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      In this paper we study some new properties of convexly compact sets. 
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1.Introduction 

      The genesis of the notation of compactness is connected with the Borel 

theorem (proved in 1984) stating that every countable open cover of a closed 

interval admits a finite subcover, and with the Lebesgue observation that the same 

holds for every open cover of a closed interval ( in [1903] Borel generalization 

this result, in Lebesgue's seting, to all bounded closed subsets of Euclidean spaces 

) [2]. In 2010 Zitkovic [5] introduced the concept of  convexly compact sets.  A 

collection   of sets is said to have the finite intersection property (FIP) [2,4]  if 

the intersection of each finite subcollection of   is non-empty. A subset C  of a 

topological space X  is said to be compact if every open cover of C  admits a 

finite subcover,or equivalently, if and only if every collection of closed subsets of 

C  with the finite intersection property admits non-empty intersection[2,4].A 

function from a topological space into topological space is continuous if and only 

if the inverse image of every open (closed) set is open ( closed ) set .  A function 

from a topological space into topological space is said to be closed if the image of 

every closed set is closed set[2,4]. 

Let   be a non-empty set.The set )(Fin  consisting of all non-empty finite 

subsets of A carries a natural structure of a partially ordered set when ordered by 

inclusion. Moreover, it is a directed set, since 2121, DDDD   for any 

)(, 21 FinDD [5]. 
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Definition 1.1 [3] 
 

      A topology   on a vector space over afield   is called avector topology if 

the map XXX  :  and XX  :  are continuous. 

A vector space endowed with a vector topology is called a topological vector 

space. 

 

Definition 1.2 [1,3] 

       A subset C of a vector space X  is said to be convex set  if yx )1(   C  for 

every Cyx ,  and  10   . 

 

Remark 1.3 [3] 

      let X  be a vector space, then  

(i) the empty set and the singleton set are convex set. 

(ii) every intersection of convex sets is convex set . 

(iii) The closure of every convex set is convex set. 

 

Theorem 1.4 [1,3]   

(i) The image of every convex set under a linear map is convex. 

(ii) The inverse image of convex set under linear map is convex. 

 

Definition 1.5 [2,4] 

       Let X  be any non-empty set. A filter on X is a non-empty collection F  of 

a subsets of X  satisfying the following axioms. 

[F1]  F . 

[F2] If F F  and FH  , then H F . 

[F3] If  F F  and H F , then HF F . 

 

Remark 1.6 [2,4] 

      Every filter on a non-empty set X  admits the finite intersection property. 
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Definition 1.7 [2,4] 

       Let ),( X  be a topological space and let F  be a filter on X . The point 

Xx  is said to be a cluster point of F  if and only if Fx  for all F F . 

 

2. Convexly compact sets 

         In this section we shall study some new properties of convexly compact sets. 

 

Definition 2.1 [ 5] 

        A convex subset C  of  a topological vector space X  is said to be convexly 

compact if for any non-empty set A   and any family  AF  :  of closed and 

convex subsets of C , the condition  

                         )(AFinD , 


 



D

F                                                (2.1) 

implies  

                                                     


 



A

F ,                                         (2.2) 

      Without the additional restriction that the sets  AF  :  

be convex, Definition 2.1—postulating the finite-intersection property for families 

of closed and convex sets would be equivalent to the classical definition of 

compactness. It is, therefore, immediately clear that any convex and compact 

subset of a topological vector space is convexly compact [5]. The converse 

however is not true ( see [5] Example 2.2). 

 

Definition 2.2.  

       A topological vector  space X  is said to be convexly compact if for any non-

empty set A  and any family  
A

F
  of closed and convex subsets of X ,  

    the condition  

                      )(AFinD , 


 



D

F                                                (2.1)* 

implies  

                                              


 



A

F ,                                               (2.2)* 
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Definition 2.3  

      A subset of a vector space X  is said to be co-convex if  its complement is 

convex. 

 

Theorem 2.4 

      If A  is co-convex subset of a vector space X , then A  is co-convex for 

every  0/ . 

 

Proof 

     we need to prove that if AX /  is convex set, then AX /  is convex set. Let 

AXyx /,    and 10   . Then  

                                 Xyx ,   and  Ayx ,  

                              Xyx ,  and Ayx  11 , . 

     Xyx  11 ,  ( since X  is a vector space and 1 ) and 

Ayx  11 , .Therefore AXyx /, 11   .Since AX / is convex set then  

                            AXyx /))(1()( 11     

                         AXyx /))1(()( 11     

                         AXyx /))1((1    

                         Xyx  ))1((1   and Ayx  ))1((1   

                         Xyx  )1(   and Ayx   )1(  

                         AXyx  /)1(  . 

Then AX /  is convex and this complete the proof. 

            

                                                                                                         

Remark 2.5 

     The above theorem dose not still true if 0 . For example, consider the real 

line and let A  be any co-convex subset of the real line. Since   0A  then 

),0()0,()( cA  is not convex . Indeed the line segment  that joint 1  and 

1( for example ) dose not lie in cA)( .  

                                                                                                                         

Theorem 2.6  

       The arbitrary union of a collection of a co-convex set is co-convex. 

 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

3
nd

.  Sinentific Conference 19-20/ APRIL -2011 

Vol 3       No.2          Year 2011 

 

 47 

Proof 

      Suppose that   :A  be arbitrary collection of a co-convex subsets of a 

vector space X . Then  The collection  :
c

A  is convex for every  . 

By Remark 1.3 (ii) we get 



cA  is convex set. By De-Morgan Law we have  

                                            cc AA )(









  . 

Therefore cA )(


  is convex i.e. 


A  is co-convex and the proof is complete.                                                                                                       

 

Theorem 2.7 

      A topological vector space X  is convexly compact if and only if every co-

convex open cover of X admits a finite co-convex open cover. 

 

Proof 

       Suppose that X  is convexly compact and let    :G  be a co-convex 

open cover of X , so that  

                                            





GX . 

Then  

                                           





 cG  

Thus    :cG  be a collection of convex closed sets with empty intersection 

so by hypothesis there exists   )(FinD  such that  


 



D

cG .Thus 




 


c

D

G )(   XG
D







 .                      

Conversely, suppose that for every co-convex open cover of X  admits a finite 

co-convex open cover, and let   :F  be a collection of convex closed 

subset of X  such that condition (2.1)* holds, i.e.  

                             )(AFinD , 


 



D

F . 

Suppose if possible, 


 



A

F . Then  

                                   cFX )(





 = 



cF . 

This means that   :cF  is a co-convex open cover of X . By hypothesis, 

there exists   )(FinD  such that  
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D

cF


 X  XF c

D




)(


   


 



D

F  

But this contradicts the condition (2.1)*. Hence we must have 


 


F . 

                                                                                                                           

Theorem 2.8 

       A topological vector space X is convexly compact if and only if any basic 

co-convex open cover of X admits a finite subcover. 

 

Proof 

 Let X be a convexly compact space. Then by Theorem 2.7  every co-convex 

open cover of X admits a finite subcover. In particular, every basic co-convex 

open cover of X admit a finite subcover. 

Conversely, suppose that every basic co-convex open cover of X  admits a finite 

subcover. Let   :C  be any co-convex open cover of X . If   :B  be 

any co-convex open base for X , then each C  is a union of some members of  . 

That is there exists   such that  





 BC  for every  . ( Note that by 

Theorem   2.6  we have  the union of co-convex sets is also co-convex set). And 

the totality of all such members of    is evidently a basic co-convex open cover 

of X . By hypothesis this collection of members of   admits a finite subcover, 

say, niB
i

,...,2,1:  . For each 
i

B  in this finite subcover, we can select a 
i

C  

from   such that 
ii

CB   . It follows that the finite subcollection 

 niC
i

,...,2,1:   each arise in this way is a subcover of  . Hence X  is 

convexly compact. 

 

Theorem 2.9 

     If  X  be a convexly compact topological vector space. Then every convex 

filter on X admit a cluster point. 
 

Proof 

       Assume X  be a convexly compact topological vector space and let   be 

any convex filter on X . Then  be a collection of convex subsets of X and by 

Remark 1.6 it has FIP. Since by Remark 1.3(iii) the closure of convex set is also 

convex and the closure of any set is closed, then  FF :  is a collection of 

convex closed subsets of X . Since   has FIP property, then so is  FF : . 
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By hypothesis   



F

F  , hence there exists at least one point  



F

Fp . This 

implies that Fp  for every F . Hence p  is a cluster point of  by 

Definition 1.7.                      
                                                                                                               

Theorem 2.10 

      The image of convexly compact set under a continuous bijective linear map is 

convexly compact. 

 

Proof 

      Suppose that C  be a convexly compact in a topological vector space X  and let f  

be continuous linear map from X  onto another topological vector space Y . Since C  is 

convex in X  and f  is linear then by Theorem 1.4 (i) )(Cf  is convex set in Y . To 

show that )(Cf is a convexly compact. Let    :F  be a collection of closed and 

convex subsets of )(Cf  with the property that  

                                       


 



D

F ,  )(FinD . 

Since f  is continuous,and F  is closed    then    :)(1 Ff is closed. 

Since f  is linear,and F  is convex   then by theorem 1.4(ii) 

   :)(1 Ff is convex. Since )(CFF   for every  , then CFf  )(1

  for every 

 .Hence   :)(1 Ff  is collection of convex and closed subsets of  C  since 




 



D

F and f  is onto then 


 


 
D

FF )(1    D . Since f  is bijective then 




 
D

FF


 )(1 
D

Ff






 )(1  and hence 


 



D

Ff )(1
 )(AFinD .Since C  is convexly 

compact, then 


 



A

Ff )(1  then 


 


 ))(( 1
A

FfF  

since 


 ))(( 1
A

FfF


 ))(( 1
A

Fff






 
A

F





 [since f  is bijective]. Thus 


 



A

F . 

)(Cf  is convexly compact.This complete the proof.                                                                                                              

 
Theorem 2.11 

      The inverse image of every convexly compact set under closed bijective 

linear map is convexly compact. 
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Proof 

       Suppose that X  and Y  are two topological vector spaces and 
YXf :  be a closed bijective linear map. Let C  be a convexly compact 

set in Y . To show that )(1 Cf   is convexly compact in X . Since C  is 

convex and f   is linear then by Theorem 1.4 (ii) )(1 Cf   is convex set. 

Now,let   :F  be a collection of convex closed subsets of )(1 Cf   with 

the property that 


 



D

F , for every )(FinD . Since  )(1 CfF   and 

f  is onto, then CCffFf   ))(()( 1

 . Since F  is closed   and f  

is closed function , then )( Ff  is closed subset of C. Since F  is 

convex  and f  is linear then )( Ff  is convex set. Thus 

  :)(Ff  is the a collection of  closed convex subsets of C . Since 




 



D

F , )(FinD  then 


 


)(
D

Ff . But f  is onto, thus 




)(
D

Ff


 )(
D

Ff


 , therefore 


 


)(
D

Ff  i.e.   :)(Ff  admits 

finite intersection property. By convexly compactness of C , we have 




 


)( Ff . Since f  is onto, then 


 ))((1 


Fff   since f  is one-one 

then 


 ))((1 


Fff 


 ))((1


Fff 


F ;hence 


 


F ,i.e. )(1 Cf  is 

convexly compact, and this complete the proof.                                     

                                                                                                                           
Theorem 2.12 

       If A  is convexly compact subset of a topological vector space X . Then the 

set A  is convexly compact where  . 

 

Proof 

 Suppose that A  is convexly compact subset of a topological vector space X  and 

 . Since the function XX  :  which define by xx  ),(  is 

continuous by definition of a topological vector space, then by Theorem 2.10 the 

set A  is convexly compact and the proof is complete.                                                                                                    
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