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Abstract 

      In this paper, many modified and new algorithms have been proposed for 

training feed forward neural networks, many of them having a very fast 

convergence rate for reasonable size networks. 

In all of these algorithms we use the gradient of the performance function (energy 

function, error function) to determine how to adjust the weights such that the 

performance function is minimized, where the back propagation algorithm has 

been used to increase the speed of training. The above algorithms have a variety 

of different computation and thus different type of form of search direction and 

storage requirements, and all the above algorithms applied in approximation 

problem.  

 

1. Introduction  

        Back propagation (BP) process can train multilayer feed forward neural 

network (FFNN). With differentiable transfer functions, to perform a function 

approximation to continuous function fR
N
, pattern association and pattern 

classification. The term of back propagation to the process by which derivatives 

of network error with respect to network weights and biases, can be computed. 

This process can be used with a number of different optimization strategies. 

 

2. Training Algorithms for Neural Networks 

        Any non-linear optimization method, a local or global one, can be applied to 

the optimization of feed-forward neural networks weights. Naturally, local 

searches are fundamentally limited to local solutions, while global ones attempt to 

avoid this limitation. The training performance varies depending on the objective 

function (energy function or error function) and underlying error surface for a 

given problem and network configuration. 

        Since the gradient information of error surface is available for the most 

widely applied network configurations, the most popular optimization methods 

have been variants of gradient based back-propagation algorithms. Of course, this 

is sometimes the result of an inseparable combination of network configuration 
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and training algorithm which limits the freedom to choose the optimization 

method. 

Widely applied methods are, for example, modified back-propagation [1], back 

propagation using the conjugate-gradient approach [2], scaled conjugate-gradient 

and its stochastic counterpart [3], the Marquadt algorithm [4], and a concept 

learning based back-propagation [5]. Many of these gradient based methods are 

studied and discussed even for large networks in [6]. Several methods have been 

proposed for network configurations where the gradient information is not 

available, such as simulated annealing for networks with non-differentiable 

transfer functions [7]. 

         In many studies only small network configurations are considered in 

training experiments. Many gradient based methods and especially the 

Levenberg-Marquadt method are extremely fast for small networks (few hundreds 

of parameters), thus, leaving no room or motivation for discussion of using 

evolutionary approaches in the cases where the required gradient information is 

available. The problem of local minima can be efficiently avoided for small 

networks by using repeated trainings and randomly initialized weight values. 

Nevertheless, evolutionary based global optimization algorithms may be useful 

for validation of an optimal solution achieved by a gradient based method.  

        For large FFNN΄s, consisting of thousands of neurons, the most efficient 

training methods ( Levenberg – Marquadt , Quasi – Newton, etc. ) demand an 

unreasonable amount of computation due to their computational complexity in 

time and space. One possibility could be a hybrid of traditional optimization 

methods and evolutionary algorithms as studied in [8]. Unfortunately, it seems 

that none of the contemporary methods can offer superior performance over all 

other methods on all problem domains. It seems that no single solution appears to 

be available for the training of artificial neural networks. 

 

2.1. Conjugate Gradient Algorithms ( traincg ) 

The conjugate gradient algorithms perform a search along conjugate  

directions, which produces generally faster convergence than gradient descent 

directions [Hagan and Beale, 1996]. The CG algorithms start out by searching in 

the gradient descent direction (negative of the gradient) on the first iteration,    0 

  g0 . Then the next search direction is determined so that it is conjugate to 

previous search directions, that is : [9] 

                          Wk+1  k + ηk k  . Where    k  gk + k k1.     

The various versions of CG are distinguished by the manner in which the k is 

computed. 

In this paper, we will present different variations of CG algorithms. In 

most of the training algorithms a learning rate is used to determine the length of 

the weight update (step size). 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

3
nd

.  Sinentific Conference 19-20/ APRIL -2011 

Vol 3       No.2          Year 2011 

 

 01 

In most of the CG algorithms, the step size is adjusted at each iteration. 

A search is made along the CG direction to determine the step size, which will 

minimize the performance function along that line search. The CG algorithms that 

usually used in ANN as a training algorithm is much faster than variable learning 

rate back propagation, and are sometimes faster than Resilient back propagation, 

although the results will vary from one problem to another. 

 

2.1.1. Fletcher- Reeves update ( traincgf ) 

         The general procedure for determining the new search direction is to 

combine the new gradient descent direction with the previous search direction : 

 k   gk + kk1 

For Fletcher-Reeves update procedure [10] : k  

1k
T

1k

k
T
k

gg

gg



 

 

2.1.2. Polak- Ribiere update ( traincgp ) 

        Another version of the conjugate gradient algorithm was proposed by Polak 

and Ribiere [11]. 

For the Polak - Ribiere update, the constant k is computed from :                                                

                                        k  

1k
T

1k

k
T

1k

gg

gg




 

 

2.1.3. Dixon update ( traincgd ) 

      We propose another version of the conjugate gradient algorithm, which derive 

from classical method proposed by Dixon [11]. 

For the Dixon update, the constant k is computed by : k  

1k
T

1k

k
T
k

g

gg




 

 

2.1.4. Al-Assady and Al-Bayati update ( traincga ) 

      We use another version of the conjugate gradient algorithm, when the 

classical method proposed by Al-Assady and Al-Bayati [11]. 

For the Al-Assady and Al-Bayati update, the constant k is computed by :  
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                                                k  

k
T

1k

1k
T
k

g

gg








 

2.1.5. Hestenes - Stiefel update ( traincgh ) 

        We will consider another version of the CG algorithm, when the classical 

method proposed by Hestenes - Stiefel [9 ]. 

For the Hestenes-Stiefel update, the constant k is computed by :  

                                              k  

1k
T

1k

1k
T
k

g

gg








 

 

2.1.6. Reyadh - Luma update ( traincgr ) 

      We propose a new version of the CG algorithm when the search direction at 

each iteration is determined by : k   k + k k1 

Where the constant k is computed b y : k  

1k
T

1k

1k
T
k

g

gg








 

Remarks 

1. For all CG algorithms, the search direction will be periodically reset to 

the negative of the gradient. The standard reset point occurs when the 

number of iterations is equal to the number of ANN parameters ( 

weights and biases ). 

2. Each of the CG algorithms, which we have discussed so far, requires a 

line search at each iteration. This line search is computationally 

expensive, since it requires that the ANN response to all training 

inputs which should be computed several times for each search. But 

the other hand one can design an algorithm to avoid the time 

consuming for performing line search. 
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3. Improve Conjugate Gradients Method 

3.1.1. Conjugate Search Directions 

         A series of directions { ρk } have to be found such that : 

                     ( gk+1 )
T 

ρk = 0       and    ( gk+1 +  ρk+1 )
T 

ρk = 0              

And, by developing in series to the lowest order : 

                    [ T

1+kg  +  T

1+kρ
 
H ] ρk = 0              

                          T

1+kρ  H ρk  =  0 ……………………..(1) 

Where H is the Hessian calculated at point Wt+1. Directions which respects 

condition (1) are named conjugate. 

 

3.1.2. Quadratic Error Function 

          A quadratic error function is of the form : 

                   E(W) = E0 + b
T 

W + 
2

1
 W

T 
H W       ,       b, H = constant. 

And H ( the Hessian ) is symmetrical and positive definite. 

The error gradient is : 

                           g = b + H W                ………………..(2) 

and the minimum of E is achieved at the point W
*
 where : 

               gw* = 0    b + H W
*
 = 0   …………...(3) 

Let consider a set of  
NW,1=ii}ρ{  conjugate with respect to H directions (NW being 

the total number of weights ) : 

              0=ρρ j

T

i H          for    i ≠ j            …………..(4) 

and, of course, ρi  ≠  0 , i∀ . 

 

 

Proposition 1 [9] 

        The 
Nw,1=ii}ρ{  set of conjugate directions is linearly independent. 

 

Remark  

        Let assume that the starting point for the search is W0 and the minimum 

point is W
*
. Then it may be possible to write : 

                        W
*
 - W0 = ∑

wN

1=i

iiργ      ……………… (5) 

Where γi are some parameters. Finding W
*
 may be envisaged by successive steps 

( of length γi along directions ρi ) in the form : 
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                      Wi+1 = Wi + γi ρi        …………..         (6) 

where i = 0,…, NW  and WNw+1 = W*. 

By multiplying (5) with HρT

  to the left and using (3) plus the property (4)  

      HρT

  ( W
*
 - W0 ) = - ∑

wN

0=i

T

i

T

i

TT ρHργ=ρHργ=ρ - bρ  0W H  

and then the γ  steps are : 

          



 ρHρ

)HW+b(ρ
 -=γ T

0

T

         …………………(7) 

The γ coefficients may be put into another form. From (6) : 

                  Wi+1 = W1 + ∑
i

1=j

jjργ  

Multiplying with HρT

1+i  to the left and using again (4) : 

               0HWρ=HWρ T

1+i

T

1+i 1+i   

 by (2)        )HW+(bρ =)HW+(bρ=gρ 0
T

1+i+
T

1+i
T

1+i 1i1+iW|  

and by using this result in (7) we have another (new) form of γ  : 

           







ρHρ

gρ
 -=γ T

T

W|
       ……………………..(8)                                             

 

Proposition 2 [9] 

      If the weight vector is updated according to the procedure (6) the gradient of 

the error function at step i+1 is orthogonal on all previous conjugate directions                                                   
ρj

T
ig W|  =  0,    i , j  such that  j < i  Nw      ……………(9) 

 

The set of conjugate directions { ρi } may be built as follows : 

1. The first direction is chosen as :      ρ0 =  - 
1W|g  

2. The following directions are built incrementally as : 

                   ρi+1 = - 1+iW|g  + βi ρi……………...…(10) 

Where βi are coefficients to be found such that the newly build ρi+1 is conjugate 

with the previous ρi, i.e. 0=ρH ρ i

T

1+i . By multiplying (10) with H ρi to the right, 

we get a new form of βi : 

   
i

T

i

i

T

1+i

ii

T

ii1+i ρHρ

ρHg
=β    ⇒           0=ρH)ρβ+-g(             ………..(11) 
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Proposition 3 [ 9 ] 

     By using the above method for building the set of directions, the error gradient 

at step j is orthogonal on all previous ones : 

  0=|g)|g( Wi

T

Wj WN  ≤ i<jsuch that  j,i ∀ ,      ……………….(12) 

 

Proposition 4 [ 9 ] 

      The set of directions build by the above method are mutually conjugate. 

 

Remarks : 

1- The method described in this section gives a very fast converging method 

for finding the error minima (optimal weight), i.e. the number of steps 

required equals the dimensionality of the weight space. 

2- The previous section give the general method for fast finding the minima 

of E(optimal weight). However there are 2 remarks to be made  

 The error function was assumed to be quadratic. 

 For a non-quadratic error function the Hessian is variable and then 

it has to be calculated at each Wi point which results into a very 

computational intensive process. 

3- For the general algorithm it is possible to express the ηi and βi coefficients 

without explicit calculation of Hessian. Also while in practice the error 

function is not quadratic the conjugate gradient algorithm still gives a 

good way of finding the error minimum point (optimal weight). 

Now, we give several ways to express the βk coefficients which speed the training 

algorithm : 

1) Abd – Al-Jabbar  Luma update ( traincgAJ ) procedure k   
k

T

1k

k

T

k

gρ

gg
  

2) Layla  Luma update ( traincgll ) procedure  k  
k

T

k

T

gg

gg kk 1
 

3) Alaa update ( traincgak ) procedure  k  
k

T

1k

k

T

k

gΔg

gΔg
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4.Learning Parameter and Convergence for Conjugate Gradients 

Method 

       Let consider a quadratic error as function of γi : 

             E( Wi + γi ρi ) = E0 + b
T
 ( Wi + γi ρi ) + 

2

1
( Wi + γi ρi )

T
 H ( Wi + γi ρi ) 

The minimum if error along the direction given by ρi is found by imposing the 

cancellation of its derivative with respect to γi : 

                              ⇒     0=
γ∂

E∂

i

b
T
 ρi + ( Wi + γi ρi )

T
 H ρi = 0 

and considering the property x
T
 y = y

T 
x and the fact that g = b + H W, then we 

get a new form to γi : 

                                   
i

T

i

i

T

i

i ρHρ

gρ
=γ     ………...……………(13) 

The fact that formula (13) coincide with expression (8) indicate that the procedure 

of finding these coefficients may be replaced with any procedure for finding the 

error minima along ρi direction. 

 

5. Application  

      We applied multilayer FFNN with ridge basis function have linear output 

units and a single hidden layer of hyperbolic tangent hidden units (nodes). The 

number of hidden nodes in all problems is 2N+1, where N is number of input 

nodes. The training problems used problem domains function approximation and 

we training each problems 9 different times and the weights of the networks 

computed by back propagation algorithm with training algorithm : 

( traincgAJ , traincgll , traincgak ) 

 

Problem 1 

       F(x) = 3x ( x – 0.6 )( x + 1.17 ) ;        where    0  x  1  

The numerical results of ridge basis function FFNN with network structure 1–3 –

1, introduced in table (1) ,figure (2) illustrate the target function of FFNN        

training by " traincgak " . 

       Figure ( 1 ), illustrate the deviation F(x) of the approximate results by using 

traincgak and traincgll training algorithms from the exact function . 
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Figure (1) : the deviation F(x) of the approximate results by using "  

traincgll "   and  " traincgak " from the exact function 

 

 

 

Figure (2) : illustrate the target function of FFNN training by " traincgak ". 
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Table (1) : Training results after several independent trials for problem 1 

 

Problem 2 

        F(x) = ( x1 - x2 )
3
 + 1.8 x1 x2 – x1 + 7x2   ;   where    0   x1  1 , 0  x2  1 . 

  The numerical results of ridge basis function FFNN with network structure  

  2 – 5 –1, introduced in table 2 .Figure ( 3 ) illustrate the exact function for 

problem 2 and the target function of FFNN training by " traincgak "  illustrated by 

figure ( 4 ) . 

 

Figure ( 3 ): exact function for problem 2 

The initial Weight and Bias value 

net.IW{1,1} net.IW{1,1} net.IW{1,1} net.IW{1,1} 

-8.4 -0.3944712 8.4 0.395796964 

-8.4 0.08334771 4.2   

8.4 -0.69825405 0   

The training Epochs and Performance 

NO. TrainFcn PerfTest Time/S Epochs 

1 traincgak 0.00038264 0.39 79 

2 traincgll 0.00055329 5.765 1159 

3 traincgAJ 0.00055776 609.406 103391 

 

The parameters 

Lr 0.4 

Mc 0.1 

lr_inc 1.1 

lr_dec 0.4 

max_perf_inc 1.02 

delta0 0.13 

delt_inc 1.4 

delt_dec 0.7 

delt_max 50 

Epochs 500000 

Time inf 

Show 500 

Goal 0.0005 
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Figure ( 4 ) : illustrate the target function of FFNN training by " traincgak 

 

 

 

 

 

 

 

 

 

 

Table (2) : Training results over several independent trials for problem 2 

 

 

 

The parameters 

Lr 0.24 

Mc 0.4 

lr_inc 1.01 

lr_dec 0.8 

max_perf_inc 1.01 

delta0 0.2 

delt_inc 1.3 

delt_dec 0.7 

delt_max 50 

Epochs 500000 

Time inf 

Show 1000 

Goal 0.00005 

The initial Weight and Bias value 

net.IW{1,1} net.LW{2,1} net.B{1,1} net.B{2,1} 

5.410613386 3.150438507 0.230864696 -7.411021115 -0.18858757 

-6.1805004 -1.000707154 0.583874075 5.155851361   

1.356304956 -6.112318453 0.843625941 2.378006748   

-0.27280126 6.255044322 0.476414492 -4.556369115   

6.199395094 -0.876071039 -0.647467711 0.468833141   

NO. TrainFcn PerfTest Time/S Epochs 

1 traincgak 5.88E-05 0.75 178 

2 traincgAJ 7.07E-05 701.969 145232 

3 traincgll 9.50E-05 4.687 1081 
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Problem3 

      F(x1, x2) = (x1
2 

– x2
2
) sin(5x1)    where ;    x1 = -1 : 0.2 :1 ;  x2 = -1: 0.2 : 1 ; 

 

     This problem solved in [12] by a modified structure that employs a set of 

locally weighted basis functions and use sum of product neural network (SOPNN) 

with gradient descent training algorithm 'traingd' with learning rate 0.1 . Figure 

(7) shows the result of the approximation of SOPNN where the exact function for 

problem 3 given in figure (5). 

        In this paper we use a multilayer FFNN with structure : 2 - 5 -1 with 

hyperbolic tangent hidden neuron and linear output neuron with ' traincgAJ ' 

training algorithm. It's clear that the method suggested in this paper (see figure 

(6)) is most accurate that the method used in [12] (see figure (7)). 

 

 

 

 

Figure 5 : exact function for problem 5 
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Figure (6): illustrate the target function of FFNN training by "traincgAJ " 

 

 

 

 

 

 

 

 

Figure ( 7 ): Target function generator by method in [12] of problem 3 
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 تحسين طشيقة انحذاس الميل في تذسيب الشبكات العصبية رات التغـزية التقـذمية

 

  علاء كامل جابش  د. لمى ناجي محمذ توفيق                                    

 

 جامعح تغذاد –أته انٍيثم –كهيح انرشتيح  –قسم انشياضياخ 

 

 

 المستخلص

 
 في ٌزا انثحث اقرشحىا عذد مه انخُاسصمياخ انمطُسج َانجذيذج نرذسية انشثكاخ انعصثيح راخ انرغزيح 

 انرقذميح انثعض مىٍا ذمرهك سشعح ذقاسب جيذج نهشثكاخ راخ انرشكية انمعقُل.

ذهك انخُاسصمياخ اوحذاس دانح الأداء ) دانح انخطأ, دانح انطاقح ( نرحذيذ كيفيح ضثظ الأَصان تحيث في كم 

 ذكُن دانح الأداء أقم ما يمكه . حيث اسرخذمىا خُاسصميح الاورشاس انمشذذ نرسشيع انرذسية , 

حسة انصيغ لاذجاي جميع انخُاسصمياخ أعلاي ذرىُع مه حيث اخرلاف انحساتاخ َتانراني اخرلاف الأوُاع 

     انرفريش َانخضن انزي ذقرضيً َكم انخُاسصمياخ أعلاي طثقد في مسائم انرقشية .
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


