Page 37-47

On Uncertain Martingale

 Noori .F.A.AL-Mayahi Zainab .H.A.AL-Zaubaydi

Department of Mathematics College of Computer and Mathematics Science AL-Qadisiyah University

Abstract

 We introduce some a new properties of uncertain conditional expectation, also we give a new kind of martingale and study some theorems related with it.

Key words

 uncertain measure, uncertain variable, conditional uncertain measure, uncertain conditional expectation and uncertain martingale.

1-Introduction

 Probability theory often profitable to interpret results in terms of a gambling situation . for example , if X_1, X_2, \dots is a sequence of random variables, we may think of X_n as our total winnings after n trials in a succession of games. Having survived the first *n* trial, our expected fortune after trial $n+1$ is $E(X_{n+1} | X_1, \dots, X_n)$. If equals X_n , the game is "**fair**" since the expected gain on trial $n+1$ is $E(X_{n+1} - X_n | X_1, \ldots, X_n) = X_n - X_n = 0.$ If $E(X_{n+1} - X_n | X_1, ..., X_n) \ge X_n$ game is "**favorable**" and $E(X_{n+1} - X_n | X_1, \dots, X_n) \leq X_n$, the game is "**unfavorable** "[2]. Uncertainty theory was founded by Liu [3] in 2007 and refined by Liu [5] in 2010. Let (Ω, F) be a measurable space, where Ω is a set and F is a σ -field on Ω . A subset A of Ω is called measurable (measurable with respect to the σ -field *F*), if $A \in F$, i.e., any member of F is called a measurable set [2]. A set function μ from F to [0,1] is a real-valued set function μ defined on σ – field F is called an uncertain measure , if it satisfies the following four axioms: **Axiom 1.(Normality Axiom**) $\mu(\Omega) = 1$.

Axiom 2.(Self-duality Axiom) $\mu(A) + \mu(A^c) = 1$ for any event A.

Axiom 3.(**Countable subadditivity Axiom**) For every countable sequence of events { A_i }, we have $\mu(\bigcup_{i=1}^{\infty} A_i)$ $\mu(\bigcup_{i=1} A_i) \leq \sum_{i=1} \mu(A_i)$ 1 *i* $\sum_{i=1}^{\infty} \mu(A_i)$ = $\leq \sum \mu(A_i)$ (1)

Axiom 4.(Product measure Axiom) Let Ω_k be a nonempty sets on which μ_k are uncertain measures, $k = 1,2,...,n$, respectively. Then the product of uncertain measures μ_k is an uncertain measure μ on the product σ -field $\Omega_1 \times \Omega_2 \times \dots \times \Omega_n$ satisfying

$$
\mu(\prod_{k=1}^{n} A_k) = \min_{1 \le k \le n} \mu_k(A_k)
$$
\nThat is, for each $A \in \Omega$, we have\n
$$
\mu(A) = \begin{cases}\n\sup_{A_1 \times A_2 \times \dots \times A_n \subset A} \lim_{1 \le k \le n} \mu_k(A_k) & \text{if } \sup_{A_1 \times A_2 \times \dots \times A_n \subset A} \lim_{1 \le k \le n} \mu_k(A_k)\n\end{cases}
$$
\n
$$
\mu(A) = \begin{cases}\n\sup_{A_1 \times A_2 \times \dots \times A_n \subset A^c} \lim_{1 \le k \le n} \mu_k(A_k) & \text{if } \sup_{A_1 \times A_2 \times \dots \times A_n \subset A^c} \lim_{1 \le k \le n} \mu_k(A_k)\n\end{cases}
$$
\n
$$
\mu(A) = \begin{cases}\n0.5 & \text{if } \lim_{A_1 \times A_2 \times \dots \times A_n \subset A^c} \lim_{1 \le k \le n} \mu_k(A_k)\n\end{cases}
$$
\n
$$
\mu(A) = \begin{cases}\n0.5 & \text{if } \lim_{A_1 \times A_2 \times \dots \times A_n \subset A^c} \mu_k(A_k)\n\end{cases}
$$

(3)

Then the triple (Ω, F, μ) is called an uncertainty space.

Remark(1-1)

 The probability measure is not uncertain measure as shown by the following example:

Example(1-2)[4]

Let $g: R \to R$ is a nonnegative and integrable function such that $\int g(x)dx =$ *R* $g(x)dx = 1$. Define $P: \beta(R) \to R$ by $P(A) = \int$ *A* $P(A) = |g(x)dx$, is a probability measure but not uncertain measure. **Ans**: **Step1**: we prove the normality .i.e., $P(R) = 1$. $P(R) = \int g(x)dx = 1$ *R* **Step2**: we prove the self-duality .i.e., $P(A) + P(A^c) = 1$. Since $P(A \cup A^c) = \int_{A \cup A^c} g(x) dx = \int_R$ $\bigcup A^c$) = $\int g(x)dx = \int g(x)dx =$ $A \cup A^c$ *R* $P(A \cup A^c) = \int g(x)dx = \int g(x)dx = 1$, and $P(A) + (A^c) = P(A \cup A^c)$ Thus, $P(A) + (A^c) = P(A \cup A^c) = 1$

Step3: Let
$$
\{A_i\}
$$
 be a sequence of sets in $\beta(R)$, then
\n
$$
P(\bigcup_{i=1}^{\infty} A_i) = \int_{\bigcup_{i=1}^{\infty} g(x) dx = \int_{R} g(x) dx = 1, \text{ and } \sum_{i=1}^{\infty} P(A_i) = 1
$$
\nThen $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$, and then *P* is not uncertain measure.

Example(1-3)[3,4,5,6]

1 *i*

Suppose $g: R \to R$ nonnegative satisfying $\sup\{g(x) + g(y) : x \neq y\} = 1$, define $\mu : \beta(R) \rightarrow R$, the set function $\{g(x): x \in A\},\$ $\left\{1-\sup\{g(x): x \in A^c\right\},\right\}$ $\left\lceil \right\rceil$ $-\sup\{g(x):x\in$ \in $=$ $1 - \sup \{ g(x) : x \in A^c \}$ $(A) = \begin{cases} \sup\{g(x) : x \in A\}, \\ 1 - \sup\{g(x) : x \in A^c\} \end{cases}$ $g(x)$: $x \in A$ $\mu(A) = \begin{cases} 0 & \text{if } A \neq 0 \\ 0 & \text{if } A \neq 0 \end{cases}$ $\{g(x): x \in A\}$ $\sup\{g(x) : x \in A\} \geq 0.5$ $\sup \{ g(x) : x \in A \} < 0.5$ $\in A$ } \geq $\in A$ $\left\{ \leq$ $g(x)$: $x \in A$ $g(x)$: $x \in A$ (4) for all $A \in \beta(R)$ is an uncertain measure.

Definition(1-4)[2]

Let (Ω, F) and (Ω', F') be two measurable spaces. A function $g : \Omega \to \Omega'$ is said to be a measurable with respect to F and F', if $g^{-1}(A) \in F$ for all $A \in F'$.

Definition(1-5)[5,6]

 an uncertain variable is a measurable function from an uncertainty space (Ω, F, μ) to the set of real numbers, i.e., for any Borel set *B* of real numbers. The set $\{X \in B\} = \{x \in \Omega \setminus X(x) \in B\}$ is an event.

Definition(1-6)[2]

Let
$$
A \subseteq \Omega
$$
. A function $I_A : \Omega \to R$ defined by :
\n
$$
I_A(\omega) = \begin{cases} 1 & , \omega \in A \\ 0 & , \omega \notin A \end{cases}
$$
\n(5)

Is called indicator function or (characteristic function) of *A* .

Definition(1-7)

Let μ and λ be two uncertain measures on measurable space (Ω, F) . We say that λ is absolute continuous with respect to μ (written $\lambda \ll \mu$) if $\lambda(A) = 0$

for every $A \in F$ with $\mu(A) = 0$, i.e., for all $A \in F$ with $\mu(A) = 0$, we have $\lambda(A) = 0$.

Definition(1-9)[1]

A filtration $\{F_n, n \in N\}$ is a sequence of sub σ -fields of F such that for all $n \in N$, $F_n \subset F_{n+1}$.

Definition(1-10)[6]

Let X be an uncertain variable. Then the expected value of X is defined by

$$
E(X) = \int_{0}^{+\infty} \mu(X \ge r) dr - \int_{-\infty}^{0} \mu(X \le r) dr \tag{6}
$$

Provided that at least one of the two integrals is finite.

Lemma(1-11) (Jensen's Inequality)[5,6]

Let X be an uncertain variable and $f: R \to R$ a convex function. If $E(X)$ and $E(f(X))$ are finite, then

$$
f(E(X)) \le E(f(X))\tag{7}
$$

Especially, when $f(X) = |x|^p$ and $p \ge 1$, we have $|E(X)|^p \le E(|X|^p)$.

Proof:

Since f is a convex function, for each y , there exists a number K such that $f(x) - f(y) \ge K(x - y)$. Replacing x with X and y with $E(X)$, we obtain $f(X) - f(E(X)) \ge K(X - E(X)).$ Taking the expected value on both sides, we have $E(f(X)) - f(E(X)) \ge K(E(X) - E(X)) = 0.$ Which proves the inequality.

2- Radon*-***Nikodym theorem on uncertain measure**

Let μ and λ be two uncertain measure on the σ -field F of subsets of Ω . Assume that $\lambda \ll \mu$, then there is a Borel measurable function $g : \Omega \to \mathbb{R}$ such that $\lambda(A) = \int$ *A* $\lambda(A) = \int g d\mu$, for all $A \in F$. *g* is called the Radon-Nikodym derivative of λ

with respect to μ . It is sometimes denoted by $\left[\frac{dn}{l}\right]$ μ λ *d* $\frac{d\lambda}{dt}$], i.e. $g = [\frac{d\lambda}{dt}]$ μ λ . *d* $g = \left[\frac{d\lambda}{d}\right].$

Proof:

Let $\{g_n\}$ be a bounded increasing sequence of nonnegative measurable function in *F* .

Since every monotonic and bounded sequence is converge.

Then there exists a unique function *g* in *F* such that $\lim_{n\to\infty} g_n = g$

Now, we must to show that $\lambda(A) = \int$ *A* $\lambda(A) = \int g d\mu$ for all $A \in F$. Define $\lambda_1(A) = \lambda(A) - \int$ *A* $\lambda_1(A) = \lambda(A) - \int g d\mu$ for all $A \in F$, and $\lambda_1 \ll \mu$ Since $\mu(A) = 0$ for all $A \in F$, then $\lambda_1(A) = 0$. By absolute continuity thus $=$ \int $\lambda(A) = \int g d\mu$ for all $A \in F$.

4- The conditional uncertain measure

Definition(3-1)

A

Let (Ω, F, μ) be an uncertainty space and $A, B \in F$, then the conditional uncertain measure of A given B is defined by

$$
\mu_B(A) = \mu(A \mid B) = \begin{cases}\n\frac{\mu(A \cap B)}{\mu(B)}, & \text{if } \frac{\mu(A \cap B)}{\mu(B)} < 0.5 \\
1 - \frac{\mu(A^c \cap B)}{\mu(B)}, & \text{if } \frac{\mu(A^c \cap B)}{\mu(B)} < 0.5 \\
0.5, & \text{o.w}\n\end{cases}
$$
\n(8)

Provided that $\mu(B) > 0$.

Definition (3-2)

Let (Ω, F, μ) be an uncertainty space and let G be a sub σ -field of F. Then the conditional expectation of X given G is any uncertain variable Z which satisfies the following two properties:

(a) Z is G-measurable.
\n(b) if
$$
A \in G
$$
, then $\int_A X d\mu = \int_A Z d\mu$.
\nWe denote Z by $E(X | G)$.

Theorem (3-3)

If *X*, *X*₁, *X*₂,be an uncertain variables on (Ω, F, μ) , *a* and *b* real numbers. Then

- 1- If $X = a$ a.e., then $E(X | G) = a$ a.e.[μ]
- 2- If X is G measurable, then $E(X | G) = X$ a.e.[μ]
- 3- $E(E(X | G)) = E(X) . [\mu]$
- 4- $E(aX_1 + bX_2 | G) = aE(X_1 | G) + bE(X_2 | G)$ a.e.[μ]
- 5- If $G = \{\phi, \Omega\}$, then $E(X | G) = E(X)$ a.e.[μ]
- 6- If $X \ge 0$ a.e., then $E(X | G) \ge 0$ a.e.[μ]
- 7- If $X_1 \leq X_2$ a.e., $E(X_1 | G) \leq E(X_2 | G)$ a.e.[μ]
- 8- $|E(X | G)| \leq E(|X| | G)$ a.e.[μ]
- 9- If Y is G measurable and XY is integrable then $E(XY | G) = YE(X | G)$ a.e.[μ]

10- If X_n and X are integrable, and if either $X_n \uparrow X$ or $X_n \downarrow X$, then $E(X_n \mid G) \rightarrow E(X \mid G)$ a.e.[μ]

Proof:

1-If $X = a$ a.e., then it is G – measurable and $\int X d\mu = \int$ *A A* $X d\mu = \int a d\mu$ for all $A \in G$ and then $E(X | G) = a$ a.e. [μ] 2- If *X* is *G* – measurable and $\int X d\mu = \int$ *A A* $Xd\mu = |E(X|G)d\mu$ for all $A \in G$, then $E(X | G) = X$ a.e. [μ] 3- Take $A = \Omega$ in condition (b) of definition (3-2), we have that $\int X d\mu = \int E(X \mid G) d\mu$ and this implies that $E(E(X \mid G)) = E(X)$. a.e. [μ] Ω Ω 4- It's clearly that $E(aX_1 + bX_2 \mid G)$ is G -measurable and if $A \in G$, apply condition (b) of definition (3-2) to X_1 and X_2 to see that $aE(X_1 | G) + bE(X_2 | G)$ $d\mu = a | X_1 d\mu + b | X_2 d\mu = | (aX_1 + bX_2) d\mu$ *A A A A* $\int (aE(X_1 | G) + bE(X_2 | G))d\mu = a\int X_1 d\mu + b\int X_2 d\mu = \int (aX_1 + bX_2)d\mu$.

5- Since $\int X d\mu = \int$ *A A* $X d\mu = |E(X) d\mu|$ for all $A = \phi$ or $A = \Omega$, we have $E(X | G) = E(X)$ a.e.[μ] 6- Take $A = \{E(X \mid G) < 0\} \in G$, then by condition (b) of definition (3-2), we have, $0 \ge \int E(X \mid G) d\mu = \int X d\mu \ge 0 \Rightarrow \mu(A) =$ *A A* $0 \geq |E(X|G)d\mu = |Xd\mu \geq 0 \Rightarrow \mu(A) = 0.$ 7- Since $X_1 \leq X_2$ a.e., then $Z = X_2 - X_1 \geq 0$ a.e., by (6) we have $E(X_2 | G) - E(X_1 | G) \ge 0$ a.e., thus $E(X_1 | G) \le E(X_2 | G)$ a.e.[μ] 8- Since $-|X| \leq X \leq |X|$, it follows from (7), that $|E(X|G)| \leq E(|X| |G)$ a.e. [μ] 9- Let $Y = I_B$ (I_B is indicator function)for some $B \in G$. Then $\int_A \mathit{YE}(X \mid G) d\mu = \int_A I_{_B}(X \mid G) d\mu = \int_{A \cap B} E(X \mid G) d\mu = \int_{A \cap B} X d\mu = \int_A$ $= |I_{R}(X|G)d\mu = |E(X|G)d\mu = |X_{R}d\mu =$ *A A A B A B A YE*(*X* | *G*) $d\mu = |I_{B}(X | G)d\mu = |E(X | G)d\mu = |X_{B}d\mu|$ Thus the condition (b) of definition (3-2), holds in this case. 10- It follows from definition (3-2), by letting $Z = E(X | G)$ and for all $A \in G$. We have $\int_{A} Z d\mu = \lim_{n \to \infty} \int_{A} Z_n d\mu = \int_{A}$ *n* $\int_A Z d\mu = \lim_{n \to \infty} Z_n d\mu = \int_A Z d\mu$.a.e[μ] Thus Z satisfies both (a) and (b) of definition (3-2), and therefore equals $E(X | G)$

4-Uncertain martingale

Definition(4-1)

 An uncertain stochastic process is a family of uncertain variables defined on the same uncertainty space.

Definition(4-2)

An uncertain stochastic process $X = \{X_n, n \in N\}$ is an uncertain adapted to the filtration $\{F_n, n \in N\}$ if for all *n*, *X* is F_n – measurable.

Definition (4-3)

An uncertain stochastic process $X = \{X_n, F_n, n \in N\}$ is said to be an uncertain martingale if it is satisfying the following conditions:

(1) *X* is an uncertain adapted to filtration $\{F_n, n \in N\}$.

(2) X_n is integrable for all $n \in N$.

(3)
$$
E{X_{n+1} | F_n} = X_n
$$
 a.e. $[\mu]$, for all $n \in N$ (9)

Definition(4-4)

An uncertain stochastic process $X = \{X_n, F_n, n \in N\}$ is said to be an uncertain sub-martingale (resp, uncertain super-martingale) with respect to the filtration $\{F_n, n \in N\}$ if it is satisfying the following conditions:

- (1) *X* is an uncertain adapted to filtration $\{F_n, n \in N\}$.
- (2) X_n is integrable for all $n \in N$.
- (3) $E\{X_{n+1} | F_n\} \ge X_n$ a.e. [μ], (resp, $E\{X_{n+1} | F_n\} \le X_n$ a.e. [μ]) for all $n \in N$ (10)

Example(4-5)

An uncertain stochastic process $X = \{X_n, F_n, n \in N\}$ is an uncertain submartingale iff $-X = \{-X_n, F_n, n \in N\}$ is an uncertain super-martingale. *Ans*:

Since $E\{X_{n+1} | F_n\} \ge X_n$ a.e., iff $E\{-X_{n+1} | F_n\} \le -X_n$ a.e. for all $n \in N$. \Rightarrow $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale iff $-X = \{-X_n, F_n, n \in N\}$ is an uncertain super-martingale.

Example(4-6)

If $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale and K a constant, then $\max\{X, k\} = \{\max\{X_n, K\}, F_n, n \in N\}$ is an uncertain sub-martingale. *Ans*:

$$
\max\{X_{n+1}, K\} \ge X_{n+1} \Rightarrow E\{\max\{X_{n+1}, K\} | F_n\} \ge E\{X_{n+1} Z F_n\}
$$

Since $E\{X_{n+1} | F_n\} \ge X_n \Rightarrow E\{\max\{X_{n+1}, K\} | F_n\} \ge X_n$
And similarly
 $E\{\max\{X_{n+1}, K\} | F_n\} \ge K \Rightarrow E\{\max\{X_{n+1}, K\} | F_n\} \ge \max\{X_n, K\}$
 $\Rightarrow \max\{X, K\} = \{\max\{X_n, K\}, F_n, n \in N\}$

is an uncertain sub-martingale.

Example(4-7)

If $X = \{X_n, F_n, n \in N\}$ is an uncertain super-martingale and K a constant, then $\min\{X, k\} = \{\min\{X_n, K\}, F_n, n \in N\}$ is an uncertain super-martingale.

Ans:

By the same way we get the answer.

Theorem (4-8)

Let $X = \{X_n, F_n, n \in N\}$ is an uncertain martingale and $f: R \to R$ a convex function, such that $f(X_n)$ is integrable for all *n* , then $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

Proof:

 By Jensen's inequality for uncertain conditional expectations we have, $E\{f(X_{n+1} | F_n) \ge f\{E(X_{n+1} | F_n)\}\$. Since $X = \{X_n, F_n, n \in N\}$ is an uncertain martingale, it follows that $E{X_{n+1} | F_n} = X_n$ then $E\{f(X_{n+1} | F_n)\} \ge f\{E(X_{n+1} | F_n)\} = f(X_n)$ thus $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

Theorem (4-9)

Let $X = \{X_n, F_n, n \in N\}$ is an uncertain sub- martingale and $f: R \to R$ a convex increasing function, such that $f(X_n)$ is integrable for all *n*, then $f(X) = \{f(X_n), F_n, n \in N\}$ *is an uncertain sub-martingale.*

Proof:

By Jensen's inequality for uncertain conditional expectations we have,

 $E\{f(X_{n+1} | F_n)\} \geq f\{E(X_{n+1} | F_n)\}$ Since $X = \{X_n, F_n, n \in N\}$ is an uncertain sub- martingale, it follows that $E{X_{n+1} | F_n} \ge X_n$ a.e., since is increasing function, then $f\{E(X_{n+1} | F_n)\} \ge f(X_n)$ and then $E\{ f(X_{n+1} | F_n) \} \ge f(X_n)$ Thus $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

Theorem (4-10) *(* **Doop Decomposition** *)*

Let $X = \{X_n, F_n, n \in N\}$ is an uncertain sub- martingale with respect to the filtration ${F_n, n \in N}.$ there exists an uncertain martingale $M = \{M_n, F_n, n \in N\}$ and an uncertain process $A = \{A_n, n \in N\}$ such that 1- *M* is an uncertain martingale relative to $\{F_n, n \in N\}$. 2- *A* is an increasing uncertain process: $A_n \leq A_{n+1}$ a.e. 3- A_n is F_{n-1} -measurable for all $n \in N$. $4 - X_n = M_n + A_n.$

Proof*:*

1- Set $A_0 = 0$, and $A_n = A_{n-1} - (X_{n-1} - E(X_n | F_{n-1}))$ for all $n \ge 0$. $(E(X_{k+1} | F_n) - X_k)$ 1 0 $\mathbf{I} \mid \mathbf{I}_n = \mathbf{\Lambda}_k$ *n k* \Rightarrow $A_n = \sum_{k=1}^{n-1} (E(X_{k+1} | F_n) - X)$ $=$ $f_{n+1} | F_n$ $- X_k$ for all $n \ge 0$ and $A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n$ for all $n \geq 1$. Since $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale $A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n \Rightarrow E\{X_{n+1} | F_n\} \ge X_n$ \Rightarrow $E\{X_{n+1} | F_n\} - X_n \ge 0$ \Rightarrow $A_{n+1} - A_n \ge 0$ \Rightarrow { A_n } is increasing sequence of uncertain variables. Take, $M_n = X_n - A_n$ for all *n* \Rightarrow $M_{n+1} - M_n = (X_{n+1} - A_{n+1}) - (X_n - A_n)$ $X_{n+1} - X_{n} - (A_{n+1} - A_{n})$ $= X_{n+1} - E(X_{n+1} | F_n)$ \Rightarrow $E(M_{n+1} - M_n | F_n) = E(X_{n+1} | F_n) - E(E(X_{n+1} | F_n) | F_n)$ \Rightarrow $E(M_{n+1} | F_n) - E(M_n | F_n) = E(X_{n+1} | F_n) - E(X_{n+1} | F_n)$ \Rightarrow $E(M_{n+1} | F_n) - M_n = 0$ \Rightarrow $E(M_{n+1} | F_n) = \mu_n$ \Rightarrow *M* = {*M*_{*n*}</sub>, *F*_{*n*}, *n* \in *N*} is an uncertain martingale. 2- Set $A_0 = 0$, and $A_n = A_{n-1} - (X_{n-1} - E(X_n \mid F_{n-1}))$ for all $n \ge 0$. $(E(X_{k+1} | F_n) - X_k)$ 1 0 $\mathbf{1} \mid \mathbf{r}_n = \mathbf{r}_k$ *n k* \Rightarrow $A_n = \sum_{k=1}^{n-1} (E(X_{k+1} | F_n) - X)$ = $f_{n+1} | F_n$ $- X_k$ for all $n \ge 0$ and $A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n$ for all $n \geq 1$. Since $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale $A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n \Rightarrow E\{X_{n+1} \setminus F_n\} \ge X_n$

- \Rightarrow $E\{X_{n+1} | F_n\} X_n \ge 0$
- \Rightarrow A_{n+1} $A_n \ge 0$

 \Rightarrow { A_n } is increasing sequence of uncertain variables.

 $\Rightarrow E\{X_{n+1} | F_n\} - X_n \ge 0$
 $\Rightarrow A_{n+1} - A_n \ge 0$
 $\Rightarrow A_n$ is increasing sequence of uncertain

3- since A_n is F_n — measurable and $F_n \subseteq$
 $n \in N$.
 $n \in N$.
 $F_n \in \{X_n, F_n, n \in N\}$ is an uncertain

Set $A_0 = 0$, and $A_n = A_{n-1$ 3- since A_n is F_n -measurable and $F_n \subseteq F_{n-1}$, then A_n is F_{n-1} -measurable for all $n \in N$.

4- Let $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale

Set $A_0 = 0$, and $A_n = A_{n-1} - (X_{n-1} - E(X_n \mid F_{n-1})$ for all $n \ge 0$.

 \Rightarrow { A_n } is increasing sequence of uncertain variables.

Take, $M_n = X_n - A_n$ for all *n*

 \Rightarrow *M* = {*M*_{*n*}</sub>, *F*_{*n*}, *n* \in *N*} is an uncertain martingale.

Reference

[1] Kannan .D. "An introduction to stochastic process", Elsevier North Holland, Inc,1979.

[2] R.B. Ash," Real analysis and probability ", Academic process, New York, 1992.

[3] Liu .B. "Uncertainty theory ", 2 nd ed ., Springer-Verlag, Berlin, 2007.

[4] Liu .B. "Theory and practice of uncertain programming", 3ed., UTLAB, 2009.

[5] Liu .B. " Uncertainty theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010.

[6] Liu .B. "Uncertainty theory", 4th ed ., UTLAB, 2011.