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A B S T R A C T 

In this paper, we introduce a novel generalization of Weyl's theorem of bounded linear 
operators, which dented by  (   ) and (    ).  Moreover, we demonstrate that this 
generalization encompasses and extends the properties (  ) and (   )  by the researchers in 
[1]. Our approach utilizes key characteristics of the relatively regular alongside the properties 
of constrained operators to explore and verify the proposed generalization. Several 
illustrative examples are provided to support the theoretical results and to highlight the 
applicability of the presented theorems.  
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1. Introduction 

The space   represents an infinite dimensional Banach space. The following  notations are used in this paper:    ( ) 
is a space of all bounded linear operators on  ,       ( )   , then    ( ),  ( )   ( ),  ( )         ̇(  )      ̇( ) 
mean the  spectrum, the resolvent, the null space , the range, the kernel and the nullity of  , respectively. The finite 
ascent and finite descent of  operator    ( ) denoted by  ( )  and  ( )  are defined       , ⋃      

    
      and smallest     , ⋂      

     (  ), respectively [2].  For each operator     ( ) , the following 
statements are always hold:    :     

  ( )    leads to    ̇( )   ̇( ) ; 

 ( )    leads to    ̇( )   ̇( ) ; 

 ( )   ( )    leads to       ̇( )   ̇( ) ; 

 ̇( )   ̇( )    and  ( ) or  ( ) is finite leads to    ( )   ( ). 

Here, in this work, we use the notation    ( ) as the space  
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   ( )  *   ( )     ̇( )    ̇( )    + . The classes of all upper semi Fredholm operators    
( ), all lower semi-

Fredholm               
( ), all semi Fredholm operators    

( ) and all Fredholm operators are defend in the 
following, respectively [3] 

  
( )  *   ( )    ̇( )          ( )            +   

   
( )  {   ( )    ̇( )   } 

   
( )    

( )    
( )   

   
( )  {   ( )    ̇( )      ̇( )         ( )             }   

  ( )    
( )    

( )  

Additionally, the index  of        
( ) is defined as     ̃( )   ̇( )   ̇( ). Therefore, the classes   

 ( ) and   
 ( ) 

are defined as follows   

  
 ( )  {    

( )    ̃     }     
 ( )  *    

( )    ̃( )     +.  

On the other hand,  let us consider the following classes associate with   operator as follows [4] 

    
( )  {    , -    

( )       }  

   
( )  {    , -    

( )       } 

  ( )  {    , -   ( )      } 

where, the notations   , - ,    
( ),    

( ) ,    
 ( ) and     

 ( ) represent   , -                  ,  upper 
semi  -Fredholm Fredholm,  lower  semi  -Fredholm Fredholm and    -Fredholm operator,  respectively.  In the 
same context, we define the following classes  

     
 ( )  {     

( )    ̃( )     } 

    
 ( )  {     

( )    ̃( )     }  

 Clearly,    ̃( , -)     ( ) .  

Below, we provide a concise overview of certain definitions and notations that will be used in this article [5] 

 Weyl operators class:  ̇( )  *   ( )    ̃( )   +. 

        operators class:   ̇( )  *    ( )    ̃( )   +. 

 Spectrum:  (  )  *                          +. 

 Defect spectrum:     ( )  *                           +. 

 Approximate point spectrum:    (  )  *                             +. 

 Weyl spectrum:   ̇( )  *            ̇( )+ . 

   Weyl spectrum:    ̇ ( )  *             ̇( )+ . 

 Weyl essential approximate point spectrum:     
( )  *              

 ( ) +. 

 Weyl essential subjectivity spectrum:     
( )  *              

 ( )  +. 

   Weyl essential approximate point spectrum:      
( )  *               

 ( ) +  

   Weyl essential subjectivity spectrum:      
( )  *               

 ( )  +. 

 Set of all upper semi Browder operators:   ( )  *    
( )   ( )    +. 
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 Set of all lower semi Browder operators:   ( )  *    
( )  ( )   + . 

 Set of all Browder operators:  ( )    ( ) ⋂   ( ) . 

 Browder spectrum:   ( )  *             ( ) +. 

   
( )  *   ( )                              +  

   ( )  *   ( )                          +  

 Class of left Drazin invertible:   ( )  *   ( )  ( )         (  ( )  )          + [6].  

 left Drazin invertible spectrum:    ( )  *             ( )+ [1].  

Now, the notations  (  ) and   (  ) represent the set of all poles of the resolvent of   and the set of all poles of the 
resolvent of   of finite rank, respectively [7]. A     (  ) is called left pole of  , if satisfy        is left Drazin 
invertibl e and that     (  ) is a left pole of T of fini te rank if    is a left pole of   and  ̇(      ) < ∞. The 
notations   (  ) represents set of all left poles of   , and   

 (  ) represents set of all left poles of   of finite rank[8]. 
For each    ,    ( ) is the set of isolated points of  .  ( ) is the set of all isolated eigenvalues of  ,  the sets   ( )  
and   

  are defined, respectively    ( )  {     ( ( ))    ̇(     )   }       
 ( )  *     (  )   

 ̇(     )   + [1]. With regard to the literature review and previous studies, the key can be finding can be 
summarized as follows:  An operator    ( )  satisfies the following theorems and properties under assumptions  

Source Theorem (property)  Associated condition   

[9] Weyl's theorem  ( )   ̇ ( )    ( ) 

[9] a-Weyl's theorem   ( )     
( )    

 ( ). 

[9] Generalized Weyl's Theorem   ( )      
( )    ( ) 

[10] Browder’s theorem  ( )   ̇ ( )    (  ) 

[10] 

 

a- Browder’s theorem   ( )     
( )    

 (  ) 

[10] Generalized Browder’s theorem  ( )    ̇ ( )   (  ) 

[10] 

 

Generalized a- Browder’s Theorem   ( )      
( )    ( ) 

[11] Property ( )   ( )     
( )    (  ) 

[11] Property (  )  ( )      
( )   ( ) 

[1] Property (  )  ( )   ̇ ( )    
 (  ) 

[1] Property (   )  ( )    ̇( )    ( ) 

 

The contributions of  of this work is to establish a new generalization of Weyl’s theorem by uti lizing the properties 
of pseudo-operators. Throughout this research, the proposed generalization is thoroughly discussed, and several 
new properties and extensions within the framework of Weyl’s theory are introduced. This approach not only 
broadens the theoretical foundation of Weyl’s theorem but also provides a deeper analytical perspective on the 
spectral behavior of linear operators. 
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2. Theory and formula 

The pseudo inverse or relatively regular operator plays a significant role in the study of finite or infinite dimensional 
spaces, particularly when traditional operator inverses do not exist.  The pseudo inverse is widely applied in control 
theory [12], Markov chains, and the analysis of dynamical systems[13]. This section outlines the key definitions, 
properties, and conditions associated with the pseudo inverse, establishing the theoretical groundwork necessary 
for the subsequent development of the proposed results.  

An operator    ( )  is said to be pseudo invertible or relatively regular  if the exists     ( )  , which it satisfies  
          for all        ( )   and       for all       ( ) [14].  In the context,     ( ) is said to be a    
relatively regular when ,  there exists         * + , such that             and            .  

Proposition 1. [15] Let      
( ) . Then   

    ̇( )  ⇔          ( )  and          .  

      
 ( ) ⇔    is  a bounded below and          .  

     
 ( ) ⇔    is  a            and          . 

 

Proposition 2. [15] Consider     ( ) , then    ( )   ( )    if and only if there exists        ( ) and      
satisfies             and          ,         ( ).  

The following notations are defined as follows:  

    
( )  *   ( )                          + . 

    
   ( )     

( )     
( ) . 

     
( )  *   ( )                           + . 

    
   ( )  *     

( )                      ( )+. 

     
   ( )  *      

( )           ( )+ 

        
( )  *              

   ( )+  

         
( )  *               

   ( )+   

    
 ( )  *     

( )                           ( )   +  

      
( )  *              

 ( )+  

     
 ( )  *      

( )                         ( )   +  

       
( )  *               

 ( )+ 

Corollary 3. [15] Consider   is a Banach space. Then,  

  ̇( )     (   
 ( ))  

   
 ( )     (   

   ( ))  

   ̇( )     (    
 ( )) 

In this paper, a necessary and cri tical assumption is required to ensure the validity  of the result. This assumption is 
defined as the space X  has property      if,      

( )     
   ( ). 
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3. Result discussions 

This section is dedicated to introducing a novel spectral properties associated with Wyle’s -type operators. Several 
fundamental characteristics of these properties are analyzed and derived, leading to meaningful generalizations of 
Wyle’s theorem. Moreover, we investigate sufficient conditions under which these properties are satisfied.  

Definition 1. [8] An operator    ( ), is considered to have the property (  ), provided it satisfies  ( )   ̇ ( )  
  
 ( ), and considered to have property (   ) provided it satisfies  ( )    ̇( )    ( )   

 

Definition 2. An operator    ( ) , is said to have property (   ), if  

  ( )      
( )    

 ( ), and have property (    ) if 

  ( )       
( )    ( )   

Lemma 4. Let   be a Banach space which it has property      .  If operator 

    ( ) is a belong to class      
 ( ), and  ̇(  )  is finite then   belong to the class    

 ( ) .  

Proof: If       
 ( ) , then       

( )                        ( ). But the space   satisfies the property     , 
from  Corollary 2.3 and (Lemma 3.2. [1]), the desired result can be concluded.  

Theorem 5.  3.2 For any      ( )   that satisfies property (    ), and   satisfies      property, it necessarily 
satisfies  property (   ). 

Proof: Suppose that the operator   has (    ) property, this means from Definition 1.   ( )       
( )    ( )    

Let    ( )      
( ),then     ( )       

( ) , and   is an eigenvalue of   isolated in   ( ) . By using the 
assumption that the space    possesses the property      , from Corollary 3. , we obtain that       is a Wyle 
operator and   ̇(     )   , therefore, 

     
 ( ).  

Conversely, let     
 ( ) , then    is an eigenvalue of   isolated in   ( ) and   ̇(     )   , but      satisfies 

property (     )  then     ( )       
( )    and         

( )  . Since  ̇(     )   , this leads  from Lemma 
4.        

( ). On the other hand,since     ̃(    )    , then       ̇(    )  and    ( )   ̇ ( ). 
Finally, we have  ( )      

( )    
 ( ).  

In general, the converse of the above theorem does not hold as shown by the following examples.  

Example 1. 

 Let us define an operator   on a Banach space      ( )    ( ) as  follows 
 (          )    .  

  

 
 
  

 
 
  

 
  / , then the space    has the property       and the bounded linear operator    

satisfies     ( )   * +,      ( )   * +,       ( )  * +,    
 ( )      and   ( )  * + , therefore,  ( )      

( )  
  
 ( )  but  ( )       

( )    ( ) . Then,   satisfies property (    )  but does not satisfies property (   ).      

Theorem 3.3  6. Let   be a Banach space which satisfies              . Then, for each    ( ) , satisfies property 
(    ), if and only if it satisfies   generalized Browder’s theorem and  ( )    ( )    ( ). 

Proof. Assume that the property (    ) of   is satisfied,  then 

  ( )       
( )    ( ) , if we take    ( )       

( ) this gives  ,      (  ( )) and          
 ( )  but 

Giving that the space    possesses the property      , from Corollary 3. immediately yields the result      
   

 ( )  , hence from (Theorem 2.8.[16]) we have     ( ) and from (Corollary 2.7. [1] )   ( )    ( ). This 
leads to  ( )       

( )    ( ). Now, Let     ( ), but,    ( )    ( )  is always hold, then     ( ) and   
satisfies  generalized Browder’s theorem and  ( )    ( )    ( ).  
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Conversely, Assume that   satisfies generalized Browder’s theorem and  ( )    ( )    ( )  , then   ( ) 
   ̇ ( )    ( ). Therefore,  ( )    ̇ ( )    ( ) and    satisfies property (    ). 

Similarly to Theorem 6., we have the following result concerning property (   ), which it is gave without proof. 

Theorem 7. 3.4 If      ( ) , and   has meets property      then,    satisfies meets property (   ), if and only if   
Browder’s theorem and   ( )    

 ( )    
 ( ). 

  Theorem 8.   3.5 Let    ( )  and   has property      . Then, the following statements are equivalent:  

i.   meets property(    )  

ii.   meets property (   )  and   ( )   ( ). 

Proof: Consider that   meets property (    ), then from  Theorem 3.1 and Theorem  3.3      satisfies property 
(   ) and   ( )   ( ). Conversely, consider that   meets property (   ) and   ( )   ( ). From Theorem 7., 
  meets Browder’s theorem, but Browder’s theorem is equivalent to the generalized Browder’s theorem [17], it 
follows that   satisfies the generalized Browder’s theorem. Therefore,  ( )    ̇ ( )   (  ), but the space   
possesses the property      , applying  Corollary 3. and  Theorem 7.we have  ( )       

( )   (  )    ( ) this 
implies to   meets property(    )    

Theorem  9. Assume that                                                     endowed with the       property. 
Then,   satisfies the (   ) property, if and only if     possesses the  (  ) property.  

Proof: The satisfaction of (   ) property by the operator     ( ) implies, in a straightforward manner, that  
 ( )      

( )    
 ( ). Nevertheless, the operator   is defined on a space   endowed with the       property. 

Hence, by applying Corollary 2.3., we obtain         ̇  , this leads to  ( )   ̇( )    
 ( ). Therefore, from 

Definition 3.1   satisfies (  ) property. Conversely, if the operator    satisfies (  ) property, then it necessarily 
fulfills the condition  ( )   ̇( )    

 ( ). however, the space   on which the operator    is defined possesses      
property, this gives     

( )     
   ( ) and from Corollary 2.3., we get           ̇  this means that  ( )      

( )  
  
 ( ) and (   )  property is hold.  

A proof of the next theorem follows by applying reasoning analogous to that used in the proo f of the foregoing 
result. 

Theorem  10. Assume that                                                      endowed with the       property. 
Then,   satisfies the (    ) property, if and only if     possesses the  (   ) property.  

4. Conclusion 

Weyl’s theorem and its generalizations play a significant and essential role in extending classical spectral results to 
broader and more comprehensive classes of bounded linear operators, particularly in infinite -dimensional spaces. 
In fact, these generalizations provide a deeper understanding of both the essential and point spectra and establish 
stronger connections among spectral properties. 

In this study, new generalizations of Weyl’s theorem as well as properties (   ) and (    )are revealed using a 
class of operators known as pseudo invertible. By exploiting the characteristics of these operators, we establish the 
generalized results and prove the necessary and sufficient conditions to obtain new spectral findings. Additionally, 
the study of such type of operators is considered a very important topic and the focus of attention of many 
researchers in this field. It is of course a modern topic, investigated new properties of bounded linear operators by 
exploring the association between the relatively regular and generalizations of Wyle theorem.  
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