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 المستخلص

-ً  K(gc),  gK(gc), L(gc), gL(gc)كرس ىرا البحث لتقديم مفاىيم جديده ىي الفضاءات          

L(gc) محليا.  حيث أن مبرىنات عديده ًمتنٌعو حٌل ىره المفاىيم قد برىنت. فضلا عه ذكر خصائصيا

 .LCًكرلك تحري العلاقات بيه ىره المفاىيم ًالفضاءات 
 

Abstract 

      This paper is devoted to introduce new concepts which are called K(gc), 

gK(gc), L(gc), gL(gc) and locally L(gc)-spaces. Several various theorems about 

these concepts are proved. Further more properties are stated as well as the 

relationships between these concepts and LC-spaces are investigated. 
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      g-closed, KC-spaces and LC-spaces. 
 

 

1-Introduction: 

 
       It is known that compact subset of a Hausdorff space is closed, this motivates 

the author [7] to introduce the concept of KC-space, these are the spaces in which 

every compact subset is closed. Lindelof spaces have always played a highly 

expressive role in topology. They were introduced by Alexandroff and Urysohn 

back in 1929. In 1979 the authors [5] introduce a new concept namely LC-spaces, 

these are the spaces whose lindelof sets are closed. The aim of this paper is to 

continue the study of KC-spaces (LC-spaces).  
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2-Preliminaries: 
      

 The basic definitions that needed in this work are recalled. In this work, spaces 

always mean topological spaces on which no separation axioms are assumed 

unless explicitly stated, a topological space is denoted by (X, τ) (or simply by X). 

For a subset A of X, the closure and the interior of A in X are denoted by cl(A) 

and Int(A) respectively. A space X is said to be K2- space if cl(A) is compact, 

when-                      ever A is compact set in X[6]. Also a subset F of a space X is 

g-closed if cl(F)U,  

whenever U is open and containing F[4], X is said to be gT1  if for every two 

distinct points x and y in X, there exist two g-open sets U and V such that xU 

and yU, also xV and yV  [3], and gT2 if for every two distinct points x and y 

in X, there exist two disjoint g-open sets U and V containing x and y respectively 

[3]. A space X is said to be g-regular if whenever F is g-closed in X and xX 

with xF, then there are two disjoint g-open sets U and V containing x and F 

respectively [3]. A space X is said to be gT3 if whenever it is gT1 and g-regular 

[3] and X is said to be g-compact if for every g-open cover of X has a finite 

subcover[2]. A function f from a space X into a space Y is said to be g -

continuous if )(1 Uf  is g-open, whenever U is g-open subset of a space Y. Also f 

is said to be g -closed if f(F) is g-closed, whenever F is g-closed [3].    

 

 

3-Weak forms of KC-spaces: 
 

The author in [7] introduce the concept KC-spaces; in the present paper 

we introduce a generalization of KC-spaces namely K(gc) and gK(gc), also we 

study the  

 

 

 

 

 

 

 

 

 

 

 

 
 

1-Ass. Prof., Department of Mathematics, College of Science, Al-Mustansiriya University  

2-Lectuerer, Department of Mathematics, College of Science, Al-Mustansiriya University, E-Mail: 

haiderali89@yahoo.com 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

3
nd

.  Sinentific Conference 19-20/ APRIL -2011 

Vol 3       No.2          Year 2011 

 

 010 

Properties and facts about these concepts and the relationships between this 

concepts and KC-space. 

 

Definition 3.1 
 

       A space X is said to be K(gc)-space if every compact set in X is g 

-closed. So every KC-space is K(gc), but the converse is not true in general.    

   

Example 3.1: 
      

         Let X   and  be the indiscrete topology on X. Then (X, ) i s K(gc) but 

not KC-space. Since if B is a nonempty proper set in X. Clearly B is compact but 

not closed. Also it is g-closed, since the only open set which contains B is the 

whole space and cl(B) = X.   

      

Definition 3.2 
 

       A space X is said to be gK(gc)-space if every g-compact set in X is g 

-closed. So every K(gc)-space is gK(gc), but the converse is not true in general. 

 

Definition 3.3 
        A space X is said to be gK2 if g-cl(A) is compact, whenever A is compact set 

in X. 

  

Theorem 3.1: 
 

 Every K(gc)-space is gK2. 

 

Proof: Let K be compact set in K(gc)-space X, then it is g-closed, that is, Clg(K) 

= K, which implies to Clg(K) is also compact. 

 

Definition 3.4 
 

       A space X is said to be locally g-compact if for each point in X has a 

neighbourhood base which is consisting of g-compact sets. So every locally 

compact space is locally g-compact, but the converse is not true in general. 

 

Lemma 3.1[1]: 
 

     A space X is gT1 if and only if every singleton set is g-closed. 

 

 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

3
nd

.  Sinentific Conference 19-20/ APRIL -2011 

Vol 3       No.2          Year 2011 

 

 011 

Theorem 3.2 

      Every K(gc)-space is gT1. 

 

Proof: 

     Suppose X is K(gc)-space and xX, since {x} is finite, then it is compact in 

X, which is K(gc)-space, then it is g-closed. So by lemma 3.1 X is gT1. 

  

Theorem 3.3 
 

 Every gT3-space is gT2. 

 

Proof: Let x and y be two distinct points in X, so {x} is g-closed, since X is gT1 

and y{x}, but X is g-regular, then there exist two disjoint g-open sets U and V 

such that x {x}U and yV. Therefore X is gT2-space. 

  

Definition 3.5: 
 

      A set M is said to be g-neighbourhood of a point x X if there exists a g-open 

set U such that xUX. Clearly every neighbourhood is g-neighbourhood but 

the converse may be not true. 

 

Example 3.2: 
 

Let X   and  be the indiscrete topology on X. Then in (X, ) the one point set 

{x} is g-neighbourhood but not neighbourhood.  

 

Theorem 3.4 
 

      The following are equivalent for a space X: 

1) X is g-regular  

2) If U is g-open in X and xX with xU, then there is a g-open set V 

containing x such that g-cl(V)U. 

3) Each xX has ag-neighbourhood base consisting of g-closed sets. 

 

Proof: (1)  (2) Suppose X is g-regular, U is g-open in X and xU, then X-U is 

a g 

-closed set in X not containing x, so disjoint g-open sets V and W can be found 

with  

xV and X-UW. Then X-W is a g-closed set contained in U and containing V, 

so g-cl(V)U. (2)  (3) if (2) applies, then every g-open set U containing x 

contains a g-closed neighbourhood (namely g-cl(V)) of X, so the g-closed 

neighbourhoods of x form a neighbourhood base. (3)  (1) suppose (3) applies 

and A is a g-closed set in X not containing x. Then X-A is a g-neighbourhood of 
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x, so there is a g-closed neighbourhood B of x with BX-A. Then g-Int(B) and 

X-B are disjoint g-open sets containing x and A respectively, where g-Int(B) the 

set of all g-interior points. Thus X is g-regular. 

 

Theorem 3.5: 
      

 Every T2-space is K(gc)space. 

 

Theorem 3.6 
 

      If X is locally g-compact and K(gc)-space, then X is gT2-space. 

 

Proof: Given X is locally g-compact, then every xX has a neighbourhood base 

consisting of g-compact sets, but X is K(gc), then these compact sets are g-closed 

and hence x has neighbourhood base consisting of g-closed sets, then by theorem 

3.4, X is g-regular space and by theorem 3.2 X is gT1, then it is gT3-space, that is, 

X is gT2. 

 

Theorem 3.7: 
 

 Every g-compact set in gT2-space is g-closed. 

 

Proof: Let A be a g-compact set in a gT2 –space X. If pX-A, so for each qA, 

there are two disjoint g-open sets U and V containing q and p respectively. The 

collection {U(q):q A} is a g-open cover of A which is g-compact, then there is 

finite subcover of A, that is, A  


n

i 1

 U(qi). Put V1=


n

i 1

 Vqi(p) and U1=


n

i 1

 U(qi). 

Then V1 is a g-open set containing p. We claim that U1V1= , so let xU1, 

then x U(qi) for some i, so x  Vqi(p), hence xV1. Thus U1V1= . Also 

AU1, that is, AV1=   which implies V1X-A. Therefore A is g-closed. 

 

Corollary 3.1:  
 

Every gT2-space is gK(gc)-space. 

 

Theorem 3.8: 
 

 The g -continuous image of g-compact set is g-compact. 

 

Proof: Let f be g -continuous function from a space X into a space Y and 

suppose B is g-compact set in X. To show that B is also g-compact, let  
U be 
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g-open cover of f(B), that is, f(B)=





U . So B 1f f(B)=  

1f (





U )=





1f ( U ), then { 1f ( U )}is a g-open cover of  B, which is g-

compact, then B
n

i 1
 1f ( iU ). But f(B)  f

n

i 1
 1f ( iU )=

n

i 1
 f 1f ( iU )

n

i 1
 iU . 

Therefore f(B) is g-compact set. 

 

Theorem 3.9: 
 

      Every continuous function from compact into a K(gc)-space is g-closed 

function. 

Proof: Let A be closed set in X, which is compact, then A is compact. But f is 

continuous, then f(A) is compact in Y, which is K(gc)-space, then f(A) is g-

closed. Therefore f is g-closed. 

 

Lemma 3.2[1]: 
 

        Every g-closed subset of g-compact space is g-compact.  

 

Theorem 3.10: 
 

      Every g -continuous function from g-compact into K(gc)-space is g -

closed function. 

Proof: Let f be g -continuous function from g-compact X into K(gc)-space Y. 

Also let B be g-closed set in X. So by lemma 3.2 B is g-compact also by theorem 

3.8 f(B) is g-compact, which implies it is compact in Y, which is K(gc), then f(B) 

is g-closed. Therefore f is g -closed. 

 

Corollary 3.2: 
 

       Every g -continuous function from g-compact space into gK(gc) 

-space is g -closed. 

 

Remark 3.2: 
 

      The continuous image of K(gc)-space is not necessarily K(gc). 
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Example 3.3:  
 

Consider IR: (R, u )  (R,  ), where IR is the identity function, u and   are 

usual and cofinite topologies respectively. Clearly (R, u ) is K(gc)-space.. Since 

every compact set in R is closed and bounded, this implies it g-closed. But IR(R) = 

R and (R, ) K(gc)-space. Since if given [0, 1], which is compact and U=R-{5}, 

so U  , then [0, 1]   U, but cl([0, 1])=RU. So (R,  ) is not K(gc). 

 

Theorem 3.11: 
 

       Let f be g -continuous injective function from X into a gK(gc) –space Y, 

then X is also gK(gc). 

 

Proof: Let W be any g-compact subset of X, then by theorem 3.7 f(W) is g-

compact set in Y, which is gK(gc), then f(W) is g-closed also f is g -continuous, 

so 1f (f(W))=W. Therefore X is gK(gc)-space.  

 

Theorem 3.12:  
 

      The property of space being K(gc) is a hereditary property.  

 

Proof: Let Y be a subspace of K(gc)-space X and A be any compact subset of Y, 

then A is compact in X, which is K(gc), then A is g-closed in X. But A= AX, 

then A is g-closed in Y. Therefore Y is also K(gc). 

 

Theorem 3.13: 
 

       Let f be a homeomorphism function from a space X into a space Y, if U is g-

open set in X, then f(U) is also g-open. 

 

Proof: Let F be any closed subset of f(U), so 1f (F)  1f f(U)=U, but U is g-

closed, then 1f (F) Int(U), which implies F= f( 1f (F)) f(Int(U))=Int(f(U)). 

Therefore f(U) is also g-open.  

 

Corollary 3.3:  
 

      Let f be a homeomorphism function from a space X into a space Y, if U is g-

closed set in X, then f(U) is also g-closed. 
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Corollary 3.4: 
 

        Let f be a homeomorphism function from a space X into a space Y, if M is g-

compact set in X, then f(M) is also g-compact. 

 

Theorem 3.14: 
 

       The property of space being K(gc) is a topological property. 

 

Proof: Let f be a homeomorphism function from a K(gc)-space X into a space Y 

and B be compact set in Y, then 1f (B) is compact in X, which is K(gc), then 
1f (B) is g-closed and by corollary 3.3  f( 1f (B))=B is g-closed set in Y. 

 

Corollary 3.5: 
 

       The property of space being gK(gc) is a topological property. 

 

4. Further type of LC-spaces:   
       

       In 1979 the authors [5] introduce a new concept namely LC-spaces, these are 

the spaces in which every lindelof sets are closed. In the present paper we 

introduce a new concept namely L(gc)-spaces which is a weak form of LC-

spaces.  

 

Definition 4.1 
 

       A space X is said to be L(gc)-space if every lindelof set is g-closed. So every 

LC-space is L(gc) but the converse is not true in general.  

 

Example 4.1: 
 

        Let R with the indiscrete topology . Clearly (R, ) is L(gc), since for every 

Lindelof set difference from R and   is g-closed but not closed.  

 

Theorem 4.1 
 

        Every L(gc)-space is gT1. 

 

Theorem 4.2 
 

       Every locally g-compact L(gc) is gT2. 
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Proof: Let X be a locally g-compact and L(gc)-space, then X is K(gc). So by 

theorem 3.6 X is gT2-space. 

 

Theorem 4.3  
 

      The property of space being L(gc) is a hereditary property. 

 

Proof: The proof is similar to theorem 3.12. 

 

Theorem 4.4: 

     If X is L(gc) and 
2

1T  -space, then every compact set in X is finite. 

Proof: Let A be compact set in X. If A is finite, then the proof is finished, if A is 

infinite, then either A is countable or uncountable. Suppose A is countable and U 

is any set in A, then U is countable, so U is lindelof in A, which implies it is 

lindelof in X, which is L(gc), then U is g-closed in X. But X is
2

1T , and then U is 

closed in X. But UA=U, then U is closed in A, that is, A is discrete but A is 

compact, then A is finite, which is a contradiction. If A is uncountable, then there 

exists a subset K of A is countable and so K is lindelof in A, so it is lindelof in X, 

which is L(gc) and 
2

1T -space, then K is closed. Put K= {a1, a2 . . .}. Let U1=
cK , 

now a1U2=A-{a1, a2,…} and a2A-{a3, a4…}…, then  
1iiU  is an open cover 

of A, which has no finite subcover, which is a contradiction. Then A is finite. 

 

Definition 4.3: 

        A space X is said to be g-lindelof if for every g-open cover of X has a 

countable subcovre. Clearly every g-lindelof-space is lindelof but the converse 

may be not true. 

 

Example 4.2:  

       Let R with the indiscrete topology . Clearly every subset of R is lindelof, 

since the only open cover of any set is just R. But (R,  ) is not g-lindelof, since if 

given cQ =R-Q , then it is not g-lindelof, since {{x}}:x cQ } is a cover of 
cQ consisting of g-open sets, which can not be reduce to a countable subcover. 

 

Theorem 4.5: 

      The g -continuous image of g-lindelof set is also g-lindelof.  
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Proof: Let f be g -continuous function from a space X into a space Y and let K 

be g-lindelof set in X. To show that f(K) is also g-lindelof, let  
U be a g-open 

cover of f(K), that is, f(K)  





 U , then K 1f f(K)  1f  





 U = 





 Uf 1 , which is also g-open cover of K, but K is g-lindelof, then it is has a 

countable subcover, that is, K





1i
 iUf 

1 , which implies to f(K)  





1i
 iU . 

Therefore f(K) is g-lindelof.  

 

Theorem 4.6:  

       The property of space being g-lidelof is a topological property. 

Proof: Let f be a homeomorphism function from a g-lindelof space X into a space 

Y. Suppose  
U be g-open cover of Y, that is, Y=





 U , then X= 1f (Y) 

= 1f  





 U . So by theorem 3.13  Uf 1  is g-open cover of X, which is g-

lindelof, then X=





1i
 iUf 

1 , which implies to 

Y=f(X)=f(





1i
 iUf 

1 )=





1i
f iUf 

1 =





1i
 iU . Therefore Y is also g-lindelof. 

 

Definition 4.3: 

 A space X is said to be gL(gc)-space if every g-lindelof set in X is g-closed. So 

every LC-space is gL(gc) and every L(gc)-space is gL(gc) but the converses are 

not true in general. 

 

Theorem 4.7: 

 

      Let f be a homeomorphism function from a space X into a space Y if X is 

gL(gc)-space, then Y is also is gL(gc).  

  Proof: Let B be a g-lindelof set in Y, then 1f (B) is g-lindelof in X, which is 

gL(gc)-space, then it is g-closed, but f is a homeomorphism. So by theorem 3.13 

f( 1f (B))=B is g-closed in Y. Therefore Y is also gL(gc).     
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Definition 4.4: 
     

      A space X is said to be locally L(gc)-space if every point in X has L(gc)-

neighbourhood. So every L(gc)-space is locally L(gc). 

 

Lemma 4.1[3]: 

      If (Y, Y ) is a g-closed subspace of a space (X, X ), then if B is g-closed in 

Y, then it is g-closed in X. 

 

Theorem 4.8: 

      A space X is an L(gc)-space if and only if each point has closed 

neighbourhoood which is an L(gc)-subspace. 

Proof: If X is L(gc)-space, then for each xX, X itself is a closed neighbourhood 

of x, which is L(gc). Conversely, Let L be a lindelof set in X and a point xX 

such that xL. Choose a closed neighbourhood xW  of x, which is L(gc)-

subspace, then  xW L is closed in L, which is lindelof, then xW L is lidelof in 

xW , but xW  is L(gc)-subspace, then xW L is g-closed in xW , which is closed so 

it is g-closed. So by lemma 4.1  xW L is g-closed in X. Then xW -( xW L) 

= xW -L is a g-open set containing x and disjoint with L. Therefore L is g-closed 

set in X. 
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