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Abstract

This paper is devoted to introduce new concepts which are called K(gc),
gK(gc), L(gc), gL(gc) and locally L(gc)-spaces. Several various theorems about
these concepts are proved. Further more properties are stated as well as the
relationships between these concepts and LC-spaces are investigated.
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1-Introduction:

It is known that compact subset of a Hausdorff space is closed, this motivates
the author [7] to introduce the concept of KC-space, these are the spaces in which
every compact subset is closed. Lindelof spaces have always played a highly
expressive role in topology. They were introduced by Alexandroff and Urysohn
back in 1929. In 1979 the authors [5] introduce a new concept namely LC-spaces,
these are the spaces whose lindelof sets are closed. The aim of this paper is to
continue the study of KC-spaces (LC-spaces).
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2-Preliminaries:

The basic definitions that needed in this work are recalled. In this work, spaces
always mean topological spaces on which no separation axioms are assumed
unless explicitly stated, a topological space is denoted by (X, 1) (or simply by X).
For a subset A of X, the closure and the interior of A in X are denoted by cl(A)
and Int(A) respectively. A space X is said to be Ky- space if cl(A) is compact,
when- ever A is compact set in X[6]. Also a subset F of a space X is
g-closed if cl(F)c U,

whenever U is open and containing F[4], X is said to be gT; if for every two
distinct points x and y in X, there exist two g-open sets U and V such that xe U
andyg U, also x¢ V and ye V [3], and gT, if for every two distinct points x and y
in X, there exist two disjoint g-open sets U and V containing x and y respectively
[3]. A space X is said to be g-regular if whenever F is g-closed in X and xe X
with x¢ F, then there are two disjoint g-open sets U and V containing x and F
respectively [3]. A space X is said to be gTs if whenever it is gT; and g-regular
[3] and X is said to be g-compact if for every g-open cover of X has a finite

subcover[2]. A function f from a space X into a space Y is said to be g*-
continuous if f*(U)is g-open, whenever U is g-open subset of a space Y. Also f
is said to be g™ -closed if f(F) is g-closed, whenever F is g-closed [3].

3-Weak forms of KC-spaces:

The author in [7] introduce the concept KC-spaces; in the present paper
we introduce a generalization of KC-spaces namely K(gc) and gK(gc), also we
study the
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Properties and facts about these concepts and the relationships between this
concepts and KC-space.

Definition 3.1

A space X is said to be K(gc)-space if every compact set in X is ¢
-closed. So every KC-space is K(gc), but the converse is not true in general.

Example 3.1:

Let X# ¢ and T be the indiscrete topology on X. Then (X,T") i s K(gc) but

not KC-space. Since if B is a nonempty proper set in X. Clearly B is compact but
not closed. Also it is g-closed, since the only open set which contains B is the
whole space and cl(B) = X.

Definition 3.2

A space X is said to be gK(gc)-space if every g-compact setin X is g
-closed. So every K(gc)-space is gK(gc), but the converse is not true in general.

Definition 3.3
A space X is said to be gK; if g-cl(A) is compact, whenever A is compact set
in X.
Theorem 3.1:
Every K(gc)-space is gKo,

Proof: Let K be compact set in K(gc)-space X, then it is g-closed, that is, Cly(K)
= K, which implies to Cly(K) is also compact.

Definition 3.4
A space X is said to be locally g-compact if for each point in X has a
neighbourhood base which is consisting of g-compact sets. So every locally

compact space is locally g-compact, but the converse is not true in general.

Lemma 3.1[1]:

A space X is gT; if and only if every singleton set is g-closed.
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Theorem 3.2
Every K(gc)-space is gT;.

Proof:
Suppose X is K(gc)-space and x e X, since {x} is finite, then it is compact in
X, which is K(gc)-space, then it is g-closed. So by lemma 3.1 X is gT;.

Theorem 3.3
Every gTs-space is gTo.

Proof: Let x and y be two distinct points in X, so {x} is g-closed, since X is gT;
and y ¢ {x}, but X is g-regular, then there exist two disjoint g-open sets U and V
such that x e {x}cU and ye V. Therefore X is gT,-space.

Definition 3.5:

A set M is said to be g-neighbourhood of a point x e X if there exists a g-open
set U such that xe U < X. Clearly every neighbourhood is g-neighbourhood but
the converse may be not true.

Example 3.2:

Let X ¢ and I be the indiscrete topology on X. Then in (X, I") the one point set
{x} is g-neighbourhood but not neighbourhood.

Theorem 3.4

The following are equivalent for a space X:

1) Xis g-regular

2) If Uis g-openin X and xe X with xe U, then there is a g-open set V
containing x such that g-cl(V) c U.

3) Each xe X has ag-neighbourhood base consisting of g-closed sets.

Proof: (1) > (2) Suppose X is g-regular, U is g-open in X and xe U, then X-U is
ag

-closed set in X not containing X, so disjoint g-open sets VV and W can be found
with

xeV and X-UcW. Then X-W is a g-closed set contained in U and containing V,
so g-cl(V)cU. (2) —(3) if (2) applies, then every g-open set U containing x
contains a g-closed neighbourhood (namely g-cl(V)) of X, so the g-closed
neighbourhoods of x form a neighbourhood base. (3) — (1) suppose (3) applies
and A is a g-closed set in X not containing x. Then X-A is a g-neighbourhood of
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X, so there is a g-closed neighbourhood B of x with B < X-A. Then g-Int(B) and
X-B are disjoint g-open sets containing x and A respectively, where g-Int(B) the
set of all g-interior points. Thus X is g-regular.

Theorem 3.5:
Every T,-space is K(gc)space.
Theorem 3.6

If X'is locally g-compact and K(gc)-space, then X is gT,-space.
Proof: Given X is locally g-compact, then every x e X has a neighbourhood base
consisting of g-compact sets, but X is K(gc), then these compact sets are g-closed
and hence x has neighbourhood base consisting of g-closed sets, then by theorem
3.4, X is g-regular space and by theorem 3.2 X is gTy, then it is gTs-space, that is,
XisgTo.
Theorem 3.7:
Every g-compact set in gT,-space is g-closed.
Proof: Let A be a g-compact set in a gT,—space X. If pe X-A, so for each qe A,

there are two disjoint g-open sets U and V containing g and p respectively. The
collection {U(q):q €A} is a g-open cover of A which is g-compact, then there is

finite subcover of A, that is, Ac () U(q). Put V1=~ Vqi(p) and U= U(dp).
i=1 i=1 i=1

Then V; is a g-open set containing p. We claim that U; ~V1=¢, so let xe U;,

then xe U(q;) for some i, so x¢ Vqi(p), hence x¢ V1. Thus Uy~ V1=¢ . Also

Ac Uy, thatis, A~ V1= ¢ which implies V1 X-A. Therefore A is g-closed.

Corollary 3.1:
Every gT,-space is gK(gc)-space.
Theorem 3.8:

The g™ -continuous image of g-compact set is g-compact.

Proof: Let f be g™ -continuous function from a space X into a space Y and
suppose B is g-compact set in X. To show that B is also g-compact, let {Ua }ae/\ be
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g-open cover of f(B), that is, f(B)= u U, . So B f f(B)=
f( vy, )=u f*(U,), then { f (U, )}is ag-open cover of B, which is g-

ael
compact, then B U £ (U,,). Butf(B) <fU (U, )=Uf £ (U,)= U U,,.

Therefore f(B) is g-compact set.

Theorem 3.9:

Every continuous function from compact into a K(gc)-space is g-closed
function.
Proof: Let A be closed set in X, which is compact, then A is compact. But f is
continuous, then f(A) is compact in Y, which is K(gc)-space, then f(A) is g-
closed. Therefore f is g-closed.

Lemma 3.2[1]:
Every g-closed subset of g-compact space is g-compact.

Theorem 3.10:

Every g™ -continuous function from g-compact into K(gc)-space is g** -
closed function.
Proof: Let f be g™ -continuous function from g-compact X into K(gc)-space Y.
Also let B be g-closed set in X. So by lemma 3.2 B is g-compact also by theorem
3.8 f(B) is g-compact, which implies it is compact in Y, which is K(gc), then f(B)
is g-closed. Therefore fis g™ -closed.

Corollary 3.2:

Every g™ -continuous function from g-compact space into gK(gc)
-space is g™ -closed.

Remark 3.2:

The continuous image of K(gc)-space is not necessarily K(gc).
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Example 3.3:

Consider Ir: (R, T,) = (R, T'), where Ig is the identity function, I',and T" are
usual and cofinite topologies respectively. Clearly (R, I',) is K(gc)-space.. Since
every compact set in R is closed and bounded, this implies it g-closed. But Iz(R) =

R and (R,I") K(gc)-space. Since if given [0, 1], which is compact and U=R-{5},
soUeTI,then [0, 1] < U, butcl([0, 1]) =Rz U. So (R, I') is not K(gc).
Theorem 3.11:

Let f be g™ -continuous injective function from X into a gK(gc) —space Y,
then X is also gK(gc).

Proof: Let W be any g-compact subset of X, then by theorem 3.7 f(W) is g-
compact set in Y, which is gK(gc), then f(W) is g-closed also f is g™ -continuous,

so f'(f(W))=W. Therefore X is gK(gc)-space.

Theorem 3.12:
The property of space being K(gc) is a hereditary property.
Proof: Let Y be a subspace of K(gc)-space X and A be any compact subset of Y,

then A is compact in X, which is K(gc), then A is g-closed in X. But A= An X,
then A is g-closed in Y. Therefore Y is also K(gc).

Theorem 3.13:

Let f be a homeomorphism function from a space X into a space Y, if U is g-
open set in X, then f(U) is also g-open.

Proof: Let F be any closed subset of f(U), so f *(F)c f *f(U)=U, but U is g-
closed, then f *(F) < Int(U), which implies F= f( f *(F)) = f(Int(U))=Int(f(U)).
Therefore f(U) is also g-open.

Corollary 3.3:

Let f be a homeomorphism function from a space X into a space Y, if U is g-
closed set in X, then f(U) is also g-closed.
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Corollary 3.4:

Let f be a homeomorphism function from a space X into a space Y, if M is g-
compact set in X, then f(M) is also g-compact.

Theorem 3.14:
The property of space being K(gc) is a topological property.

Proof: Let f be a homeomorphism function from a K(gc)-space X into a space Y
and B be compact set in Y, then f *(B) is compact in X, which is K(gc), then

f (B) is g-closed and by corollary 3.3 f( f *(B))=B is g-closed setin Y.
Corollary 3.5:
The property of space being gK(gc) is a topological property.
4. Further type of LC-spaces:
In 1979 the authors [5] introduce a new concept namely LC-spaces, these are
the spaces in which every lindelof sets are closed. In the present paper we
introduce a new concept namely L(gc)-spaces which is a weak form of LC-

spaces.

Definition 4.1

A space X is said to be L(gc)-space if every lindelof set is g-closed. So every
LC-space is L(gc) but the converse is not true in general.

Example 4.1:

Let R with the indiscrete topologyI". Clearly (R,I") is L(gc), since for every
Lindelof set difference from R and ¢ is g-closed but not closed.

Theorem 4.1
Every L(gc)-space is gT;.
Theorem 4.2

Every locally g-compact L(gc) is gTo.
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Proof: Let X be a locally g-compact and L(gc)-space, then X is K(gc). So by
theorem 3.6 X is gT,-space.

Theorem 4.3
The property of space being L(gc) is a hereditary property.

Proof: The proof is similar to theorem 3.12.

Theorem 4.4:

If X'is L(gc) and T, -space, then every compact set in X is finite.

Proof: Let A be compact set in X. If A is finite, then the proof is finished, if A is
infinite, then either A is countable or uncountable. Suppose A is countable and U
is any set in A, then U is countable, so U is lindelof in A, which implies it is
lindelof in X, which is L(gc), then U is g-closed in X. But X isT,, and then U is

closed in X. But U A=U, then U is closed in A, that is, A is discrete but A is
compact, then A is finite, which is a contradiction. If A is uncountable, then there
exists a subset K of A is countable and so K is lindelof in A, so it is lindelof in X,

which is L(gc) and T, -space, then K is closed. Put K= {a;, a; . . .}. Let U;=K®,

now a; e U=A-{ay, a,...} and aye A-{as, ...} ..., then {U,}", is an open cover
of A, which has no finite subcover, which is a contradiction. Then A is finite.

Definition 4.3:

A space X is said to be g-lindelof if for every g-open cover of X has a
countable subcovre. Clearly every g-lindelof-space is lindelof but the converse
may be not true.

Example 4.2:

Let R with the indiscrete topologyI". Clearly every subset of R is lindelof,
since the only open cover of any set is just R. But (R, I') is not g-lindelof, since if

given Q°=R-Q , then it is not g-lindelof, since {{x}}:xe Q°} is a cover of
Q°consisting of g-open sets, which can not be reduce to a countable subcover.

Theorem 4.5:

The g™ -continuous image of g-lindelof set is also g-lindelof.
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Proof: Let f be g -continuous function from a space X into a space Y and let K

be g-lindelof set in X. To show that f(K) is also g-lindelof, let {Ua }%A be a g-open

cover of f(K), that is, f(K)= U U} thenKc f *(K)c 7 Y u,_}=

U {f U, } which is also g-open cover of K, but K is g-lindelof, then it is has a

aelA
countable subcover, that is, Kg_kj)l {f U, }, which implies to f(K) < C;l ..}

Therefore f(K) is g-lindelof.

Theorem 4.6:

The property of space being g-lidelof is a topological property.
Proof: Let f be a homeomorphism function from a g-lindelof space X into a space
Y. Suppose {U,} _ be g-open cover of Y, thatis, Y= U {U,_}, then X= f 1(Y)

ash aeA

= f* U {U,). So by theorem 3.13 {f U, | is g-open cover of X, which is g-

aelA

lindelof, then X=U {f0, ), which implies to

Y=)=F(U {f U, )=UF{f U, }=0 {U,,}. Therefore Y is also g-lindelof.

Definition 4.3:

A space X is said to be gL(gc)-space if every g-lindelof set in X is g-closed. So
every LC-space is gL(gc) and every L(gc)-space is gL(gc) but the converses are
not true in general.

Theorem 4.7:

Let f be a homeomorphism function from a space X into a space Y if X is
gL(gc)-space, then Y is also is gL(gc).
Proof: Let B be a g-lindelof set in Y, then f *(B) is g-lindelof in X, which is
gL(gc)-space, then it is g-closed, but f is a homeomorphism. So by theorem 3.13
f( f *(B))=B is g-closed in Y. Therefore Y is also gL(gc).
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Definition 4.4:

A space X is said to be locally L(gc)-space if every point in X has L(gc)-
neighbourhood. So every L(gc)-space is locally L(gc).

Lemma 4.1[3]:

If (Y, T,) is a g-closed subspace of a space (X, I’y ), then if B is g-closed in
Y, then it is g-closed in X.

Theorem 4.8:

A space X is an L(gc)-space if and only if each point has closed
neighbourhoood which is an L(gc)-subspace.
Proof: If X is L(gc)-space, then for each x e X, X itself is a closed neighbourhood
of x, which is L(gc). Conversely, Let L be a lindelof set in X and a point xe X
such that xeL. Choose a closed neighbourhood W, of x, which is L(gc)-

subspace, then W, L is closed in L, which is lindelof, then W, L is lidelof in
W, , but W, is L(gc)-subspace, then W, L is g-closed in W, which is closed so
it is g-closed. So by lemma 4.1 W, nL is g-closed in X. Then W, -(W, nL)
=W, -L is a g-open set containing x and disjoint with L. Therefore L is g-closed
setin X.
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