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1. Introduction
Assume that the symbol A4 denote the set of all analytic functions h in the open unit disk U and defined by the

formula
h(t) =t + X2, b,t", (1.1

and satisfy the normalization conditions h(0) = 0 = h’'(0) — 1, where U = {t:t € C: [t| < 1}. Let
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the set of all univalent functions h € A withinU denote by §. According to the Koebe one-quarter theorem [6],

such that there exists an inverse function h~for every function h € §, satisfy
R (h@) =t ,(tenw)

and

1 (h()) =v (Ivl < vo(h),ve(h) = %),

where
h™t(v) = g(w) = v — b,v? + (2b%2 — b3)v3® — (5b3 — 5bybs + by )v* + -, (1.2)

For A function h € A ,in case of each one of the functions h and h™! (i.e h™! is a function inverse of h) are analytic
and injective functions in U, h is said to be bi-univalent in U . The set of all bi-univalent functions in U denoted by
¥ and defined as the form in (3.1).

The subject of subordination[13] is a mathematical dominance relationship between two functions, such as h and
f, we say that a function h subordinate to f in this case ,this relationship is written in the form h < f .This is
achieved if there is a function such as Z(t), that is analytic in the unit disk ,such that h(t) = f(Z(t)) and this
function has the following properties Z(0) = 0 and |Z(t)| < 1 for every t that lies in the unit disk U . Special case
that if the function 2 in U has univalent property, then

h<fe h(0)=0,

and

h(U) c f(U).

In this scientific article, we used an important polynomials in mathematics in general and important in geometric
function theory in particular , called Lucas-Balancing ,where (B, ) called its Balancing numbers for n greater and
equal zero, the first to introduce the topic of polynomials mentioned above were the researchers by Behera and
Panda [3]. The recursive formula B, ,; = 6B, — B,_; for n greater and equal 1 ,refers to the balancing numbers,
with the primitive value set at B, = 0. The following expression Cm/m is a sequence of the Lucas-Balancing
numbers, has garnered significant attention. It has a recursive relationship that takes the following form
Cpsq = 6C, — C,,_; for n greater and equal 1, and have a first term as C, = 0 and C; = 3. Formore details, we refer

readers to [7-10],[2,4,5,14,15,16]

Definition (1.1): ( Lucas-Balancing polynomials, [11]) A polynomial have the form C,(r) called a Lucas-Balancing
polynomials ,where r any complex number and n greater and equal to 2 , these polynomials are known by the

following relationship:

Co(r) = 61Coq (1) — Crp (1), (1.3)
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using recurrence relation given by (1.3) we easily obtain
C,(r)=1, ¢ @)=3r, C,(r)=18r2—-1, C3(r)=108r3—-9r. (1.4)

Other polynomial families are similar to the Lucas-Balancing polynomials, in that they can be generated using

qualitative generating functions. Next lemma is considered as a first example of a generating function:

Lemma (1.1): [11] Lucas-Balancing polynomials have the following generator function

1-3rt
1-6rt+t2”

R(r,t) = Xpzo Cu(Mt™ =

(1.5)

2. Estimation bounds and Fekete-Szego problem for functions of the class NH Z(a, B, w, R(r, t))

Definition (2.1): A function h(t) of the form(1.1) that belonging to X is said to be in the subclass
NHy (a, B, w,R(r, t)) and B,a are greater and equal Zero, w € C\ {0} and

1 2((B+1)(a+D)? . o _
reC\ O,is\/w(ﬁﬂ) [T+ (et 02— (et Gar D) . If the following conditions hold true:
1 th' @) (hO\P the' (t) ' B
1+ Z[(l ~ ) O (MN g (14279 (w(0) - 1] <R 1), 2.1)
and
1 vg' @) (9P va" @\ e \B
1420 - 022 (1) 4 o (14+29) (¢ ) - 1| < =), 2.2)

where g is the inverse of h and it is of the form (1.2).
we have the following definition If we chose w = 1 and a = 0 in Definition (2.1):
Definition (2.2): A function h(t) € X of the form(1.1) is in the subclass AH; (B, R(r,t)), B greater and equal zero

1 2(B+1) . . s
andr € C\ {0, + 3 /m}, if the following conditions hold true:

t1=Bn'(t)

TOTF < R(r,t), (2.3)

and
W pe ) 2.4
9()1F vl (24)

where g is the inverse of h and it is of the form (1.2).

We have the following definition If we chose @ = 1 in Definition (2.1):
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Definition (2.3): A function h(t) € X of the form(1.1) is in the subclass ZHy (8, w, R(r, t)) for f greater and equal

4(B+1)2
8(B+1)2-w(B+2)(2B+1)

zero,w € C\ {0}andr € C\ {0, ig\/ }, if the following conditions hold true:

1 [+ 58 00 1] <30
and
1 [+ 22 o - <aen

where g is the inverse of h and it is of the form (1.2).
Remark (2.1):

1) If we takea = w = 1and B = 0 the class N}[Z(a,[f, w, R(r, t)) reduce to the class ;3C5 (R(x,z)) which was
introduced by 6ztUrk and Aktas [12].

2) If we takea =B = 0and w = 1, the class N}[Z(a, B, w, R(x, t)) reduce to the class LBSE*(R(x, z)) which was
introduced by 6ztUrk and Aktas [12].

3) If we takea =0, and w = § = 1the class NHy(a, 8, ,R(x,t)) reduce to the class €£% (R(x,z)) which was
introduced by Arzu and Akgiil [1].

Theorem(2.1): If the function h(t) EN}[E(a,ﬁ, w,R(r, t)), a,f are greater and equal zero, w € C\ {0}

2(B+1)2(a+1)?
4w(B+1)(a+1)? H§=1(ﬁ+2)—((3a+1)+a+ﬁ)

andrE(C\{O,ig\/ }.Then

|b2| < 3lwllr|y/2]37] 2.7)

)

j‘(ﬁ(a+1)(ﬁ+1))2+9[o)(ﬁ+2)(1+a+(3a+1)ﬁ)—(«/Z(a+1)(ﬁ+1))2]r2‘

and

3lwllr| lw[?9|r|?

b S )
1bs] (B+2)2a+1)  ((p+1)(a+D)?

(2.8)

and for somen € R,

|bs — nb3]|
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3lwl|r]

(B+2)(2a+1) if
‘(\/E(ﬁ+1)(a+1))2+9[(u (B+2)(1+a+(3aB+B))—(\/Z(B+1)(a+ 1))2]r2 ‘

—nl<
11-nl< 18lw|(B+2) 2a+1)Ir2|
<A 54|w|?|7r]3|1-7] ’ (2:9)

2 2 l
‘9[w(ﬁ+2)(1+a+(3aﬁ+B))—(\/Z(B+1)(a+1)) ]r2+(ﬁ(p+1)(a+1)) ‘

1 |> ‘(\/E(,B+1)(a+1))2+9[w(ﬁ+2)(1+a+(3a+1)ﬁ)—(ﬁ(ﬁ+1)(a+1))2]r2‘
_rl =

18|w|(B+2)(2a+1)|r2|

Proof: Assume that h € N Hy(a, B, w, R(r, t)). By virtue of Definition (2.1), form the relation (2.1) and (2.2) we can

write that
'@ (h))P O YN
143 [(1 sy (77) +a(1+ o) )(w©®)" - 1] = R(r,m(®)), (2.10)
and
1 vg' @) (gw)\P vg'' () / B _
1+s [(1 ~ D6 (52) +a(1+ ) ) (g'@)” - 1] = R(r,n(®)), (2.11)

where m,n € U are given to be of the form
m(t) = myt + myt? + myt3 + -, (2.12)
n() =nv +n,v? +nzvd + -, (2.13)
and
m(0) = n(0) =0, Im(@®)| < 1, |In(v)| < 1.1tis known thatif fort,v € U,

Im(®)| = |2k, mtt| < 1,

and

@)l = |, pvi| < 1.
Thus

Im;l <1, (2.14)
and

In;| < 1. (2.15)

Foralli € N. Now, some basic calculations yield that

, B i
%[(1 —a) th'©) (h(t)> + a(h’(t))ﬂ (1 + th (t)) - 1] +1

h) \ t h'(t)
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= Co(r) + [C1 (r)m1]t + [C1 (r)ym, +C, (r)m%]tz + (2.16)
and
1 g (g | B( vg"(v)) _
w[(l a) o) ( - > +a(g(v)) 1+g’(v) 11+1

= Co(r) + [C,(r)ng]v + [C,(ny + Co(rIn2]v? + -, (2.17)

Equating coefficients in (2.16) and (2.17), yields

[(B+ D(a+D]b, =C,(r)my, (2.18)

2[(B +2)@a +1D)by +3((B - DB +DBa + D)bE| = ¢, (Im, + C,(ImF, (219
—=[(B + D@+ )b, = €, Gy, (2.20)
and
2[(B +2@a + 1)@b3 - b)) +2 (B — DB +DBa + D)B| = €, (In, + C,(Ind, (2.21)
from (2.18) and (2.20), we have
m, = —n,, (2.22)
and

2((B+1)(@+1)”
20} 2 [, ()2 (m? +nd). (223)
By summing of the equations (2.19) to (2.21), we obtain

(B+2)(@+Ba+1)B+1) b

w

5= C,(r)(my +ny) + C,(r)(m +ni). (2.24)

Substituting form (2.23) that value (m? + n?) in the equation (2.24), we deduce that

[(ﬁ+2)(zx+(3a+1)[s’+1) _ 2((B+D(@+D) Co ()

w w?[C1(M)]?

]bZ = C,()(my +1ny). (2.25)

Which yields

: 3lwl|rly/2]37] :
Jl(ﬁ(ﬁ + D@+ D) +9[(@+Gap+ ) + Do +2) - (VA + D@+ D) |r?

b, | <

subtract the equation in (2.21) from the equation in (2.19), we have
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2
HEBCD) = 0, () (my — 1) + () — ). (2:26)

Then in view of (2.22) and (2.23), equation (2.26) becomes

(my —ny)C(Mw  (mE 4+ n)[C,(r)]*w?

b3 = + 7"
Thus applying (1.4), we get
byl <3 —L | 49—t e,
31 = T +2)@a+D) ((B+D(@+1)
It follows form (2.25) and (2.26), we get
b, — nbz — w(my—ny)C1(r) (A-nw?(ma+ny)[C1 (M]3
3 27 2B+2)a+D) | w(a+(B+1)Ba+D)[C1(MI2(B+2)-2((B+1)(a+1) C2(r)
1 1
= 0G(@) [(‘p(’”) T 1))’"2 + (w(”' T Yoo 1))”2]'
where

w(1-n)[c1 (M]3
wB+2)[C1 M2 (1+a+BBa+1))-2((a+1)(B+1)) C(r)

Y, x) =

In view of (1.4). Conclude that
lw]lC1 ()

. 1

< < —

|b3 _ T)b%| < (B+2)(2a+1) if 0= |1l)(7], r)l — 2(B+2)(2a+1)
2lwllc, MY D if ol = .

2(B+2)(2a+1)
This completes the proof of Theorem (2.1).

Therefore the following fact is a consequence of the above theorem by settingw = landa =0:

Corollary (2.1): If (t) given by (1.1) is in the class AHz (8, R(r,t)), f = 0 and r € C\ {0, +2 /%} Then

|b | < 3|r|+/2137]
2

= JI(=3p2-5-2)9r2+2p2+4f+2|
and

3r| 9|r|?

Ibs| S(,8+2)+,32+2,B+1’

and for somen € R,
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3l .
o
|(-382-58-2)9r2+2p%+4p+2|
(B+2)18|r?|
54|1-lIr|® .
[(-3B82-58-2)9r2+2B2+4B+2| lf
11— 77| > |(=3B%-5B8-2)9r?+2p2%+4p+2|
- (B+2)18]r2|

1-nl<

|by — nb3| <<

The following corollary consequence by setting @ = 1 in the above theorem :

Corollary (2.2): If h(t) is in the class ZHy (B, w,R(r,t)) given by (1.1) , B=0, w € C\{0} and

1 4(B+1)?
recC\ {0, *3 JS(B+1)2—w(B+2)(2B+1)} . Then

3lwl|r|+/2]37]

JI2w2BZ +58+2) —16(B% + 2B + 1)]9r2 + 8(B% + 2B + 1)|

b, | <

and
low||r] lw]? 9|r|?
[bs| < +— ,
B+2) 4B*+28+1)
and for somen € R,
( lowl 7]

B+2) "
[[2w(2B% + 58 + 2) — 16(B? + 28 + 1)]9r% + 8(B% + 2 + 1)|
lw|(B + 2)54[r?|
54|lw[?[1 =7l .
ZoR T35+ — 160 + 28 + D92+ 8 + 28+ D1 7
[[2w(2B% + 58 +2) — 16(B? + 28 + 1)]9r% + 8(B% + 2 + 1)|
lw|(B + 2)54[r?|

1-nl<
|b3_77b%| <

1—-nl=

Remark (2.2): If we take the following options in Theorem (2.1).

1) a =6 =1andw = 1, then we get the results established by 6ztUrk and Aktas [12].
2) a =6 =0andw = 1, then we get the results established by 6ztUrk and Aktas [12].
3) a=0andA = w =1, and then we get the results established by Arzu and Akgiil [1].

3. Boundary inequalities for coefficients of functions in the class AYA; (I,y, R(x, 1))

Definition (3.1): A function h(t) of the form(1.1) that belonging to £ is said to be in the subclass

(B+DE+1)” , : .
AYAs; (8,9, R(r,t)) and 920, r€C\{0,+ ( Jif the foll dit
YA (B (r,t))and B r € C\ _3\/2((/3+1)(19+1))2—%(2+19(19+3)+(19+1)213) if the following conditions

hold true:
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RN tn' () tn' (t) th''(©) _ th'(D)
(T) o T B [1 + 19( ne) 1) T o ho <R(0),

and

g(V)) vg' ) [ (vg’(v) ) vg'' (v) vg’(v)]
= - e I
( ) o TR Ut o~ w | S RO,

where g is the inverse of h and it is of the form (1.2) .

Remark(3.1):

1) If we take f =1and 9 =0 the class cﬂycﬂz(ﬁ,ﬁ,ﬁ(r, t)) reduce to the class ;5Cy (R(x,z)) which

introduced by 6ztUrk and Aktas [12].

2) If we take § =0and 9 =0, the class cﬂycﬂz(ﬁ, 9, R(r, t)) reduce to the class LBSﬁ(R(x, z)) which

introduced by 6ztUrk and Aktas [12].

3) If we take f=0and 9 =1 the class cfl‘ycﬂz(ﬁ,ﬁ,ﬁ(r, t)) reduce to the class GﬁB(R(x, z)) which

introduced by Arzu and Akgiil [1].

Theorem(3.1): If the function h € AYAy(B,9,R(r,1))
2
r €\ O,il (W+1)(B+1)) Then
3 z((g+1)(19+1))2—(1+‘23(19+3)+ﬁ(19+1)>

|b | < 3137l Ir]
2 - )
\/|9E(2+19(19+3)+2(19+1)ﬁ)—2((19+1)(B+1))2]r2+((19+1)(ﬁ+1))2|

and

37| 9|r|?

bs| < ’
|bs| @+2)2B+1)  (W+1)(B+1))°

and for somen € R,

|b; — nb3|
317
®+2)(2B+1) if
‘9[(1+%(19+3)19+(19+1)B)—(\/§(19+1)(B+1))2]r2+((/3+1)(19+1))2|
- 11=nl< 98 +2) 2B+ 12|

27173 11-7l

‘ [1+—19(19+3)+(19+1)B (\/—(19+1)(B+1)) ]r2+((ﬁ+1)(19+1)) ‘

| [1439(0+3)+B (9 +1)-2((®+1)(B+1)) ]r +H{(B+DW+1)) |
9(2B+1)(I9+2)|r?|

[1—n| =

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

was

was

was

and

Proof: Assume thath € AYAy, (ﬁ, 9, R(r, t)). By virtue of Definition (3.1), form the relation (3.1) and (3.2) we can

write that



10 Hawra Ali Wahid, Zainab Aodeh A. Mohmmed, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL.17.(3) 2025,PP.MATH 106-121

r(\? th’(t) m (t) th'(t) th! (£
(T) h(t) +h [ +9 ( h(t) ) n(®) ] R(r,m(t)), (3.6)
and
gw) 19vy’(V) vg'' ) vg' ) vg' ()
( v ) oo B [1 T +19( 9@ ) 9@ ] R(r,n@)), (3.7)

where m,n € U are given to be of the form
m(t) = mit + myt? + mgt3 + -, (3.8)
n() = nv + nyv? + ngvd + -, (3.9)

and m(0) = n(0) = 0, |m(t)| < 1, |n(v)| < 1.1Itis known thatif for t,v € U,

n
Zmiti <1
i=1

Im@®)| =

and
n()| = X, niv| < 1.
Thus
Im;| <1, (3.10)
and
In;| < 1. (3.11)

Foralli € N. Now, Some basic calculations yield that

! 19 n ! !
th'(t) (@) ‘B [1 N th"(t) _th ®) i (th ®) B 1)]

h(t) h'(t) h(t) h(t)
= Co(P) + [C,(Imy ]t + [C,(Im, + C,(ImZ] 2 + -+, (3.12)
and
vg' W) (g)\’ [ vg" () vg'(w) (vg'(v)_ )]
90 ( > TP ew e T\ !
=Co(r) + [, ]v + [C,(M)ny + C,(rIn?] v2 + - (3.13)

Equating coefficients in (3.12) and (3.13), yields

@+ + b, =C(r)my, (3.14)
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(© + 2)(2B + Db, + LH2E2O2CED] 0 _ 0 (Y, + €, (M, (3.15)
—(® + (B + Db, = G,y , (3.16)

and
—(8 +2)(2B + Dby + T 3 ¢ (o, + €, Com3. (3.17)

From (3.14) and (3.16), we have

m, = —n,, (3.18)

and
2(0 + 1)(B +1))°b2 = [C,()]2(m2 +n?). (3.19)

By summing of the equations (3.15) to (3.17), we obtain
[ +3) +28@ + 1) + 2]b3 = C,(r)(my + ny) + C,(r)(m? + ni). (3.20)

Substituting form (3.19) that value (m? + n?) in the equation (3.20), we deduce that

2
V2(@+1)(B+1)) C2(r)
2+ 0430+ @0+ 2p - OISOy, +m). 320
Which yields
Ib.| < 3|r|+/137]
21 =

\/|9 F@+9@+3)+200+1p) —2(@+ D@+ D)’|r2 + (@ + DB + )| ’

we subtract the equation (3.17) from (3.18), we have
20 +2)(2B + D (bs — b3) = C;(N)(my — ny) + G (r)(mf —n). (3.22)
Then In view of (3.18) and (3.19), equation (3.22) becomes

(my —np)Ci(r)  (mf +nd[C; ()]

T+ DD Awr DE D)

Thus applying (1.4), we get

i |7|?

@W+2)28+1) 9 (@ +1)(@B+ 1))2'

|bs| <3

It follows form (3.21) and (3.22), we get
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2 C1(r)(my-ny) (a-m[c1 (M]3 (ma+ny)
L 2@BD@D) (g ()]2(2+ (92430)+8(20+2)~(VEE+D©+D) ()

b; —nb

Yo+ (w01~ 5,

= ¢, [(¢(n.r) + 20+ D2+ 1)

1
200+2)2+1)
where

A -G mI?
[C.NI2Q2+9 (9 +3) + 20 + 1DB) —2(@ + DB + 1) C,()

Y,r) =

In view of (1.4). Conclude that

[ laor i 0< i)l < 1
|b3_nb%|S{I(ﬁ+2)(2'B+1) 2(19+2)1(2ﬂ+1)
k2|C1(T)||¢(77,r)| if W= TTDEETTD

Thus the proof is complete m
Remark (3.2): Suppose that we take the following options in Theorem (3.1).

1) f = 1and 9 = 0, then we get the results established by 6ztUrk and Aktas [12].
2) f = 0and 9 = 0, then we get the results established by 6ztUrk and Aktas [12].
3) B = 0and 9 = 1, then we get the results established by Arzu and Akgiil [1].

4. Fekete-Szego inequality and coefficient bounds for the class TA; (1, R(x, t))

Definition(4.1): We say that a function g(t) of the form(1.1) that belonging to £ be in the subclass

1 1+3u-2u? . . .
TAs (,R(r,t))for0 <y < 1landr € C\ {0, i;J(_12H452;H'§_15u2)+4ﬂ+1)}, if the following conditions hold true:

th! (©)+(2u2-u)t2n"’ ()
4(u—p2)t+@u2-pitg’ ©)+Q2u2-3u+1)h(t)

< R(r,t), (4.1)

and

vg' W+2u?-p)v?g" ()
4(u—p2)v+Q2a?-pvg' W)+2u?-3u+1)gw)

< R(r,v), (4.2)

where g is the inverse of h and it is of the form (1.2).

Remark (4.1): The class TAy (1, R(r, t)) reduce to the class ;585 (R(x, z)) which was introduced by 6ztUrk and

Aktas [12] If we take u = 0 in the previous theorem .

. . 1 (1+3u—-2u?)
Theorem(4.1): If the function h € T Ay (u,R(x,t)) ,0<pu <1 and r € C\ {O, + 3\/(—12u4+28u3—19u2+4u+1)} . Then
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|b,| < SN (4.3)

— JI12p*—28u3+19u2—4u—-1]9r2+(1+3u—2p2)|’

and

37| 9|r|?
<
Ibs| < 2(2u2+1) + (1+3u—2u2)’ (4.4)

and for somen € R,

3|r| ,
2(2u2+1) lf
[[12p*-28u3+19u2—4pu—1]or2+(1+3u—2u2)|

1—nl<
- (2p2+1)18|r2|
b2
|b3 nb2| S \ 27|T|3|1_7l| lf ) (45)
[[12u*—28u3+19u2—4u—1]9r2+(14+3u—2u2)|
11—y > [[12p*-28u3+19u2—4pu—1]or?+(1+3u—2p2)|

(2u2+1)18|r2|

Proof: Assume that h € TAy, (1, R(r, t)). By virtue of Definition (3.1), form the relations (4.1) and (4.2), we can be

write that

th! ()+(2p?-p)t2n"' ()
4(u-p2)t+u2-wtg’ () +@u2-3u+ D) = R(r, m(t)) ! (4.6)

and

vg' W)+(2u?-p)v?g" (v)
4(u—p2)v+Qa?-pvg’ W)+2u?-3u+1)gWw) =< R(r,n(v)), (4.7)

where m,n € U are given to be of the form
m(t) = myt + myt? + myt3 + -+, (4.8)
n() = v +n,v? + nyv3 + -, (4.9)

and m(0) =n(0) =0, |m(t)| < 1, |[n(v)| < 1.Itis known thatif for t,v € U,

n
Im@®)| = Zmiti <1,
i=1
with
n
In(v)| = Znivi <1
i=1
Therefore

lm;l <1, (4.10)
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and

In;l < 1. (4.11)
For all i € N. Now, Some basic calculations yield that

th'(t) + Qu? — wt?n"'(t)
4(u —p2)t + Qu* —witg'(t) + 2u? — 3u + 1h(t)

=Co(r) + [C,(r)my]t + [C, ()M, + C, (r)m%]tz + (4.12)

and

vg'(v) + 2u* — Wv?g" (v)
4w —p2 v+ Qa? —wvg' () + Qu? —3u+1gv)

= Co(r) + [C,(rIn ]t + [CL(rIn, + C,(rIn?]t? + ---. (4.13)

Equating coefficients in (3.12) and (3.13), yields

1+ 3u—2u®)b, = C,(r)m, , (4.14)
(12u* — 28u3 + 11u? + 2u — 1)b2 + (4u? + 2)b; = C,(r)m, + C,(r)m2, (4.15)
—(1+3u—2u?®)b, = C,(r)ny, (4.16)

and
(12p* — 28u3 + 19u? + 2u + 3)b3 — (4u? + 2)b; = C;(r)ny + C,(r)n?, (4.17)

from (4.14) and (4.16), we have
m, =-n,, (4.18)
and
2(1 + 3u — 2u?)?b2 = [C,(1)]?(m? + n?). (4.19)
By summing of the equations (4.15) to (4.17), we obtain
(24u* — 56pu3 + 30u® + 4u + 2)b2 = C,(r)(m, + ny) + C,(r)(M? + n?). (4.20)
Substituting form (4.19) that value (m? + n?) in the equation (4.20), we deduce that

2(1+3u-2p2)2C,(r)

(24p* — 563 +30u2 +4pu+2) — T ]b% = C,(r)(m, +ny), (4.21)

which yields
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3|r|+/137]

JIT2u* = 2813 + 1947 — 4u — 11972 + (1 + 3u — 2u%)|

|b,| <

we subtract the equation (4.17) from (4.18), we have

42p* + 1)(b; — b3) = C,(r)(my — ny) + C,(r)(mf — ni). (4.22)

Then In view of (4.18) and (4.19), equation (4.22) becomes

y _ G@my =) 6, @)1mE + )
3T aur+1)  2(143u—2u2)?"

Thus applying (1.4), we get

3|r] 9|r|?

< .
Ibs| < 22u2+1) (1 +3u—2u?)

It follows form (4.21) and (4.22), we get

be— b2 = C;(r)(m; —ny) n [P =n)(m; + 1)
3T M02 = 4Q2u? + 1) (24u* —56u3 +30u% + 4u + 2)[C,(1)]? — 2(1 + 3u — 2a2)2C, (1)
= CIT(T) [(l/)(r),r) + 2(2u12+1)) m, + (w(n’ )= 2(2u12+1)) nz] ’
where

[C; (]2 —1n)
(12p* — 28u3 + 152 + 2u+ D[C,(r)]? — (1 + 3u — 2u?)%C,(r) "

Y, =

In view of (1.4). Conclude that

[C, (I
{2(2#2 +1)

UG @Iw@.n! if o,

1
if 0< Y| €< 55—
by — nb2| < e TCTES)

1
> 00
Ml = 2202+ 1)

Thus we have the required result .

Remark (4.2): We obtain the result that introduced by 6ztUrk and Aktas in [12] when we take the option z = 0 in
Theorem (4.1).
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