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A B S T R A C T 

In the geometric study of analytic functions with a single derivative, the fourth Hankel 
determinant, H₄(1), is essential. This article provides a systematic overview of the historical 
and current evolution of research on H₄(1), beginning with basic studies, moving on to more 
complex methods involving symmetry and subordination, and ending with current 
applications utilising special polynomials like Chebyshev within extended subclasses.  

 

 

MSC.. 3045, 3080 

https://doi.org/10.29304/jqcsm.2025.17.42625 

 

1. Introduction: Hankel Determinants' Function 

  A fundamental analytical tool for examining the behavior of coefficient sequences obtained from analytic functions 
in the unit disc is the Hankel determinant.  
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The determinant H₄(1), which is built from the Taylor coefficients, sheds light on a number of geometric features, 
including growth, distortion, and symmetry, given a function written as follows: 

                                         

 

 

Fig. 1 .Three-Dimensional Visualization of a Hankel Determinant Surface with Power Series. 

2. Historical Bases 

   A formal framework for studying Hankel determinants was presented by Noonan and Thomas in 1976 [1].  

Suppose      , Then as,      
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They particularly concentrated on H₂(1) in connection with the Fekete–Szegö inequality. A turning point was 

reached later in 1985[2]  when de Branges proved the Bieberbach conjecture, reviving interest in higher-order 

Hankel determinants and establishing tight coefficient bounds. 
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Fig. 2. 3D Visualization of Hankel Determinant Equations and Related Inequalities 

3. First Attempts on H₄(1) From 2015 to 2019 

During this time, research focused on classes such as bi-univalent and starlike functions. Important work was done 

on H₂(2) and H₃(1), which prepared the way for the study of H₄(1). Numerous articles examining these preliminary 

estimates surfaced in specialised journals [3]. 
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Defined the class   
 
         if the following quasi subordination holds 
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Fig. 3.  Visualization of the Inverse Function     (w) Real and Complex Domains 

4. Contributions in Advance from 2020 to 2023 

Cho and associates investigated star-like functions related to exponential and sine functions in 2020 [4]  .  
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where      

Proved that  |  |  
 

 
                    Chebyshev polynomials of the first kind were used by Arif and 

associates in 2021 [5]  to give sharp bounds for H₄(1). A generalised class W(δ, β, λ, t) was introduced by Rahman et 

al. the following year, utilising second-kind Chebyshev polynomials to improve estimations. If    ∗ then  
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Fig 4. Surface Representation of the Upper Bound of  |  | in Terms of   and    

5. Current Events (2023-2025) 

Salman and Atshan proposed the function class ℱ(δ, z, t) in 2023 [6] .  

consider the function        
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Defined the class ℱ         
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It is defined by the subordination z / (2δ)(f''(z) + z f''(z))   L(t, z). 

They arrived at the following bound using Chebyshev polynomial expansions: H₄(1) ≤ 1230227 / 1875 δ⁴ + 

1067929 / 45000 δ³ 

This framework was extended to bounded turning functions connected with sine-based kernels in 2024. 

 

 

 

 

 

 

 

 

Fig 5. 3D Surface Visualization of |      | over the Unit Disk (for        ) 

6. Summary of Key Methods 

Comparative bounds for H₄(1)  

              
          

                                                                                                                                                             (13) 

7. Examples to Show 

Example 1 :  

Assume that f(z)   ℱ(δ, z, t) with δ = 1 and coefficients estimated as follows: a₂ = 4, a₃ = 2, a₄ = 2, a₅ = 2.7, a₆ = 4.32, 

and a₇ = 7.68. 

We estimate that H₄(1) ≈ 679.85 using the specified formula. 

 

 

 

 

 

 

 

Fig 6. 3D Visualization of the Complex Function. 
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Example 2:  

Let                              for all  n ≥ 1 and assume that        S* with                       

Because of matrix singularity, H₄(1) = 0. 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusion and Prospects for the Future 

Orthogonal polynomial tools and subordination principles are dynamically integrated in ongoing research on the 

fourth Hankel determinant. Future studies might concentrate on fractional derivatives, higher-order Hankel 

determinants, and using machine learning to estimate bounds predictively. 

10. Other Hankel-Related Function Examples 

Example 1:  

  Let       
 

       
  which grows to                                                                                                                        (14) 

The fourth Hankel determinant, H₄(1) = 0, is a classic example of a function with constant coefficients,     = 1. 



𝑓 𝑧 . 

 


. 

 Everywhere else, the surface remains 

smooth and shows how |𝑓 𝑧 | changes 

over the plane. 
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Fig 9 . 3D Visualization of the Complex Function       
 

       
 

Example 2: 

Examine the following function:                                              

The coefficients of this function,     = n, increase linearly. One can construct its corresponding Hankel matrix and 

perform a numerical computation of H₄(1). 

 

 

 

 

Example 3: 

Let          
 

     This function has rich coefficient behavior and is closely related to subclasses of star like 

functions. Its Taylor expansion can be used to estimate H₄(1). 

 

 

Fig 10 . 2D Plot (Flat) 

A green curve representing the 

function 𝒇 𝒙  along the 𝒙-axis 

 

Fig 11.  3D Plot (Surface) 

A three-dimensional surface showing 
|𝒇 𝒙  𝒊𝒚 | over the complex plane 
(with the axes 𝐑𝐞 𝐳 , Im(z), and the 
height |𝒇 𝒛 |   
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Fig 12. 3D Visualization of the Complex Function          
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