analysis  

In the development process, thermal-aware face recognition gets immense support from ML and DL techniques for 
improving its performance. These techniques have facilitated the ability of systems to extract meaningful features 
from thermal data, overcome challenges such as low resolution and noise, and thus improve recognition accuracy in 
unconstrained conditions. 

4.1 Traditional Machine Learning Techniques 

Early thermal face recognition systems relied on feature engineering in a hand-crafted style, and conventional 
machine learning algorithms, such as Support Vector Machines, k-Nearest Neighbors, and Random Forests. The 
statistical descriptors exploited in these models include Local Binary Patterns, Histogram of Oriented Gradients, and 
thermal minutiae points which are used to classify people according to thermal patterns. Although quite useful in 
controlled settings, they could not be generalized to different settings and were vulnerable to occlusions and spoofing.  

4.2 Deep Learning Architectures 

In recent years, there has been a shift to hierarchical deep learning models, in the form of Convolutional Neural 
Networks, which are capable of learning hierarchical features on raw thermal images, in a self-taught way. Though 
thermal modalities have been developed with various architectures, such as ResNet, VGGNet and MobileNet, which are 
pre-trained on visible data, and then fine-tuned on thermal data. The models demonstrate state of art performances 
on face detection, alignment, and recognition. They are however superior depending on the quality and quantity of 
data. CNNs are excellent at discriminative, high-complexity feature learning on well-curated thermal imaging, but are 
extremely vulnerable to system performance failure when input resolution is low, there is a lot of noise, and there is a 
domain shift, which are typical in real-world thermal imaging. This is in contrast to the traditional ML techniques, 
which, although less potent, can be more predictable and resistant to particular, known image degradation. Farooq et 
al. [10] demonstrated that training thermal-aware convolutional neural networks using the AdamW optimizer 
significantly enhanced convergence speed and generalization performance. Similarly, Persiya and Anbalagan [12] 
applied the YOLOv5 framework to thermal image datasets, achieving improved object detection and localization 
accuracy, primarily in scenarios with medium-to-high resolution frontal faces, as summarized in Table 1. 
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Table 1 - Summary of Key ML/DL Approaches in Thermal Face Recognition. 

Authors / Ref. Year 
Technique / 
Model Used 

Contribution / Findings Limitation 

Persiya & 
Anbalagan [12] 

2025 YOLOv5 
Enhanced detection and 
localization in thermal 
biometric systems 

Struggles with small-scale faces 
and low-resolution thermal inputs 

SpringerOpen – 
LVT Dataset 
Study [15] 

2024 
CNNs on Visible 

vs Thermal 

Compared soft biometric 
estimation across modalities 
under varied conditions 

Limited generalization across 
ethnic groups and age ranges 

Farooq et al. 
[10] 

2023 
CNN + AdamW 

Optimizer 

Improved convergence and 
accuracy in thermal face 
recognition 

Limited dataset diversity; 
performance drops in extreme 
occlusion scenarios 

Huang et al. 
[14] 

2022 
SRGAN / 
ESRGAN 

Applied super-resolution to 
improve thermal image 
clarity and recognition 

Computationally intensive; may 
introduce artifacts in high-noise 
conditions 

MDPI – GANs 
N’ Roses  [18] 

2022 
GAN-based 

Thermal 
Synthesis 

Generated synthetic thermal 
images for robust training 
and augmentation 

Synthetic images may lack 
physiological realism; domain gap 
remains 

5. Multimodal Fusion and Anti-Spoofing Methods  

The use of biometric systems in the security, healthcare, and consumer applications points to the growing demand of 
the use of strong and spoof resistant face recognition systems. Thermal-aware FR has some inherent advantages in 
resisting presentation attacks because it is capable of capturing the emitted heat patterns. However, low resolution, 
limited texture. To overcome these limitations, researchers often combine thermal data with visible spectrum 
information. Moreover, the quality of thermal inputs is improved with the use of the techniques such as super-
resolution. In this section, strategies that combine multimodal data and expert processing to enhance recognition 
accuracy and system resilience are reviewed. 

5.1 Multimodal Fusion Strategies 

Multimodal fusion is a combination of complementary data of thermal and visible light imaging to form richer 
representations. Another activity related to enhancing the quality of thermal data is the application of super-
resolution (SR) techniques. The idea behind SR is to synthesize high-resolution images out of the low-resolution 
images and restore fine details, which are important to recognize. SRGAN and ESRGAN deep learning models have 
been successfully used on the thermal face images [14]. Moreover, generative architectures like StyleCLIP and GANs 
N' Roses, have been applied to generate thermal images based on visible images, which has been utilized in data 
enhancement and domain adaptation [18]. It can be achieved by a number of methods:  

 
• Data-Level Fusion: It is a type of fusion that incorporates raw pixel data of the two modalities. It is a simple 

problem that is normally burdened with the issue of misalignment and transmission of noise. 
• Feature-Level Fusion: This involves the independent extraction of features from each modality, which is then 

combined into one unified representation. In this approach, the strength of each modality is still retained, and this 
finds wide applications in deep learning pipelines. 

• Decision-Level Fusion: It fuses the outputs of separate classifiers independently trained on each modality. It is 
computationally very efficient but it loses fine-grained interaction among features. 

As reported by Lai et al. [2], thermal–visual feature fusion significantly improves recognition accuracy under poor 
lighting conditions and partial occlusions. Yu et al. [7] demonstrated enhanced anti-spoofing capability through the 
fusion of thermal and RGB data, as it enables the detection of abnormal heat distribution patterns that are absent in 
printed or replayed attacks.. 
Recently, large-scale deep models make use of attention mechanisms and cross-modal transformers that dynamically 
weight the contribution of each modality. These architectures let the system give more importance, for example, to 
thermal data when the light is very low or to visible data when the texture is important, reaching adaptive robustness. 

5.2 Anti-Spoofing Techniques 

Presentation attacks involving printed photos, video replays, and 3D masks are considered serious threats to 
biometric systems. Many of these attacks are inherently resisted by thermal imaging, where the artificial medium 





6 Samar S. Mahdi et al, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(4) 2025,pp.Comp 289–300

 

 

often lacks the physiological heat patterns from a human face. We do have advanced spoofing technologies, however, 
whether in the form of heated masks or thermal overlays, and of course require more advanced countermeasures. 
Some uses of anti-spoofing in thermal-sensitive systems involve: 
• Liveness Detection: There are micro-movement, blink patterns, and heat changes done to determine the presence of 

a live person.  
•  Physiological Feature Analysis: It identifies vascular features and thermal minutiae sites, which are barely man-

made.  
• Temporal Consistency Checks: Checking of thermal signature against time to detect the existence of unnatural 

stability or sharp events. Despite its importance already mentioned, the use of thermal imaging in the screening in 
the times of COVID-era was retold with contactless features and spoof-resistant features of the paramount 
importance [3]. Their contribution focused on how thermal-based liveness detection has been efficient within the 
scope of helping to promote health to the masses.  

 
In addition to that, a GAN-based synthetic technique of spoofing detection is considered to be a frontier technique. 
These systems can be trained by means of adversarial models that are intended to construct spoof attempts and detect 
them simultaneously in order to learn to detect tiny abnormalities in thermal patterns. Added this adversarial training 
to CNNs that augmented the frequency of detection rates under advanced spoofing conditions [10]. 
 
5.3 Limitations of Multimodal Fusion Systems 

The following are the challenges of multimodal fusion systems although they show some promising performances: 

• Sensor Calibration and Synchronization: Still, co-registration is a difficult process in space and time of thermal and 
visible data. 

• Computational Overhead: Deep architecture models, in particular fusion models, demand hefty processing. 
• The generalization can be restricted by the fact that the publicly available datasets about the scenarios of 

multimodal spoofing are rather rare. 

Future research needs to be directed at lightweight fusion architectures for edge deployment, standardization of 
benchmarks for spoof detection, and techniques for privacy-preserving fusion with minimum data exposure. 

6. Advances in Super-Resolution and Optimization 

Thermal face images very often come with low spatial resolution, limited texture, and noise artifacts due to sensor 
limitations and environmental conditions. These may degrade the recognition performance, especially in deep 
learning models that require rich feature representations. Recent works have focused on two complementary 
strategies: super-resolution techniques and optimization methods tailored for thermal data. 
 

6.1 Super-Resolution Techniques 

Super-resolution is intended to reconstruct high-resolution images from their low-resolution inputs to improve 
details and hence enhance feature extraction. Deep learning-based super-resolution models such as SRGAN and 
ESRGAN have been very effective in restoring fine-grained facial features in thermal images. In this regard, [14] 
demonstrated that the application of ESRGAN on thermal face datasets improved the recognition accuracy 
significantly by enhancing edge clarity and texture fidelity, recovering discriminative features like eye contours and 
vascular patterns critical to biometric matching. There also have been several recent multimodal SR schemes, which 
fuse thermal images with visible light data to guide the reconstruction process [13]. Suggested a hybrid SR 
architecture, which uses visible spectrum guidance to improve thermal resolution, which performs better than single-
modality SR. There is a trade-off in the use of SR though. Although the ESRGAN [14] algorithm is capable of 
dramatically improving the original recognition score of low quality data, it is computationally expensive, which 
increases the latency. This might rule out real time use in edge-device applications. Furthermore, super-resolving 
extremely noisy thermal images can sometimes introduce hallucinated artifacts that mislead subsequent feature 
extraction, potentially increasing False Acceptance Rates (FAR). The decision to use SR must therefore balance the 
expected gain in feature clarity against the cost in processing time and the risk of artifact generation. 

6.2 Optimization Methods 

Meanwhile, optimization techniques have been refined with the aim of enhancing the stability and generalization 
ability of model training on thermal datasets. Among them is the AdamW optimizer proposed by [10], which 
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decouples weight decay from gradient updates within the classic algorithm of Adam. In this way, overfitting can be 
avoided, and convergence speeded up in CNNs trained on noisy thermal inputs. Other works investigated learning rate 
scheduling, gradient clipping, and regularization strategies that stabilize the training in low-data regimes. These are 
particularly useful when the available thermal datasets are small or imbalanced, as is often the case in biometric 
research. 

7. CRITICAL ANALYSIS & COMPARATIVE DISCUSSION  

As earlier parts outlined the technical environment of thermal face recognition (TFR), synthesis of the crucial nature is 

needed to inform the selection of methods as well as to point out the gaps in research. The effectiveness of a TFR 

system is determined by a set of factors: accuracy in recognition, efficiency in computation, stability to real-life 

scenarios, and privacy issues. It will be a comparative analysis within the framework of methodological paradigms, 

with reference to the presented findings. 

7.1 Performance Drivers and Failure Modes  

The underlying difference between Traditional Machine Learning (ML) and Deep Learning (DL) can serve as an 

example of an essential trade-off. Conventional techniques (e.g. LBP/HOG using SVM) use manually defined features 

which are computationally efficient and understandable. They can handle low power hardware, and are better when 

data is sparse, compared to DL. Nevertheless, they do not perform with high accuracy to large differences in pose 

(even though thermal images are invariant to visible light), non-uniform changes in illumination (although thermal 

images are invariant to temperature), and when major physiological detail in the system is obscured (e.g. a mask over 

the vascular beds in the mouth and nose). Their accuracy limit is usually smaller because handcrafted features have 

low representational power.  

CNNs and Transformers are an example of DL methods that addresses these limitations by having to learn 

hierarchical, robust feature representations directly based on data. They are more accurate and generalizable in 

various situations. Their main failure modes are data-dependent: performance decays because of domain gap (e.g. 

models trained on synthetic data [18] fail on actual sensor data) and dataset bias (e.g. poor cross-ethnicity 

generalization as observed in [15]). They also need a large amount of computational resources and, without model 

compression, it is difficult to implement them in real-time on edge devices. 

7.2 Quantitative & Qualitative Trade-offs  

Table 2 brings to the fore a comparative evaluation of the principal TFR methods with inclusion of the metrics of the 

reviewer. The reported Accuracy, False Acceptance Rate (FAR) and False Rejection Rate (FRR) show a definite way of 

going: the higher the performance, the more costly it would be. Multimodal fusion is the most accurate and resilient to 

spoofing as the system integrates RGB data and thermal data, complementary and thus the most effective, but it is the 

most computationally complex method, is sensitive to sensor synchronization and privacy is doubled. 

The robustness column identifies contextual strengths. DL is resistant to illumination, and data shift, traditional ML 

resistant to certain noise but not to occlusion. Super-resolution (e.g. ESRGAN [14]) adds detail, but with latency and 

can create artifacts. Synthetic data generation [18] can mitigate the problem of data scarcity but again, it poses a risk 

of a realism gap. 
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Table 2 - Comparative Study of Thermal Face Recognition Strategies. 

Approach Category 

Typical 
Accuracy 

(Reported 
Range) 

FAR / 
FRR 

Profile 

Computationa
l Complexity 

Key Strengths 
Key Weaknesses & 
Failure Conditions 

Traditional 

ML (LBP+SVM, 

HOG+RF) 

85-92% 

Higher 
FAR under 
occlusion/
variation. 

Low 

Low cost; 
interpretable; 
efficient on edge 
hardware. 

Bad generalization; does 
not work with 
pose/expression 
change; limitation of 
manual features. 

Deep Learning 

(CNN) (ResNet, VGG 

on thermal) 

94-98% 

Lower 
FAR, but 
FRR can 
spike with 
noise/do
main shift. 

Medium-High 

High accuracy; 
robust to 
appearance 
changes; automatic 
feature learning. 

Large data 
requirements; low res / 
noisy data performance; 
large compute 
requirements. 

Specialized 

DL (YOLO for 

detection [12], 

SRGAN [14]) 

Varies (Det: 
>95% mAP) 

Depends 
on 
primary 
task 
quality. 

Medium 
(YOLO) / High 

(SRGAN) 

Solves specific 
bottlenecks 
(detection, 
resolution). 

Pipeline complexity; SR 
adds latency & potential 
artifacts. 

Multimodal 

Fusion (RGB-

Thermal 

feature/score fusion) 

98-99.5% 

Best 
overall 
balance, 
lowest 
spoof FAR. 

Very High 

Maximum 
robustness & 
accuracy; spoof-
resistant. 

Most expensive; 
requires calibration / 
positioning; complicated 
implementation. 

 

7.3. The Privacy-Performance-Computation Trilemma 

One of the major lessons of this analysis is a trilemma of privacy, performance and cost of computation that is 
implicit. Most systems that perform highly tend to use detailed physiological information (vascular patterns), which 
is a major privacy issue. Equally, high accuracy usually demands elaborate DL or fusion models, which is more 
expensive to compute. 

• High-Performance, High-Privacy: A highly detailed multimodal fusion system that uses thermal vasculature is 
based on providing the highest accuracy and maximum spoofing resistance but reveals sensitive health 
information and is computationally intensive. 

• Private, Low-Cost: A standard ML system based on gross thermal features is computationally inexpensive, and 
therefore provides privacy protection to a greater extent, but has lower accuracy and is susceptible to spoofing. 

• High-Performance, Low Cost (Compromised Privacy): Synthetic data to train a DL model is less costly to collect 
data and less invasive to privacy in training, although the resulting model still can hold sensitive attributes, and 
synthetic data may continue to fail to close the reality gap System architects will have to make these trade-offs 
according to specific constraints of the application (e.g., border security vs. office attendance. 

 

8. Challenges and Future Perspectives 

With the subsequent discussion elaborating on the comparative study in Section VII, the issues surrounding 
thermal-sensitive face recognition can be interpreted as being symptoms of the fundamental trade-offs. Although 
significant improvements have been made, thermal-conscious face recognition has a number of challenges that 
make its use not as common. Technically, thermal sensors are still expensive, sensitive to the environment and 
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usually deliver low resolutions of noisy images, which makes it a challenge to extract robust features and skews the 
cost-benefit analysis towards the simpler systems. Furthermore, the small scale and heterogeneity of publicly 
accessible datasets of thermal faces pose a negative influence on the generalization of deep models, which solidifies 
reliance on data of high-performance models. Practically, it is difficult to implement such systems in the real time 
because they involve high computation cost of multimodal fusion and super-resolution models which are major 
strategies to high accuracy especially in edge and mobile settings. Moreover, correct matching of thermal and visible 
modalities in dynamic scenes as well as resistance to advanced spoofing attacks are yet to be solved. There are also 
ethical and privacy issues, as the thermal images have a potential to accidentally expose sensitive health-related 
facts, which is more likely to occur in the case of more detailed physiological features that are required to achieve a 
higher level of security, and the imbalance of datasets can contribute to the biased performance of various 
demographic groups. Future studies should thus aim at creating lightweight and efficient models which can be 
deployed to real-world environments, utilizing synthetic thermal data generation to supplement training data and 
integrate explainable AI methods to enhance transparency and come up with standardized benchmarks to facilitate 
even and equitable evaluation and development of this area. 

 

9. Conclusion 

Thermal-aware FR is one of the latest biometric modalities created to be among the most powerful in responding to 
varying illumination levels, spoofing attacks, and other environmental issues. The paper has discussed concepts 
related to thermal imaging and a recent development in the field of machine learning and deep learning and 
established that multimodal fusion and super-resolution can contribute significantly to the performance of a system. 
In addition to description, we have given a critical comparison analysis where we analyzed the tradeoffs between 
accuracy, computation cost and privacy which form the design space of such systems and further improvement on 
the robustness and generalization of the models can be achieved by recent advancements in optimization 
techniques and synthetically induced data. However, there are still numerous issues regarding sensor constraints, 
the lack of data, and the ethical issues. To beat those, there must be an interdisciplinary response of computer 
vision, hardware engineering, and privacy law.  

In the future, lightweight architecture, explainability in AI, and benchmark standardization will be used to provide 
scalability to thermal-conscious biometric systems in practice. Thermal face recognition is at the core of the next 
generation biometric solutions due to the overall demand of having secure contactless authentication. 
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