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1. Introduction

Several authors ([1],[2],[3]) have introduced (Kusp) : 0*x = x ,
of BCK-algebras as a generalization of the (Kusz) : x *x = 0,
concept of set-theoretic difference and (Kusg) : x* (y*x z) = y*(x*2z) .
propositional  calculus and studied some
important properties. The concept of a fuzzy set, In X we can define a binary relation (<) by :
was introduced by L.A. Zadeh [4]. In ([5], x <y ifandonlyif yxx = 0.
[6].[7].[8]) . they applied the concept of fuzzy set In what follows, let (X;*,0) denote a
to BCK/BCl-algebras and gave some of its KUS-algebra unless otherwise specified. For
properties.  Areej Tawfeeq Hameed, [9] brevity we also call X a KUS-algebra.
introduced KUS-ideals in KUS-algebras and
introduced the notions fuzzy KUS-subalgebras, Lemma 2.2 ([9]).In any KUS-algebra (X;*,0),
fuzzy KUS-ideals of KUS-algebras and the following properties hold: for all x, y, zeX;
investigated relations among them . In this paper, a) x*y=0 and y*x=0
we discuss fuzzy a-translation, (normalized, . _
maximal)fuzzy S-extension of fuzzy implyx =y
KUS-subalgebras in KUS-algebra. We discuss b) y*[(y*2)*z] =0,
fuzzy a-translation and fuzzy extension of fuzzy ) x <y impliesthat yxz < xxz |,
KUS-ideals in KUS-algebra. d) x <y impliesthat z*x <z=xy ,

o e) x<y and y<z imply x<z,

2. Preliminaries f) x*xy<z impliesthat z*y<x .

Now, we introduced the concept of
algebraic structure of KUS-algebra and we give
some results
and theorems of it .

Definition 2.3([9]). Let X be a KUS-algebra
and let S be a nonempty subset of X. Siscalled a
KUS-subalgebra of X if x =y e S whenever

e el . S.

Definition 2.1([9]). Let (X;*,0) be an algebra X, Y€ s
; : ; : Definition 2.4([9]). Anonempty subset | ofa
f 2 h I . X

ios type (2.0) with a single binary operation (+) KUS-algebra X is called a KUS-ideal of X if
called a KUS-algebra if it satisfies the following it satisfies: for x,y,z e X,
identities: for any x, y, ze X , (lkus;) (0 el), _

(kusp): (z*y) * (z*x) = y*x , (Ikusy) (z*y)el and (y=x)el imply

(z*x)e L.
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Definition 2.5([4]). Let X be a nonempty set, a
fuzzy subset p in X is a function
w:X — [0,1].

Proposition 2.6([9]). Every KUS-ideal of
KUS-algebra X is a KUS-subalgebra of X,

Definition 2.7([9]). Let X beaKUS-algebra,
a fuzzy subset p in X is called a fuzzy
KUS-subalgebra of X if forall x,y € X,

p(xxy) = min{p (o), n ()}

Definition 2.8([9]). Let X be a KUS-algebra, a
fuzzy subset p in X is called a fuzzy
KUS-ideal of X if it satisfies the following

conditions: , forall x,y,z e X,
(Fkusy)  pu(0) = p(x) .
(Fkusy) p(z*x) = min{u(z*y),u(y+*

x)} .

Proposition 2.9([9]). Every fuzzy KUS-ideal of
KUS-algebra X is a fuzzy KUS-subalgebra of
X.

3. Fuzzy a-translations of fuzzy
KUS-subalgebras .

We study the relations among fuzzy
a-translation,(normalized, maximal) fuzzy
S-extension of KUS-subalgebras of KUS-algebra
X.

In what follows let (X;*,0) denote a
KUS-algebra, and for any fuzzy set p of X, we
denote T = 1 — sup{u(x) | X € X} unless
otherwise specified.

Definition 3.1([1]). Let X be a nonempty set and
1 be a fuzzy subset of X and let ae [0,T]. A
mapping

1l X —[0,1] is called a fuzzy subset
a-translation of p if it satisfies: pl (x) = p(x) +

a , forall x e X.

Theorem 3.2. Let X be a KUS-algebraand p
be a fuzzy KUS-subalgebra of X and a €[0,T].

Then the fuzzy subset a-translation ul ofpuisa
fuzzy KUS-subalgebra of X .

Samy. M/Areej. T/Narjes. Z

Proof: Assume p be afuzzy KUS-subalgebra
of Xand ae[0,T], let X,y € X.Then

WY (e* y)=ule + ) + @ = minfu@), p()} + a =

min{u(x) + @, u(y) + @} = min{ 1, (), pg
)}

Hence pl is a fuzzy KUS-subalgebra
a-translation of X. 0

Theorem 3.3. Let X be a KUS-algebra and p
be a fuzzy KUS-subalgebra of X such that the

fuzzy subset a-translation ul of uis a fuzzy

KUS-subalgebra of X for some a. € [0,T]. Then p
is a fuzzy KUS-subalgebra of X.

Proof:  Assume ul be a fuzzy
KUS-subalgebra a-translation of X for some
a € [0,T]. Let x,y e X, then u(x*y)+a

Ry Gexy) 2 min{p] (0, g )} =

min{u(x) + a,u(y) + a} = min{u(x), u(y)} +
a and so pu(x *y) = min{u(x),u(y)}. Hence p is
fuzzy KUS-subalgebra of X .0

Definition 3.4([8]). Let pu,and W, be fuzzy
subsets of aset X. If L, ()< M, (x)forall x e

X, then we say that L, is a fuzzy extension of

My

Definition 3.5. Let X be a KUS-algebra, L,

and W, be fuzzy subsets of X. Then W, is

called a fuzzy S-extension of L, ifthe
following assertions are valid:
(Si) K, isafuzzy extensionof L.
(Si) If p, isafuzzy KUS-subalgebra of X, then
W, isa fuzzy KUS-subalgebra of X.

By means of the definition of fuzzy
a-translation, we know that p] (x) = pu(x) for

all x eX.

Hence we have the following proposition.
Proposition 3.6. Let p be a fuzzy
KUS-subalgebra of a KUS-algebra X and «
€ [0,T]. Then the fuzzy subset a-translation

ul of p isa fuzzy S-extension of p.
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Proof:  Straightforward. o
In general, the converse of proposition (3.6)
is not true as seen in the following example.
Example 3.7. Consider a KUS-algebra X = {0, a,
b, ¢} with the following Cayley table:

x| 0]a|b]c
0|0jal|bjc
alal0Ofc|b
bi|b|lc|0|a
cic|blalo0

By [9]. Define a fuzzy subset p of X by:

X
n

0
0.8

a b c
05|06 |05

Then p is a fuzzy KUS-subalgebra of X. Let v
be a fuzzy subset of X given by
X|0 a b c

v [ 094 | 0.66 | 0.78 | 0.66

Then v is a fuzzy S-extension of p. But v is

not the fuzzy subset a-translation },tl of p for
all a € [0,T].

Proposition 3.8. the intersection of fuzzy
S- extensions of a fuzzy subset p of X is a fuzzy
S-extension of .

Proof: Let{ W; |ie A.}beafamily of fuzzy
KUS-subalgebras of KUS- algebra X, then for

anyx,yeX,ieA,<ﬂ W )(x*y):
inf( i (X*J’)>

> inf(min{ Wi (), W, (y)}>
min{inf( L, (x)),inf( oF (}’)}}

=min ([ ) RO () 03} - 0

ien ien

Clearly, the union of fuzzy S-extensions of
a fuzzy subset p of X. p isnota fuzzy
S-extension of 1 as seen in the following
example.

10
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Example 3.9. Let X ={0,a, b,c} bea
KUS-algebra which is given in Example 3.7 , and
consider a fuzzy subalgebra p of X that is defined
in Example 3.7 .Let v and o be fuzzy subsets of X
given by

X| 0 a b c
v |[09]|06|06]|0.8
5109(06]|07]|0.6

Then v and 9§ are fuzzy S-extensions of p. But
the union v U § is not a fuzzy S-extension of p
since (vuU d)(c * b)=0.6<0.7=min{(vu
8)(c), (v 3)(b)}.
Definition 3.10. For a fuzzy subset p of a
KUS-algebra X, o < [0,T]and t e [0, 1] with
t>a, let Ua(u; t)y={xeX|px)> t—a}.

If p isa fuzzy KUS-subalgebra of X,

then itis clear that U, (u;t) isa
KUS-subalgebra of X, forall telm(p) with t
> o. But if we do not give a condition that p isa
fuzzy KUS-subalgebraof X, then U_ (wt)

is not a KUS-subalgebra of X as seen in the
following example.

Example 3.11. Let X={0,4a,b,c} bea
KUS-algebra which is given in Example (3.9).
Define a fuzzy subset A of X by

0
0.7

b c
04|03

a
0.6

Then A isnota fuzzy KUS-subalgebra of X
since Max*b) =A(c) = 0.3 < 0.4 = min{\(a), M(b)}.
Fora=0.1 and t=0.5 weobtain U, (A;t)=
{0, a, b} which is not a KUS-subalgebra of X
sinceaxb=ce U, &1).

Proposition 3.12. Let p be a fuzzy subset of a
KUS-algebra X and o € [0,T]. Then the fuzzy

subset a-translation ul of p isafuzzy
KUS-subalgebra of X ifandonlyif U (u;1t)

is a KUS-subalgebra of X forall te Im(p)
with t>a.
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Proof: Necessity is clear. To prove the
sufficiency, assume that there exist X,y € X,
v € [0, 1] with v > a such that

By (xy) <y < min{p] (), uy 0}
Then pu(x) = y- a and u(y) = y—o, but
u(x*y) <y — a.Thisshowsthat X,y e
U, wyand x*y ¢ U_ (uy). Thisisa

nl o (xxy) >

min{u] (x), ul )}, forall x,y e X. Hence
T

Mg
&)

contradiction, and so
is fuzzy KUS-subalgebra a-translation of X.

Proposition 3.13. Let p be a fuzzy
KUS-subalgebra of KUS- algebra X and a,
A € [0,T]. If a>A, then the fuzzy KUS-subalgebra

a-translation ul of u is a fuzzy S-extension of

the fuzzy KUS-subalgebra A-translation p{ of

L.
Proof: Straightforward. o

For every fuzzy KUS-subalgebra p ofa
KUS- algebra X and A € [0,T], the fuzzy

subset  A-translation HI of p is a fuzzy
KUS-subalgebra of X. If v is a fuzzy S-extension
of MI , then there exists o € [0,T] such that o.> A

and v(x) = p. (x) forall xe X

Proposition 3.14. Let u  be a fuzzy
KUS-subalgebra of a KUS-algebra X and
A € [0,T]. For every fuzzy S-extension v of the

fuzzy KUS-subalgebra A-translation MI of u,

there exists o € [0,T] suchthat a>X and v
is a fuzzy S-extension of the fuzzy
KUS-subalgebra

a-translation ul of .
Proof: Straightforward. o

The following example illustrates
proposition (3.14).

11
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Example 3.15. Consider a KUS-algebra X = {0, 1,
2, 3} with the following Cayley table:

#*10|11]12]|3
0[0|1(2]|3
111|10|3]|2
2123 |0f1
332 (1]0

By [9].Define a fuzzy subset p of X by:
X| 0 1 2 3
p| 0606|0202

Then p is a fuzzy KUS-subalgebra of X and
T=0.3 . If we take A = 0.2, then the fuzzy

KUS-subalgebra A-translation },LI of nu is
given by :

X
-
L

0
0.8

1
0.8

2
0.4

3
0.4

Let v be a fuzzy subset of X defined by:
X| 0 1 2 3

v [ 094|084 |0.84 | 0.86

Then v is clearly a fuzzy KUS-subalgebra of
X which is fuzzy extension of HI and hence
v is a fuzzy S-extension of fuzzy subset

A-translation H;I: of . Butvisnota fuzzy

KUS-subalgebra a-translation ul of

i for all a €[0,T]. Take o=0.23,
then a=0.23>0.2 =24, and the fuzzy

KUS-subalgebra a-translation pl of p is

given as follows:
X

=
W
Note that v(x) = pu! (x) forall x e X,

and hence v is a fuzzy S-extension of the fuzzy
KUS-subalgebra a-translation },tl of .

0
0.8

1
0.83

2
0.43

3
0.43
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Definition 3.16. Afuzzy S-extension v ofa
fuzzy KUS-subalgebra p in a KUS-algebra X
is said to be normalized if there exists X, € X
such that v(x¢) = 1. Let p be a fuzzy
KUS-subalgebra of X. A fuzzy subset v of X
is called a maximal fuzzy S-extension of p ifit
satisfies:

(M) v isa fuzzy S-extension of ,

(M;) there does not exist another fuzzy

KUS-subalgebras of a KUS-algebra X

which is a fuzzy extension of v.

Example 3.17. Let X ={0,a, b, c} be a
KUS-algebra which is given in Example 3.7.Let
p and v be fuzzy subsets of X which are

1
defined by pu(x) = g and v(x)=1 forall x

€ X.Clearly p and v are fuzzy
KUS-subalgebras of X. It is easy to verify that v
is a maximal fuzzy S-extension of p.

Proposition 3.18. If a fuzzy subset v of a
KUS-algebra X is a normalized fuzzy S-extension
of a fuzzy KUS-subalgebra p of X, then v(0)
=1

Proof: It is clear because
e X. O

v(0)>v(x) forall x

Proposition 3.19. Let p be a fuzzy
KUS-subalgebra of a KUS-algebra X. Then
every maximal fuzzy S-extension of p is
normalized.

Proof: This follows from the definitions of the
maximal and normalized fuzzy S-extensions.n

4. Fuzzy a-translations of fuzzy KUS-ideals .

We study the relations among fuzzy
a-translation and fuzzy extension of KUS-ideals
of KUS-algebra X.

Theorem 4.1. Let p is a fuzzy KUS-ideal of a
KUS-algebra X, then the fuzzy subset

a-translation ul of p isa fuzzy KUS-ideal

of X, forall a e [0,T].
Proof: Assume p be a fuzzy KUS-ideal of X
and let o € [0,T]. Forall Xx,y,z e Xand

1(0) = p(x). Then p! (0) = p(0) +a

> ux)+a = p.l (x).and ul (z *x)

= uiz*x)+a = minfuz=y),u(y*x)}+a
=minfu(z xy) + a, u(y * x) + a}

12
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= min{ pl (z*y), pl (y * x)}. Hence ].LZ isa
fuzzy KUS-ideal o-translation of X .0

Theorem 4.2. Let p be a fuzzy subset of
KUS-algebra X such that the fuzzy subset

a-translation ul of p isa fuzzy KUS-ideal

of X for some o e [0,T]. Then p isa fuzzy
KUS-ideal of X.

Proof: Assume Ml is a fuzzy KUS-ideal

a-translation of X for some o € [0,T].

By (02

Letx,y,

z e X, we have u(0) + «a

THE))
p(x) +a .So (0 = p(x) and u(z*x)+

] I

Hg (z¥x) = min{pg (2+y), g, (* 0} =
min{u(z+y) + a,u(y *x) + a} =

min {u(z*y),u(y*x)} + aandsou(z * x) =
min{u(z * y), u(y * x)}. Hence p isa fuzzy
KUS-ideal of X .0

Definition 4.3. Let p; and p, be fuzzy
subsets of a KUS-algebra X. Then p, iscalled
a fuzzy extension KUS-ideal of , if the following
assertions are valid:

(I) un, isafuzzy extensionof L.
(Iy) It p, isafuzzy KUS-ideal of X, then
W, isafuzzy KUS-ideal of X.

Proposition 4.4. Let p be a fuzzy KUS-ideal
of Xandleta,y e [0,T]. If a>7, then the

fuzzy subset a-translation },tl of pisa fuzzy
KUS-ideal of the fuzzy
KUS-ideal y-translation ]JI of .

extension

Proof: Straightforward. o

For every fuzzy KUS-ideal p of X and ye
[0,T], the fuzzy subset y-translation lvl: of
is a fuzzy KUS-ideal y-translation of X.If v is
a fuzzy extension KUS-ideal of ;,LI , then there
exists a € [0,T] such that o>y

and v(x) = pu! (x) forall xe X
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Proposition 4.5. Let p be a fuzzy KUS-ideal
of a KUS-algebra Xand y < [0,T]. Forevery
fuzzy extension KUS-ideal v ofthe fuzzy

KUS-ideal y-translation HI of , there exists

a € [0,T] suchthat o>y and v isa fuzzy
extension KUS-ideal of the fuzzy KUS-ideal
a-translation ul of p.

Proof: Straightforward. o

The following example illustrates
proposition (4.5).
Example 4.6. Let X = {0, 1,2} in which (x) be
give by:

*

N| | O O
Ol R[N DN

1
1
0
2

N| | O

Then (X;*,0) is a KUS-algebra by [9].
Define a fuzzy subset u of Xby:
X| 0 1 2

n|08[07]06

Then pis a fuzzy KUS-ideal of Xand T =
0.2. If we take y=0.12, then the fuzzy

KUS-ideal

y-translation },L; of

is given by :
X 0 1 2
T |092|082]0.72
Hy
Let v be a fuzzy subset of X defined by:
X! 0 1 2
v | 098 | 0.89 | 0.81

Then v is clearly a fuzzy extension KUS-ideal
of the fuzzy KUS-ideal y-translation ul of u.

But v is not a fuzzy KUS-ideal a-translation ul

of u forall o €[0,T]. Take a=0.17, then o=
0.17>0.12 =y, and the fuzzy KUS-ideal

a-translation ul of p isgiven as follows:

X 0 1 2

=
™ 097 | 0.87 | 0.77

Note that v(x) > ul (x) forall x e X,
and hence v

the fuzzy KUS-ideal a-translation ] of p.

is a fuzzy extension KUS-ideal of

13
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Proposition 4.7. Let p be a fuzzy KUS-ideal
of a KUS-algebra X and ae [0,T]. Then the

fuzzy subset a-translation Hl of pisa fuzzy

extension KUS-ideal of .
Proof: Straightforward. o

A fuzzy extension KUS-ideal of a fuzzy
KUS-ideal p may not be represented as a fuzzy

KUS-ideal o-translation W of ., thatis , the

converse of proposition (4.7) is not true in
general , as shown by the following example.

Example 4.8. Let X ={0, 1, 2,3} be a
KUS-algebra with the following Cayley table:

*

| N W O O
N W O |
W O P N DN
O P N W w

0
1
2
3

By [9].Define a fuzzy subset p of X by:
X| 0 1 2 |3

m({09|06|08]|06

Then pis a fuzzy KUS-ideal of X.Let v bea
fuzzy subset of X defined by:
X| 0 a b c

v | 0.82 | 0.46 | 0.59 | 0.46

Then v is a fuzzy extension KUS-ideal of
X .But v isnot the fuzzy KUS-ideal which is

fuzzy KUS-ideal a-translation ul of p for
a € [0,T].

all

Proposition 4.9. The intersection of any set of
fuzzy KUS-ideals a-translation of KUS-algebra
X is also fuzzy KUS-ideal a-translation of X.
Proof:  Let {y i € A.} be a family of fuzzy
KUS-ideals a-translation of KUS- algebra X,
then forany x,y,z e X,i €A,

(V1)) @ = inf(Cug )i (0))

B inf(i; 0) + @)
inf(u; (x) + @)
inf(( g i ()

(o) @

ien

IVl
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and - ([) (k)i ) * ) = nf((p;)D)(z * )
inf(j:i (z*x)+a)

inf(min{u; (z < y), 4 (v * 0} + @
inf(min{u; (z * y) + &, i (v * X) + )
in{inf(y; (z *y) + ), inf(u;(y * x ) + a}}

=min{(ﬂui>(2*y) +a>,<ﬂm (y*x)+a}

v

3

= min{([Y (1)) 9, () () *
x}. 0 - -

Clearly, the union of fuzzy extensions of a
fuzzy subset a-translation of KUS-algebra X is
not a fuzzy extension of 1 as seen in the following
example.

Example 4.10. Let X ={0, 1, 2,3} be a
KUS-algebra which is given in Example (3.15).
Define a fuzzy subset p of X by:

X 0] 1|2]3

m|{08|05|06]|05

Let o = 0, then p is a fuzzy KUS-ideal
a-translation of X.Let v and d be fuzzy
subsets  a-translation of X given by:

X 0] 1| 2]3

v 0906|0706
6109|06|06|07

Then v and & are fuzzy extensions of
p. But the union v U & is not a fuzzy extension
of usince (vuw 3)(3*2) =0.6 <0.7 =min{(vu
3)(3), (v d)(2)}.

Theorem 4.11. Let a € [0,T], ul be the fuzzy

subset a-translation of . Then the following are
equivalent:

(D) },Ll is a fuzzy KUS-ideal a-translation of
X.

Q) vteIm(p,t>a= Ua (W t) is
KUS-ideal of X.
Proof: Assume that ul is a fuzzy KUS-ideal
a-translation of X and let t € Im(p) be such that
t>a. Since p! (0) = pl (x) forallx e X,
we have

14

pO +a = p! (0 = ul () =pE) +a that
mean p(0) > u(x), forallxe X. Let xe U,
(w; t), then p(x) > t-o and
p(0) = p(x) imply u(0) = ux) = t-a.
Hence 0e U, (wt).

Letx, y, z € X be such that

@+ eV, (o) and +x) e U, (& 0.
Then
ui*y) =2t —aand ply*x) =t — a,

i.e., ul(z*y) =u(z*y)+a = tand

ul (y*x)=u(y *x)+a = t.Since ulisa

fuzzy KUS-ideal a-translation of X, it follows

that u(z+x)+a = p! (z+x) =

min{ ul (z xy), pl (y *x)} = t,thatis,

p(zxx) =t —asothat(z+x) € U, (u t).

Therefore U (p; t) is KUS-ideal of X.
Conversely, suppose that UOl (W t)is

KUS-ideal of X for every t € Im(p) with t> o. If

there exists x € X such that ul O<asg

ul (x) jthen u(x) = A2 — a but p(0) <

A — a. This shows that xe U (u; t) and 0

3 Ua (u; t). This is a contradiction, and so MZ

(0) = p. (x) forall x e X.

Now assume that there exist X, y, z € X such
that

].,LZ (zxx)< vy Smin{ ],ll (z*y), ],ll (y*x)}.

Then u(zxy)= y—a and u(y*x) =2y — «a,
but u(z+*x) < y — a.Hence (zxy) €

U, v) and (y xx) € U, (u; ), but
(z*x) ¢ Ua (x; v). This is a contradiction, and

therefore ul (z *x)

> min{ ul (z*y), ul (y*x)}forallx,y,z e
X.Hence ] isafuzzy KUS-ideal

o-translation of X. 0
In Theorem(4.11(2)), if t<a,then U (u;t)
=X.



Journal of AL-Qadisiyah for computer science and mathematics

Vol.8 No.2 Year 2016
Samy. M/Areej. T/Narjes. Z
Proposition 4.12. Let p be a fuzzy References
KUS-ideal of a KUS-algebra X and let o e [0,T], [1] LeeK.B.,JunY.B. and Doh M.,

then the fuzzy subset a-translation ul of u is

a fuzzy KUS-subalgebra of X.

Proof: Since p be a fuzzy KUS-ideal of a
KUS-algebra X, then by proposition (2.9) p
be a fuzzy KUS-subalgebra of a KUS-algebra X
and let o € [0, T], then by proposition (3.13), the

fuzzy subset a-translation ul of p isafuzzy
KUS-subalgebra a-translation of X. o

In general, the converse of the proposition
(4.12) isnot true .
Example 4.13. Consider a KUS-algebra X = {0, 1,
2} with the example (4.6). Define a fuzzy subset
p of X by:

X[ 0 J]1]2
hL|07/05]06

Then p is not fuzzy KUS-ideal of X. since
w(0x1) = pu(1)=0.5<0.6=min{ p(0*2),
u(2*1)}=min{ u(2), w(2)}, and T=0.3.But if we

take 0=0.2 the fuzzy translation },LZ of pis

given as follows:

X 0 1] 3
l-ll 0910708

Then . is a fuzzy KUS-subagebra of X.
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