Page 63-72 A new kind of Fuzzy Topological Vector Spaces SALAH MAHDI ALI

Department of Mathematics, College of C. Sc. and Math., AL-Qadisiya University, Iraq.

salah_x9@yahoo.com

Abstract.

In this paper, we introduce a new kind of fuzzy topological vector spaces that is a locally affine fuzzy topological vector space, finological space, S-space. Finally, we evidence that S-space has a base at zero.

2010 Mathematics Subject Classification : Primary 54A40, 46S40 Keywords : affine fuzzy set, S – fuzzy set, finological space, S – space .

1. Introduction

Fuzzy topological vector space defined and studied by Katsaras [2, 3]. In [3] the author was give a characteristic to a base at zero for a fuzzy vector topology in fuzzy topological vector spaces. Moreover, he was introduced the concept of bounded sets in a fuzzy topological vector space.

In this paper, we introduce a new kind of fuzzy topological vector spaces that is a locally affine fuzzy topological vector space by dependence on a new concept that is affine fuzzy sets. After that we introduce a finological space by dependence on a concept of bounded sets and we study a special kind of finological spaces that is S – space and we evidence that S – space has a base at zero.

2. Preliminaries

Let X be a non-empty set. A fuzzy set in X is the element of the set I^X of all functions from X into the unit interval I=[0,1]. If $C_\alpha:X\to I$ is a function defined by $C_\alpha(x)=\alpha$ for all $x\in X$, $\alpha\in I$, then C_α is called the constant fuzzy set.

Let X be a vector space over a field F, where F is the space of either the real or the complex numbers. If A_1, A_2, \ldots, A_n are fuzzy sets in X, then the sum $A_1 + A_2 + \cdots + A_n$ (see [2]) is the fuzzy set A in X defined by

$$A(x) = \sup_{x_1 + x_2 + \dots + x_n = x} \min\{A_1(x_1), A_2(x_2), \dots, A_n(x_n)\}. \text{ Also, if } A \text{ is a fuzzy set in } X$$
 and
$$\alpha \in F, \text{ then } \alpha A \text{ is a fuzzy set defined by}$$

$$\alpha A(x) = \begin{cases} A(x/\alpha) & \text{if } \alpha \neq 0 \text{ for all } x \in X \\ 0 & \text{if } \alpha = 0, x \neq 0 \\ \sup_{y \in X} A(y) & \text{if } \alpha = 0, x = 0 \end{cases}.$$

If A is a fuzzy set in X and $x \in X$, then x + A is a fuzzy set in X and defined by (x + A)(y) = A(y - x). A fuzzy set A in X is called a balanced fuzzy set if $\alpha A \subset A$ or $A(\alpha x) \ge A(x)$ for all α with $|\alpha| \le 1$. For the definition of a fuzzy topology, we will use the one given by Lowen [1] that is a fuzzy topology on a set X we will mean a subset γ of I^X satisfying the following conditions:

- (i) γ contains every constant fuzzy set in X;
- (ii) If $A_1, A_2 \in \gamma$, then $A_1 \cap A_2 \in \gamma$;
- (iii) If $A_i \in \gamma$ for all $i \in \Lambda$ (Λ any index), then $\bigcup_{i \in \Lambda} A_i \in \gamma$.

The pair (X, γ) is called a fuzzy topological space. If $A \in \gamma$, then A is called an open fuzzy set and A is called a neighborhood of $x \in X$ if there exists an open fuzzy set B with $B \subseteq A$ and B(x) = A(x) > 0. Moreover, A is open fuzzy set in a fuzzy topological space X if and only if A is a neighborhood of x for each $x \in X$ with A(x) > 0. A fuzzy vector topology on a vector space X over F (see [3]) is a fuzzy topology γ on X such that the two functions

 $\mu:(X,\gamma)\times(X,\gamma)\to(X,\gamma)$, such that $\mu(x,y)=x+y$, for all $x,y\in X$; $\upsilon:(F,\mathfrak{F}_U)\times(X,\gamma)\to(X,\gamma)$, such that $\upsilon(\alpha,x)=\alpha.x$, for $\alpha\in F,x\in X$, are fuzzy continuous when F is equipped with the usual fuzzy topology, (\mathfrak{F}_U is a fuzzy topology generated by the usual topology U on F) and $F\times X,X\times X$ have the corresponding product fuzzy topologies. A vector space X equipped with a fuzzy vector topology γ is called a fuzzy topological vector space.

3. Main Results

Theorem 3.1. [3]

Let Φ be a family of balanced fuzzy sets in a vector space X over F. Then Φ is a base at zero for a fuzzy vector topology if, and only if Φ satisfies the following conditions:

(1) A(0) > 0, for each $A \in \Phi$;

- (2) for each non-zero constant fuzzy set C_{β} and any $\alpha \in (0, \beta)$ there exists $A \in \Phi$ with $A \subseteq C_{\beta}$ and $A(0) > \alpha$;
- (3) If $A, B \in \Phi$ and $\alpha \in (0, \min\{A(0), B(0)\})$, then there exists $D \in \Phi$ with $D \subseteq A \cap B$ and $D(0) > \alpha$;
- (4) If $A \in \Phi$ and t a non-zero scalar, then for each $\alpha \in (0, A(0))$ there exists $B \in \Phi$ with $B \subseteq tA$ and $B(0) > \alpha$;
- (5) Let $A \in \Phi$ and $\alpha \in (0, A(0))$. Then, there exists $B \in \Phi$ such that $B(0) > \alpha$ and $B + B \subseteq A$;
- (6) Let $A \in \mathcal{D}$ and $x_{\circ} \in X$. If $\alpha \in (0, A(0))$, then there exists a positive number s such that $A(tx_{\circ}) > \alpha$, for all scalar $t \in R$ with $|t| \le s$;
- (7) For each $A \in \Phi$ there exists a fuzzy set B in X with $B \subseteq A$, B(0) = A(0) such that for each $x \in X$ with B(x) > 0 and if $n \in (0, B(x))$, there exists $D \in \Phi$ with $D \subseteq -x + B$ and D(0) > n.

Definition 3.2.

Let X be a vector space over F. A fuzzy set A in X is called an affine fuzzy set if $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$.

Theorem 3.3.

Let A be a fuzzy set in a vector space X over F and $\lambda \in F$, then the following statement are equivalent.

- (1) A is an affine fuzzy set.
- (2) for all x, y in X, we have $A(\lambda x + (1 \lambda)y) \ge \min\{A(x), A(y)\}$.

Proof

$$(1) \Rightarrow (2)$$

Suppose that A is an affine fuzzy set, by (Definition 3.2) we have $\lambda A + (1 - \lambda)A \subset A$ for each $\lambda \in F$. Now, for each $x, y \in X$

$$A(\lambda x + (1-\lambda)y) \ge (\lambda A + (1-\lambda)A)(\lambda x + (1-\lambda)y)$$

$$= \sup_{\lambda x + (1-\lambda)y = x_1 + y_1} \min\{(\lambda A)(x_1), ((1-\lambda)A)(y_1)\}$$

$$\geq \min\{(\lambda A)(\lambda x),((1-\lambda)A)((1-\lambda)y)\}\geq \min\{A(x),A(y)\}.$$

$$(2) \Rightarrow (1)$$

Let
$$x \in X$$
, $(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{(\lambda A)(x_1), ((1 - \lambda)A)(x_2)\}$

(c) If $\lambda \neq 0$ and $1 - \lambda \neq 0$, then

Vol 3 No.2 Year 2011

$$(\lambda A)(x_1) = A(\frac{1}{\lambda}x_1) \text{ and } ((1-\lambda)A)(x_2) = A(\frac{1}{(1-\lambda)}x_2)$$

Thus,
$$(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1 - \lambda)}x_2)\}$$

But,

$$\min\{A(\frac{1}{\lambda}x_1), A(\frac{1}{(1-\lambda)}x_2)\} \le A(\lambda(\frac{1}{\lambda}x_1) + (1-\lambda)(\frac{1}{(1-\lambda)}x_2)) = A(x_1 + x_2) = A(x).$$
(d) If $\lambda \ne 0$ and $1 - \lambda = 0$, then $(\lambda A)(x_1) = A(x_1)$ and
$$((1-\lambda)A)(x_2) = \begin{cases} 0 & ,x_2 \ne 0\\ \sup_{z \in X} A(z) & ,x_2 = 0 \end{cases}$$
(i) If $x_2 \ne 0$, then $((1-\lambda)A)(x_2) = 0$ and

(i) If
$$x_2 \neq 0$$
, then $((1-\lambda)A)(x_2) = 0$ and $(\lambda A + (1-\lambda)A)(x) = \sup_{x_1 + x_2 = x} \min\{A(x_1), 0\} = 0$

Since $((1-\lambda)A)(x_2) \ge A(x_2)$, then $A(x_2) = 0$ and we get $\min\{A(x_1), A(x_2)\} = 0$.

(ii) If
$$x_2 = 0$$
, then $((1 - \lambda)A)(x_2) = \sup_{z \in X} A(z)$ and

$$(\lambda A + (1 - \lambda)A)(x) = \sup_{x_1 = x} \min \{ \lambda A(x_1), \sup_{z \in X} A(z) \} \le \sup_{x_1 = x} A(x_1) = A(x).$$

- (c) If $\lambda = 0$ and $1 \lambda \neq 0$, by the same way in (b).
- (d) if $\lambda = 0$ and $1 \lambda = 0$, its impossible.

Definition 3.4.

Let X be a vector space over F. A fuzzy set A in X is called S - fuzzy set if A is balanced and affine fuzzy set.

Theorem 3.5.

Let X be a vector space over F and $x_o \in X$, then the characteristic function of $\{x_o\}$ (in symbol $\chi_{\{x_o\}}$) is S - fuzzyset.

Proof

(1) To prove $\chi_{\{x_\circ\}}$ is an affine fuzzy set. Let $x, y \in X$, $\lambda \in F$ and suppose that $\chi_{\{x_\circ\}}(\lambda x + (1-\lambda)y) < \min\{\chi_{\{x_\circ\}}(x), \chi_{\{x_\circ\}}(y)\}$

Then $\chi_{\{x_\circ\}}(\lambda x + (1-\lambda)y) = 0$ and $\min\{\chi_{\{x_\circ\}}(x), \chi_{\{x_\circ\}}(y)\} = 1$. Thus, $\lambda x + (1-\lambda)y \neq x_\circ$ and $x = y = x_\circ$ implies that $x_\circ \neq x_\circ$ which is impossible. Hence,

 $\chi_{\{x_\circ\}}(\lambda x + (1-\lambda)y) \ge \min\{\chi_{\{x_\circ\}}(x), \chi_{\{x_\circ\}}(y)\}$. From (Theorem 3.3), we get the result.

(2) To prove $\chi_{\{x_\circ\}}$ is a balanced fuzzy set. Let $\lambda \in F$ such that $|\lambda| \le 1$, then from (1) we get for $x \in X$, $\chi_{\{x_\circ\}}(\lambda x) = \chi_{\{x_\circ\}}(\lambda x + (1-\lambda)0) \ge \min\{\chi_{\{x_\circ\}}(x), \chi_{\{x_\circ\}}(0)\}$. Now, the proof is completely if $\chi_{\{x_\circ\}}(x) < \chi_{\{x_\circ\}}(0)$. Suppose that $\chi_{\{x_\circ\}}(x) > \chi_{\{x_\circ\}}(0)$, then $\chi_{\{x_\circ\}}(x) = 1$ and $\chi_{\{x_\circ\}}(0) = 0$. That is mean $x = x_\circ$ for all $x \in X$ and $x_\circ \ne 0$. By other word $0 \notin X$ which contradiction.

Theorem 3.5.

Let A be S - fuzzy set. Define $B: X \to I$, $B(x) = \sup \{A(tx) : t > 1\}$, then B is S - fuzzy set. Moreover, $B \subseteq A$ and B(0) = A(0).

Proof

- (1) To prove *B* is a balanced fuzzy set. Let $\lambda \in F$ such that $|\lambda| \le 1$, $x \in X$. $B(\lambda x) = \sup \{A(\lambda tx) : t > 1\} \ge \sup \{A(tx) : t > 1\} = B(x)$.
- (2) To prove *B* is an affine fuzzy set. Let $\lambda \in F$ and for any $x, y \in X$, we have

$$B(\lambda x + (1 - \lambda)y) = \sup \{A(t(\lambda x + (1 - \lambda)y)) : t > 1\} = \sup \{A(\lambda tx + (1 - \lambda)ty) : t > 1\}$$

$$\geq \sup \{\min\{A(tx), A(ty)\} : t > 1\}$$

$$\geq \min \{\sup A(tx), \sup A(ty)\} \text{ for } t > 1.$$

$$= \min\{B(x), B(y)\}. \text{ Then } B \text{ is } S - \text{fuzzy set }.$$

(3) To prove $B \subseteq A$ and B(0) = A(0). Let $x \in X$, since A is a balanced

fuzzy set, we get
$$B(x) = \sup_{t>1} A(tx) = \sup_{t>1} \frac{1}{t} A(x) \le \sup_{t>1} A(x) = A(x)$$
. That is mean $B \subseteq A$.

$$B(0) = \sup \{A(t0) : t > 1\} = A(0).$$

Definition 3.6. [3]

A fuzzy set A in a vector space X, absorbs a fuzzy set B if A(0) > 0 and for every $\theta < A(0)$, there exists t > 0 such that $C_{\theta} \cap tB \subseteq A$

Definition 3.7. [3]

A fuzzy set A in a fuzzy topological vector space X is called bounded if it is absorbs by every neighborhood of zero.

Definition 3.8.

A fuzzy topological vector space X is called locally affine if it has a base at zero consisting of affine fuzzy sets.

Theorem 3.9.[3]

Let A be a neighborhood of zero in a fuzzy topological vector space X. Then, there exist an open neighborhood B_1 of zero and a balanced neighborhood B_2 of zero such that $B_1(0) = B_2(0) = A(0)$, $B_1 \subseteq B_2 \subseteq A$ and $tB_1 \subseteq B_1$ for each scalar t with $|t| \le 1$.

Remark

If a neighborhood A of zero is an affine, then we called an affine neighborhood of zero. Likewise is called S-neighborhood if it is balanced and affine fuzzy set.

Theorem 3.10.

Let A be an affine neighborhood of zero in a fuzzy topological vector space X. Then there exist S -neighborhood B of zero with $B \subseteq A$ and B(0) = A(0).

Proof:

By (Theorem 3.9.), there exists an open neighborhood D_1 of zero and a balanced neighborhood D_2 of zero with $D_1 \subseteq D_2 \subseteq A$ and $D_1(0) = D_2(0) = A(0)$. Let $B = span(D_2)$, then B is S - fuzzyset and $D_2 \subseteq B \subseteq A$. To get the result only prove that B is a neighborhood of zero and this fact is true, since $D_1 \subseteq B$ and $D_1(0) = B(0) > 0$.

Theorem 3.11.

If X is a fuzzy topological vector space, $x_0 \in X$ then $\chi_{\{x_0\}}$ is bounded set.

Proof:

Let $x \in X$ and A is a neighborhood of zero, then A(0) > 0. Let $\theta \in (0, A(0))$. By (6) of theorem 3.1., there exists a positive number δ such that $A(tx) > \theta$ for all scalars t with $|t| \le \delta$. Take $t = \delta$, we see that

 $\min\{\theta, \chi_{\{x_\circ\}}(x)\} \le \theta < A(\delta x) = \frac{1}{\delta}A(x)$. Thus, $C_\theta \cap \delta \chi_{\{x_\circ\}} \subset A$. This complete the proof.

Definition 3.12.

A locally affine fuzzy topological vector space X is called finological if every S - fuzzy set in X which absorbs bounded sets is a neighborhood of zero.

The next definition is related to a special kind of finological spaces that is the space which contains all S - fuzzy sets which absorbs the characteristic function for $\{0\}$ (in symbol $\chi_{\{0\}}$ or χ_{\circ} for short).

Definition 3.13.

A locally affine fuzzy topological vector space X is called S – space if every S – fuzzy set in X which absorbs χ_{\circ} is a neighborhood of zero.

Theorem 3.14.

Any S-space has a base at zero.

Proof:

Let (X, γ) be S – space and let

 $IB = \{ A \in I^X : A \text{ is } S - \text{fuzzy set which absorbs } \chi_{\circ} \}$

<u>To prove</u> IB is a base at zero for $S-space\ X$. By another word it suffices to show that IB satisfies the conditions (1)-(7) of (Theorem 3.1).

(1)

Let $A \in IB$ and let B be a bounded set. If A(0) = 0, then there is no $\theta < A(0)$ such that $C_{\theta} \cap tB \subseteq A$ for all t > 0. That is mean A is not absorbs B but this impossible with assume. Thus, A(0) > 0 for each $A \in IB$.

(2) Let $0 < \beta \le 1$ and suppose that $\alpha \in (0,\beta)$. Choose $\alpha_1 \in (\alpha,\beta)$. Now, C_{α_1} is $S-fuzzy\ set$ and $C_{\alpha_1} \cap \chi_\circ \subseteq C_{\alpha_1} \subseteq C_\beta$. Thus, that $C_{\alpha_1} \in IB$ and $C_{\alpha_1}(0) = \alpha_1 > \alpha$.

Let $A, B \in IB$ and $0 < \alpha < \min\{A(0), B(0)\}$. Let $\alpha_1 \in (\alpha, \min\{A(0), B(0)\})$, then $\alpha_1 < A(0)$ and $\alpha_1 < B(0)$ subsequently, there are $t_1, t_2 > 0$ such that $C_{\alpha_1} \cap t_1 \chi_{\circ} \subseteq A$ and $C_{\alpha_1} \cap t_2 \chi_{\circ} \subseteq B$. Choose $0 < t < t_1, t_2$. Then $|t/t_1| < 1$ and $|t/t_2| < 1$. Since $\chi_{\{x_{\circ}\}}$ is a balanced fuzzy set then $t\chi_{\circ} \subseteq t_1 \chi_{\circ}$ and $t\chi_{\circ} \subseteq t_2 \chi_{\circ}$. Now, let $D = C_{\alpha_1} \cap t\chi_{\circ}$, we see that $D = C_{\alpha_1} \cap t\chi_{\circ} \subseteq (C_{\alpha_1} \cap t_1 \chi_{\circ}) \cap (C_{\alpha_1} \cap t_2 \chi_{\circ}) \subseteq A \cap B$. Likewise $D(0) = (C_{\alpha_1} \cap t\chi_{\circ})(0) = \alpha_1 > \alpha$.

Let $A \in IB$ and $0 \neq t \in R$. Suppose that $0 < \alpha < A(0)$. Choose $\alpha_1 \in (\alpha, A(0))$. Since $A \in IB$, then there exist $t_1 > 0$ such that $C_{\alpha_1} \cap t_1 \chi_{\circ} \subseteq A$. That is implies $t(C_{\alpha_1} \cap t_1 \chi_{\circ}) \subseteq tA$. In other words $(C_{\alpha_1} \cap t_1 \chi_{\circ})(x/t) \leq (tA)(x)$ for all $x \in X$. Let $B = C_{\alpha_1} \cap t.t_1 \chi_{\circ}$. Now, $B(x) = (C_{\alpha_1} \cap t.t_1 \chi_{\circ})(x) = (C_{\alpha_1} \cap t.t_1 \chi_{\circ})(x/t) \leq tA(x)$. Then $B \subseteq tA$ and $B(0) = \alpha_1 > \alpha$.

(4)

Suppose that $A \in IB$ and $0 < \theta < A(0)$. Choose $\theta_1 \in (\theta, A(0))$. Since $A \in IB$, then there exist t > 0 such that $C_{\theta_1} \cap t\chi_{\circ} \subseteq A$. Let $s = \frac{t}{2}$, $B = C_{\theta_1} \cap s\chi_{\circ}$. Now, to prove that B which was to be demonstrated.

$$\begin{split} (B+B)(x) &= \sup_{x_1 + x_2 = x} \min\{B(x_1), B(x_2)\} \\ &= \sup_{x_1 + x_2 = x} \min\{(C_{\theta_1} \cap s\chi_{\circ})(x_1), (C_{\theta_1} \cap s\chi_{\circ})(x_2)\} \\ &= \sup_{y \in X} \min\{C_{\theta_1}, \min\{s\chi_{\circ}(y), s\chi_{\circ}(x-y)\}\} \\ &= \sup_{y \in X} \min\{C_{\theta_1}, \min\{\frac{t}{2}\chi_{\circ}(y), \frac{t}{2}\chi_{\circ}(x-y)\}\} \\ &= \sup_{y \in X} \min\{C_{\theta_1}, \min\{\chi_{\circ}(\frac{2y}{t}), \chi_{\circ}(\frac{2x-2y}{t})\}\} \\ &\leq \sup_{y \in X} \min\{C_{\theta_1}, \chi_{\circ}((\frac{1}{2})(\frac{2y}{t}) + (\frac{1}{2})(\frac{2x-2y}{t}))\}, \ \chi_{\circ} \ \text{is an affine fuzzy set.} \end{split}$$

$$= \sup_{y \in X} \min \{ C_{\theta_1}, t \chi_{\circ}(y + x - y) \} = \min \{ C_{\theta_1}, t \chi_{\circ}(x) \} \le A(x).$$

Also, $B(0) = C_{\theta_1} \cap t\chi_{\circ}(0) = \min\{\theta_1, 1\} = \theta_1 > \theta$.

(6)

Let $x_{\circ} \in X$, $A \in IB$ and $0 < \theta < A(0)$. Choose $\theta_{1} \in (\theta, A(0))$. Since the fuzzy set $\chi_{\{x_{\circ}\}}$ is bounded, then there is t > 0 such that $C_{\theta_{1}} \cap t\chi_{\{x_{\circ}\}} \subseteq A$. Now, if $|s| \le t$, then $A(sx_{\circ}) \ge A(tx_{\circ}) \ge \min\{\theta_{1}, \chi_{\{x_{\circ}\}}(x_{\circ}) = 1\} = \theta_{1} > \theta$.

Let $A \in IB$. Define $B: X \to I$, $B(x) = \sup\{A(tx): t > 1\}$. Form (Theorem 3.5) B is S - fuzzyset. Moreover, $B \subseteq A$ and B(0) = A(0). Also, B absorbs χ_{\circ} . In fact, let $0 < \theta < B(0)$. Since A absorbs χ_{\circ} , then there exists t > 0 such that $C_{\theta} \cap t\chi_{\circ} \subseteq A$. Now, $(C_{\theta} \cap t\chi_{\circ})(2x) \le A(2x) \le B(x)$. And so $C_{\theta} \cap (\frac{1}{2}t\chi_{\circ}) \subseteq B$ which proves that B absorbs χ_{\circ} . By other word $B \in IB$. If $0 < \theta < B(x)$, let $\theta_1 \in (\theta, B(x))$, there exists t > 1 such that $A(tx) > \theta_1$. Let 1 < s < t. Then $B(sx) \ge A(tx) > \theta_1$ for $x \in X$.

Take $\eta = \frac{1}{s}$, $\mu = 1 - \eta$. Using the fact that B is an affine fuzzy set and for $y \in X$, we get,

 $(-x+B)(y) = B(x+y) = B(\eta(sx) + \mu(\mu^{-1}y)) \geq \min\{B(sx), B(\mu^{-1}y)\} \geq \min\{\theta_1, (\mu B)(y)\}$ let $B_2 = C_{\theta_1} \cap \mu B$. Now, $B_2 \subseteq -x + B$ and $B_2(0) = \theta_1 > \theta$. We just prove $B_2 \in IB$. It is clear that B_2 is $S - fuzzy \ set$ and $C_{\theta} \cap \frac{1}{2}t\mu^{-1}\chi_{\circ} \subset C_{\theta_1} \cap \mu B = B_2$ which means B_2 absorbs χ_{\circ} . Hereupon, Which complete the proof.

Acknowledgment. The author would like to express their thanks to the referee Asst. Prof. Dr. Noori. F. AL-Mayahi for his detailed examinations of this paper.

References

- [1] R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, *J. Math. Anal. Appl.*, **56** (1976) 621-633.
- [2] A. K. Katsaras and D. B. Liu, Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, *J. Math. Anal. Appl.* **58** (1977) 135-146.
- [3] A. K. Katsaras, Fuzzy Topological Vector Spaces I, Fuzzy Sets and Systems, 6 (1981) 85-95.