Page 63-72

A new kind of Fuzzy Topological Vector Spaces

SALAH MAHDI ALI

Department of Mathematics, College of C. Sc. and Math.,

AL-Qadisiya University, Iraq.

salah_x9@yahoo.com

Abstract.

 In this paper, we introduce a new kind of fuzzy topological vector spaces that is a locally affine fuzzy topological vector space, finological space, *S space* . Finally, we evidence that S – *space* has a base at zero.

2010 Mathematics Subject Classification : Primary *54A40, 46S40* Keywords : affine fuzzy set, S – fuzzy set, finological space, S – space.

1. Introduction

 Fuzzy topological vector space defined and studied by Katsaras [2, 3]. In [3] the author was give a characteristic to a base at zero for a fuzzy vector topology in fuzzy topological vector spaces. Moreover, he was introduced the concept of bounded sets in a fuzzy topological vector space.

In this paper, we introduce a new kind of fuzzy topological vector spaces that is a locally affine fuzzy topological vector space by dependence on a new concept that is affine fuzzy sets. After that we introduce a finological space by dependence on a concept of bounded sets and we study a special kind of finological spaces that is S – space and we evidence that S – space has a base at zero.

2. Preliminaries

Let X be a non-empty set. A fuzzy set in X is the element of the set I^X of all functions from X into the unit interval $I = [0,1]$. If $C_{\alpha}: X \to I$ is a function defined by $C_a(x) = \alpha$ for all $x \in X$, $\alpha \in I$, then C_α is called the constant fuzzy set.

Let X be a vector space over a field F , where F is the space of either the real or the complex numbers. If A_1, A_2, \ldots, A_n are fuzzy sets in X, then the sum $A_1 + A_2 + \cdots + A_n$ (see [2]) is the fuzzy set A in X defined by

 $A(x) = \text{sup} \quad \min\{A_1(x_1), A_2(x_2),..., A_n(x_n)\}.$ Also, if A is a fuzzy set in X $A(x) =$

and
$$
\alpha \in F
$$
, then αA is a fuzzy set defined by
\n
$$
\alpha A(x) = \begin{cases}\nA(x/\alpha) & \text{if } \alpha \neq 0 \text{ for all } x \in X \\
0 & \text{if } \alpha = 0, x \neq 0 \\
\sup_{y \in X} A(y) & \text{if } \alpha = 0, x = 0\n\end{cases}
$$

If A is a fuzzy set in X and $x \in X$, then $x + A$ is a fuzzy set in X and defined by $(x+A)(y) = A(y-x)$. A fuzzy set A in X is called a balanced fuzzy set if $\alpha A \subset A$ or $A(\alpha x) \ge A(x)$ for all α with $|\alpha| \le 1$. For the definition of a fuzzy topology, we will use the one given by Lowen [1] that is a fuzzy topology on a set *X* we will mean a subset γ of I^X satisfying the following conditions :

(i) γ contains every constant fuzzy set in X;

(ii) If $A_1, A_2 \in \gamma$, then $A_1 \cap A_2 \in \gamma$;

(iii) If $A_i \in \gamma$ for all $i \in \Lambda$ (Λ any index), then $\bigcup A_i \in \gamma$. $\in \Lambda$ *i*

(x) = sup
 $f(x) = \lim_{x_1 + x_2 = x} \min\{A_1(x_1), A_2(x_2),..., A_n(x_n)\}$
 $\alpha \in F$, then αA is a
 $\alpha \in F$, then αA is a
 $\beta(A(x))$ if $\alpha \neq 0$ for $a \Pi x \in X$
 β and $A(x)$ if $\alpha = 0, x \neq 0$
 β and $A(y)$ if $\alpha = 0, x = 0$
 A is a f The pair (X, γ) is called a fuzzy topological space. If $A \in \gamma$, then A is called an open fuzzy set and A is called a neighborhood of $x \in X$ if there exists an open fuzzy set *B* with $B \subseteq A$ and $B(x) = A(x) > 0$. Moreover, *A* is open fuzzy set in a fuzzy topological space X if and only if A is a neighborhood of x for each $x \in X$ with $A(x) > 0$. A fuzzy vector topology on a vector space X over F (see [3]) is a fuzzy topology γ on X such that the two functions

 μ : $(X, \gamma) \times (X, \gamma) \rightarrow (X, \gamma)$, such that $\mu(x, y) = x + y$, for all $x, y \in X$;

 υ : $(F, \mathfrak{T}_U) \times (X, \gamma) \rightarrow (X, \gamma)$, such that $\upsilon(\alpha, x) = \alpha \cdot x$, for $\alpha \in F, x \in X$, are fuzzy continuous when F is equipped with the usual fuzzy topology, (\mathfrak{I}_U) is a fuzzy topo-logy generated by the usual topology U on F) and $F \times X, X \times X$ have the correspo-nding product fuzzy topologies. A vector space *X* equipped with a fuzzy vector topology γ is called a fuzzy topological vector space.

3. Main Results

Theorem 3.1. [3]

Let Φ be a family of balanced fuzzy sets in a vector space X over F . Then Φ is a base at zero for a fuzzy vector topology if, and only if Φ satisfies the following conditions :

(1) $A(0) > 0$, for each $A \in \Phi$;

(2) for each non-zero constant fuzzy set C_β and any $\alpha \in (0, \beta)$ there exists $A \in \Phi$ with $A \subseteq C_\beta$ and $A(0) > \alpha$;

(3) If $A, B \in \Phi$ and $\alpha \in (0, \min\{A(0), B(0)\})$, then there exists $D \in \Phi$ with $D \subseteq A \cap B$ and $D(0) > \alpha$;

(4) If $A \in \Phi$ and *t* a non-zero scalar, then for each $\alpha \in (0, A(0))$ there exists $B \in \Phi$ with $B \subseteq tA$ and $B(0) > \alpha$;

(5) Let $A \in \Phi$ and $\alpha \in (0, A(0))$. Then, there exists $B \in \Phi$ such that

 $B(0) > \alpha$ and $B + B \subseteq A$;

(6) Let $A \in \Phi$ and $x \in X$. If $\alpha \in (0, A(0))$, then there exists a positive number *s* such that $A(tx_{s}) > \alpha$, for all scalar $t \in R$ with $|t| \leq s$;

(7) For each $A \in \Phi$ there exists a fuzzy set *B* in *X* with $B \subseteq A$, $B(0) = A(0)$ such that for each $x \in X$ with $B(x) > 0$ and if $n \in (0, B(x))$, there exists $D \in \Phi$ with $D \subseteq -x + B$ and $D(0) > n$.

Definition 3.2.

Let X be a vector space over F . A fuzzy set A in X is called an affine fuzzy set if $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$.

Theorem 3.3.

Let A be a fuzzy set in a vector space X over F and $\lambda \in F$, then the following statement are equivalent.

(1) *A* is an affine fuzzy set.

(2) for all x, y in X , we have $A(\lambda x + (1 - \lambda)y) \ge \min\{A(x), A(y)\}.$

Proof

 $(1) \Rightarrow (2)$ Suppose that A is an affine fuzzy set, by (Definition 3.2) we have $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$. Now, for each $x, y \in X$ $A(\lambda x + (1 - \lambda)y) \geq (\lambda A + (1 - \lambda)A)(\lambda x + (1 - \lambda)y)$ = sup $\min\{(\lambda A)(x_1),((1 - \lambda)A)(y_1)\}\$ $\lambda x + (1 - \lambda) y = x_1 + y_1$ \geq min{(λ A)(λ x),((1 - λ)A)((1 - λ)y)} \geq min{ $A(x)$, $A(y)$ }. $(2) \Rightarrow (1)$ Let $x \in X$, $(\lambda A + (1 - \lambda)A)(x) = \sup \min\{(\lambda A)(x_1), ((1 - \lambda)A)(x_2)\}\$ $x_1 + x_2 = x$ (c) If $\lambda \neq 0$ and $1 - \lambda \neq 0$, then

$$
(\lambda A)(x_1) = A(\frac{1}{\lambda}x_1) \text{ and } ((1-\lambda)A)(x_2) = A(\frac{1}{(1-\lambda)}x_2)
$$

\nThus, $(\lambda A + (1-\lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1-\lambda)}x_2)\}$
\nBut,
\n $\min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1-\lambda)}x_2)\} \le A(\lambda(\frac{1}{\lambda}x_1) + (1-\lambda)(\frac{1}{(1-\lambda)}x_2)) = A(x_1 + x_2) = A(x)$.
\n(d) If $\lambda \ne 0$ and $1-\lambda = 0$, then $(\lambda A)(x_1) = A(x_1)$ and
\n $((1-\lambda)A)(x_2) = \begin{cases} 0 & ,x_2 \ne 0 \\ \sup_{z \in X} A(z) & ,x_2 = 0 \end{cases}$
\n(i) If $x_2 \ne 0$, then $((1-\lambda)A)(x_2) = 0$ and
\n $(\lambda A + (1-\lambda)A)(x_2) \ge A(x_2)$, then $A(x_2) = 0$ and we get $\min\{A(x_1), A(x_2)\} = 0$.
\n(ii) If $x_2 = 0$, then $((1-\lambda)A)(x_2) = \sup_{x \in X} A(x_2) = 0$ and we get $\min\{A(x_1), A(x_2)\} = 0$.
\n(ii) If $x_2 = 0$, then $((1-\lambda)A)(x_2) = \sup_{x \in X} A(x_2)$ and
\n $(\lambda A + (1-\lambda)A)(x) = \sup_{x_1 = x} \min\{\lambda A(x_1), \sup_{x \in X} A(z)\} \le \sup_{x_1 = x} A(x_1) = A(x)$.
\n(c) If $\lambda = 0$ and $1-\lambda \ne 0$, by the same way in (b).

(d) if $\lambda = 0$ and $1 - \lambda = 0$, its impossible.

Definition 3.4.

Let X be a vector space over F . A fuzzy set A in X is called *S fuzzy set* if *A* is balanced and affine fuzzy set.

Theorem 3.5.

Let X be a vector space over F and $x_0 \in X$, then the characteristic function of $\{x_{\circ}\}\$ (in symbol $\chi_{\{x_{\circ}\}}\$) is S – *fuzzy set*.

Proof

(1) To prove $\chi_{\{x_0\}}$ is an affine fuzzy set. Let $x, y \in X$, $\lambda \in F$ and suppose that $\chi_{\{x_0\}}(\lambda x + (1 - \lambda)y) < \min\{\chi_{\{x_0\}}(x), \chi_{\{x_0\}}(y)\}\$

Then $\chi_{\{x_0\}}(\lambda x + (1 - \lambda)y) = 0$ and $\min{\{\chi_{\{x_0\}}(x), \chi_{\{x_0\}}(y)\}} = 1$. Thus, $\lambda x + (1 - \lambda)y \neq x_{0}$ and $x = y = x_{0}$ implies that $x_{0} \neq x_{0}$ which is impossible. Hence,

 $\chi_{\{x_0\}}(\lambda x + (1 - \lambda)y) \ge \min\{\chi_{\{x_0\}}(x), \chi_{\{x_0\}}(y)\}\$. From (Theorem 3.3), we get the result.

($x_1(x_1)(\lambda x + (1 - \lambda)y) \ge \min\{ \chi_{(x_1)}(x), \chi_{(x_1)}(y) \}$ sult.

S (2) To prove $\chi_{\{x_{s}\}}$ is a balanced fuzzy set. Let $\lambda \in F$ such that $|\lambda| \leq 1$, then from (1) we get for $x \in X$, $\chi_{\{x_0\}}(\lambda x) = \chi_{\{x_0\}}(\lambda x + (1 - \lambda)0) \ge \min{\{\chi_{\{x_0\}}(\lambda x), \chi_{\{x_0\}}(0)\}}$. Now, the proof is completely if $\chi_{\{x_0\}}(x) < \chi_{\{x_0\}}(0)$. Suppose that $\chi_{\{x_0\}}(x) > \chi_{\{x_0\}}(0)$, then $\chi_{\{x_0\}}(x) = 1$ and $\chi_{\{x_0\}}(0) = 0$. That is mean $x = x_0$ for all $x \in X$ and $x_{0} \neq 0$. By other word $0 \notin X$ which contradiction.

Theorem 3.5.

Let *A* be $S - \text{fuzzy set}$. Define $B: X \to I$, $B(x) = \sup\{A(tx): t > 1\}$, then *B* is $S - \text{fuzzy set}$. Moreover, $B \subseteq A$ and $B(0) = A(0)$.

Proof

(1) To prove *B* is a balanced fuzzy set. Let $\lambda \in F$ such that $|\lambda| \leq 1$, $x \in X$.

 $B(\lambda x) = \sup \{A(\lambda tx) : t > 1\} \ge \sup \{A(tx) : t > 1\} = B(x)$.

(2) To prove *B* is an affine fuzzy set. Let $\lambda \in F$ and for any $x, y \in X$, we have

$$
B(\lambda x + (1 - \lambda)y) = \sup \{A(t(\lambda x + (1 - \lambda)y)) : t > 1\} = \sup \{A(\lambda tx + (1 - \lambda)ty) : t > 1\}
$$

 \geq sup { min{*A*(*tx*), *A*(*ty*)}: *t* > 1} \geq min{sup *A*(*tx*),sup *A*(*ty*)} for *t* > 1. $= min\{B(x), B(y)\}$. Then *B* is $S - \text{fuzzy set}$.

(3) To prove $B \subseteq A$ and $B(0) = A(0)$. Let $x \in X$, since A is a balanced

fuzzy set, we get $B(x) = \sup A(tx) = \sup^{-1} A(x) \leq \sup A(x) = A(x)$ 1 $t>1$ $t>1$ $t>1$ $A(x) \leq \sup A(x) = A(x)$ *t* $B(x) = \sup A(tx)$ $t>1$ $t>1$ t $=\sup A(tx) = \sup^{-1} A(x) \leq \sup A(x) =$ >1 $t>1$ t $t>$. That is mean $B \subseteq A$. $B(0) = \sup \{A(t0): t > 1\} = A(0).$

Definition 3.6. [3]

A fuzzy set A in a vector space X, absorbs a fuzzy set B if $A(0) > 0$ and for every $\theta < A(0)$, there exists $t > 0$ such that $C_{\theta} \cap tB \subseteq A$

Definition 3.7. [3]

 A fuzzy set *A* in a fuzzy topological vector space *X* is called bounded if it is absorbs by every neighborhood of zero.

Definition 3.8.

 A fuzzy topological vector space *X* is called locally affine if it has a base at zero consisting of affine fuzzy sets.

Theorem 3.9.[3]

Let *A* be a neighborhood of zero in a fuzzy topological vector space X. Then, there exist an open neighborhood B_1 of zero and a balanced neighborhood B_2 of zero such that $B_1(0) = B_2(0) = A(0)$, $B_1 \subseteq B_2 \subseteq A$ and $tB_1 \subseteq B_1$ for each scalar t with $|t| \leq 1$.

Remark

 If a neighborhood *A* of zero is an affine, then we called an affine neighborhood of zero. Likewise is called *S* -neighborhood if it is balanced and affine fuzzy set.

Theorem 3.10.

Let A be an affine neighborhood of zero in a fuzzy topological vector space *X*. Then there exist *S*-neighborhood *B* of zero with $B \subseteq A$ and $B(0) = A(0)$. **Proof :**

By (Theorem 3.9.), there exists an open neighborhood D_1 of zero and a balanced neighborhood D_2 of zero with $D_1 \subseteq D_2 \subseteq A$ and $D_1(0) = D_2(0) = A(0)$. Let $B = span(D_2)$, then B is $S - fuzzyset$ and $D_2 \subseteq B \subseteq A$. To get the result only prove that B is a neighborhood of zero and this fact is true, since $D_1 \subseteq B$ and $D_1(0) = B(0) > 0$.

Theorem 3.11.

If X is a fuzzy topological vector space, $x_{\circ} \in X$ then $\chi_{\{x_{\circ}\}}$ is bounded set. **Proof:**

Let $x \in X$ and A is a neighborhood of zero, then $A(0) > 0$. Let $\theta \in (0, A(0))$. By (6) of theorem 3.1., there exists a positive number δ such that $A(tx) > \theta$ for all scalars t with $|t| \leq \delta$. Take $t = \delta$, we see that

 $\min\{\theta, \chi_{\{x_{\delta}\}}(x)\}\leq \theta < A(\delta x) = \frac{1}{\delta}A(x)$. Thus, $C_{\theta}\cap \delta \chi_{\{x_{\delta}\}} \subset A$. This complete the proof.

Definition 3.12.

 A locally affine fuzzy topological vector space *X* is called finological if every $S - \text{fuzzy set}$ in X which absorbs bounded sets is a neighborhood of zero.

The next definition is related to a special kind of finological spaces that is the space which contains all $S - fuzzy sets$ which absorbs the characteristic function for $\{0\}$ (in symbol $\chi_{\{0\}}$ or χ for short).

Definition 3.13.

A locally affine fuzzy topological vector space X is called S – space if every $S - \text{fuzzy set}$ in X which absorbs χ is a neighborhood of zero.

Theorem 3.14.

Any S – *space* has a base at zero.

Proof :

Let (X, γ) be S – *space* and let

 $IB = \{ A \in I^X : A \text{ is } S - \text{fuzzy set which absorbs } \chi_a \}$ To prove *IB* is a base at zero for S – *space* X . By another word it suffices to show that *IB* satisfies the conditions $(1)-(7)$ of (Theorem 3.1).

(1)

Let $A \in IB$ and let B be a bounded set. If $A(0) = 0$, then there is no $\theta < A(0)$ such that $C_{\theta} \cap tB \subseteq A$ for all $t > 0$. That is mean A is not absorbs B but this impossible with assume. Thus, $A(0) > 0$ for each $A \in IB$.

(2)

Let $0 < \beta \le 1$ and suppose that $\alpha \in (0, \beta)$. Choose $\alpha_1 \in (\alpha, \beta)$. Now, C_{α_1} is *S fuzzy set* and $C_{\alpha_1} \cap \chi_{\circ} \subseteq C_{\alpha_1} \subseteq C_{\beta}$. Thus, that $C_{\alpha_1} \in IB$ and $C_{\alpha_1}(0) = \alpha_1 > \alpha$. (3)

Let $A, B \in IB$ and $0 < \alpha < \min\{A(0), B(0)\}\)$. Let $\alpha_1 \in (\alpha, \min\{A(0), B(0)\})$, then $\alpha_1 < A(0)$ and $\alpha_1 < B(0)$ subsequently, there are $t_1, t_2 > 0$ such that $C_{\alpha_1} \cap t_1 \chi \subseteq A$ and $C_{\alpha_1} \cap t_2 \chi \subseteq B$. Choose $0 < t < t_1, t_2$. Then $|t/t_1| < 1$ and $|t/t_2| < 1$. Since $\chi_{\{x_0\}}$ is a balanced fuzzy set then $t\chi_{\circ} \subseteq t_1\chi_{\circ}$ and $t\chi_{\circ} \subseteq t_2\chi_{\circ}$. Now, let $D = C_{\alpha_1} \cap t\chi$, we see that $D = C_{\alpha_1} \cap t\chi$, $\subseteq (C_{\alpha_1} \cap t_1\chi) \cap (C_{\alpha_1} \cap t_2\chi) \subseteq A \cap B$. Likewise $D(0) = (C_{\alpha_1} \cap t\chi_0)(0) = \alpha_1 > \alpha$. (4)

Let $A \in IB$ and $0 \neq t \in R$. Suppose that $0 < \alpha < A(0)$. Choose $\alpha_1 \in (\alpha, A(0))$. Since $A \in IB$, then there exist $t_1 > 0$ such that $C_{\alpha_1} \cap t_1 \chi \subseteq A$. That is implies $t(C_{\alpha_1} \cap t_1 \chi) \subseteq tA$. In other words $(C_{\alpha_1} \cap t_1 \chi) (\chi/t) \leq (tA)(\chi)$ for all $\chi \in X$. Let $B = C_{\alpha_1} \cap t.t_1 \chi_{\circ}$. Now, $B(x) = (C_{\alpha_1} \cap t.t_1 \chi_{\circ})(x) = (C_{\alpha_1} \cap t_1 \chi_{\circ})(x/t) \leq tA(x)$. Then $B \subseteq tA$ and $B(0) = \alpha_1 > \alpha$.

(5)

Suppose that $A \in IB$ and $0 < \theta < A(0)$. Choose $\theta_1 \in (\theta, A(0)$. Since $A \in IB$, then there exist $t > 0$ such that $C_{\theta_1} \cap t\chi_{\theta_2} \subseteq A$. Let 2 $s = \frac{t}{2}$, $B = C_{\theta_1} \cap s\chi$. Now, to prove that *B* which was to be demonstrated.

$$
(B+B)(x) = \sup_{x_1 + x_2 = x} \min\{B(x_1), B(x_2)\}\
$$

\n
$$
= \sup_{x_1 + x_2 = x} \min\{(C_{\theta_1} \cap s\chi_0)(x_1), (C_{\theta_1} \cap s\chi_0)(x_2)\}\
$$

\n
$$
= \sup_{y \in X} \min\{C_{\theta_1}, \min\{s\chi_0(y), s\chi_0(x-y)\}\}\
$$

\n
$$
= \sup_{y \in X} \min\{C_{\theta_1}, \min\{\frac{t}{2}\chi_0(y), \frac{t}{2}\chi_0(x-y)\}\}\
$$

\n
$$
= \sup_{y \in X} \min\{C_{\theta_1}, \min\{\chi_0(\frac{2y}{t}), \chi_0(\frac{2x-2y}{t})\}\}\
$$

\n
$$
\leq \sup_{y \in X} \min\{C_{\theta_1}, \chi_0((\frac{1}{2})(\frac{2y}{t}) + (\frac{1}{2})(\frac{2x-2y}{t})))\}, \chi_0 \text{ is an affine fuzzy set.}
$$

 C_{θ_1} , $t\chi$, $(y + x - y)$ $y \in X$ $=$ sup min $\{C_a, t\chi_a(y+x \sup_{x \in X} \min\{C_{\theta_1}, t\chi_0(y + x - y)\}\} = \min\{C_{\theta_1}, t\chi_0(x)\} \le A(x).$

Also, $B(0) = C_{\theta_1} \cap t\chi_0(0) = \min\{\theta_1, 1\} = \theta_1 > \theta$. (6)

Let $x \in X$, $A \in IB$ and $0 < \theta < A(0)$. Choose $\theta_1 \in (\theta, A(0))$. Since the fuzzy set $\chi_{\{x_0\}}$ is bounded, then there is $t > 0$ such that $C_{\theta_1} \cap t\chi_{\{x_0\}} \subseteq A$. Now, if $|s| \le t$, then $A(sx_0) \ge A(tx_0) \ge \min\{\theta_1, \chi_{\{x_0\}}(x_0) = 1\} = \theta_1 > \theta$. (7)

sup min{ C_{θ_1} , $t\chi_s$ ($y + x - y$))} ϵ
 C_{θ_1} $\cap t\chi_s$ (0) = min{ θ_1 , 1} = θ_1
 $A \in IB$ and $0 < \theta < A(0)$. C

unded, then there is $t > 0$ suc
 $A(tx_s) \ge \min\{\theta_1, \chi_{\{x_s\}}(x_s) = 1\}$.

Define $B: X \rightarrow I$, $B(x) =$
 $zy \text{$ Let $A \in IB$. Define $B: X \to I$, $B(x) = \sup\{A(tx): t > 1\}$. Form (Theorem 3.5) *B* is $S - \text{fuzzy set}$. Moreover, $B \subseteq A$ and $B(0) = A(0)$. Also, *B* absorbs χ . In fact, let $0 < \theta < B(0)$. Since A absorbs χ , then there exists $t > 0$ such that $C_{\theta} \cap t\chi_{\theta} \subseteq A$. Now, $(C_{\theta} \cap t\chi_{\theta})(2x) \leq A(2x) \leq B(x)$. And so $C_{\theta} \cap (\frac{1}{2}t\chi_{\theta}) \subseteq B$ 2 $\zeta_{\theta} \cap (\frac{1}{2} t \chi_{\theta})$ which proves that *B* absorbs χ . By other word $B \in IB$. If $0 < \theta < B(x)$, let $\theta_1 \in (\theta, B(x))$, there exists $t > 1$ such that $A(tx) > \theta_1$. Let $1 < s < t$. Then $B(sx) \ge A(tx) > \theta_1$ for $x \in X$. Take *s* $\eta = \frac{1}{\eta}$, $\mu = 1 - \eta$. Using the fact that *B* is an affine fuzzy set and for $y \in X$, we get, $(-x+B)(y) = B(x+y) = B(\eta(sx) + \mu(\mu^{-1}y)) \ge \min\{B(sx), B(\mu^{-1}y)\} \ge \min\{\theta_1, (\mu B)(y)\}$ let $B_2 = C_{\theta_1} \cap \mu B$. Now, $B_2 \subseteq -x + B$ and $B_2(0) = \theta_1 > \theta$. We just prove $B_2 \in IB$. It is clear that B_2 is $S - \text{fuzzy set}$ and

2 1 2^{n} λ_0 = ϵ_{θ_1} $C_{\theta} \cap \frac{1}{2} \mu^{-1} \chi_{\theta} \subset C_{\theta_1} \cap \mu B = B_2$ which means B_2 absorbs χ_{θ} . Hereupon, Which complete the proof.

Acknowledgment. The author would like to express their thanks to the referee Asst. Prof. Dr. Noori. F. AL-Mayahi for his detailed examinations of this paper.

References

[1] R. Lowen , Fuzzy Topological Spaces and Fuzzy Compactness, *J. Math. Anal. Appl.*, **56** (1976) 621-633.

[2] A. K. Katsaras and D. B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, *J. Math. Anal. Appl*. **58** (1977) 135-146.

[3] A. K. Katsaras, Fuzzy Topological Vector Spaces I, *Fuzzy Sets and Systems*,**6** (1981) 85-95.