Page 110-122

 $\int_{a_{nd}} b - Ind$

 Raad Aziz Hussain Al-Abdulla Sema Kadhim Gaber

Al-Qadissiya University College of Science Dept. of Mathematics

Abstract

We study some functions by using b – open set which are small and large inductive dimension (*ind* and *Ind*) and called $_{\text{by}}$ b – *ind* and b – *Ind*. Also we study some relations between them .

Introduction

b \leftarrow **index** \leftarrow **index** \leftarrow *index* \leftarrow *index* The concept of b – *open* set in topological space was introduced in [2]. We recall the definition of *ind* and *Ind* in [7]. In this paper we study similar definitions using b -open sets which are called b -ind and b -Ind and we study some relations between them .

Section one : On *b open* **sets**

1.1.Definition [2]

Let X be a topological space and $A \subseteq X$. A is called b – *open* set in X if

- $A \subseteq A \cup A$. The complement of b – *open* set is called b – *closed* set, that is, A \circ

is *b* – *closed* set if $\overrightarrow{A} \cap \overrightarrow{A} \subseteq A$

- \circ

It is clear that every open set is b – *open* and every closed set is b – *closed*, but the converse may be not true in general .As the following example .

1.2.Example

 Let $X = \{a, b, c\}$, $T = \{\{a\}, X, \phi\}.$. The b – *open* sets are :- $\{a\}$, $\{a, b\}$, $\{a, c\}$, ϕ , X. Then $\{a, b\}$ is b – *open* set but not open.

1.3.Proposition [4]

Let X be topological space then G is an open set in X iff $G \cap \overline{A} = G \cap A$ for each $A \subset X$.

1.4.Remark [6]

The intersection of an b – *open* set and an open set is b – *open*.

1.5.Example

The intersection of two b – *open* sets may be not b – *open* in general. Example let $X = \{a,b,c\}$, $T = \{\{a\}, \{b\}, \{a,b\}, X, \phi\}$. Then each of $\{a,c\}, \{b,c\}$ is an *b* – *open* set, where as $\{a, c\} \cap \{b, c\} = \{c\}$ is not *b* – *open*.

1.6.Proposition [6]

Let $\{A_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of b – *open* set in a topological space X, then $\bigcup_{\lambda \in \wedge} A_{\lambda}$ is b – *open*.

1.7.Definition [3]

Let X be a topological space and $A \subseteq X$. A is called semi-open (s -open) set in X if $A \subseteq A$. The complement of s -open set is called semi-closed $(s - closed)$ that is, *A* is $s - closed$ set if $A \subseteq A$ \circ . The intersection of all s -*closed* subsets of X containing A is called semi-closur (s -*closur*) of A and the union of all s – open subsets of X contained in A is called semi-interior $(s - \text{int } \text{erior })$ of *A*, and are denoted by \overline{A}^s , A^{s} respectively.

1.8.Definition [5]

Let X be a topological space and $A \subseteq X$. A is called pre-open set in X if $A \subseteq \mathring{A}$. The complement of *pre-open* set is called

 \overline{a}

pre – *closed* that is *A* is *pre* – *closed* set if $A \subseteq A$. The intersection of all *preclosed* subsets of *X* containing *A* is called *preclosur of A* and the union of all pre–open subsets of *X* contained in *A* is called *pre*—int *erior of A*, and denoted by \overline{A}^p , $A^{\circ p}$ respectively.

1.9.Proposition [1]

- Let *X* be a topological space and $A \subseteq B \subseteq X$, then:
- (i) $\overline{A}^p \subseteq \overline{B}^p$
- (iii) $A^{\circ p} \subseteq B^{\circ p}$

1.10.Proposition [2]

- For any subset A of a space X the following statements are equivalent:-(i) A is b – *open* set
	- (ii) $A \subseteq A^{\circ p} \cup A^{\circ s}$
	- (iii) $A \subseteq (A^{\circ p})^{-p}$

1.11.Proposition

For any subset A of a space X , the following statements are equivalent :-(i) A is b – *open* set

(ii) $\overline{A}^p = \overline{A^{\circ p}}^p$

(iii) There exists an *pre-open* set G in X such that $G \subseteq A \subseteq \overline{G}^p$. **Proof** :

 $(i) \rightarrow (ii)$ since $A \subseteq \overline{A^{\circ p}}^p$ by proposition 1.10, then $\overline{A}^p \subseteq \overline{A^{\circ p}}^p$ and since $\overline{A}^{\circ p}$ ^{*p*} $\subseteq \overline{A}^p$, then $\overline{A}^p = \overline{A^{\circ p}}^p$.

 $(ii) \rightarrow (iii)$ let $G = A^{\circ p}$. Since $\overline{A}^p = \overline{A^{\circ p}}^p$ and $A^{\circ p} \subseteq A \subseteq \overline{A^{\circ p}}^p$. Then $G \subseteq A \subseteq \overline{G}^p$.

Suppose that there exists $pre-open$ set G such that $G \subseteq A \subseteq \overline{G}^p$. Then $G = G^{op}$ and since $A \subseteq \overline{G}^p = \overline{G^{op}}^p \subseteq \overline{A^{op}}^p$, then A is *b*-open set by proposition 1.10 .

1.12.Proposition

For any subset A of a space X , the following statements are equivalent :-(i) A is b -open set

(ii) There exists an open set G in X such that \circ $G \subseteq A \subseteq \overline{G} \cup \overline{A}$. **Proof :**

> (i)→(ii) suppose that *A* is *b* − *open* set . let $G = \mathring{A}$, then $A = G \subseteq A \subseteq \overline{A^{\circ}} \cup \overline{A} = \overline{G} \cup \overline{A}$. Hence \circ $G \subseteq A \subseteq G \cup A$. (ii)→(i) Suppose that there exists an open set G in X such that \circ $G \subseteq A \subseteq \overline{G} \cup \overline{A}$. Then $\frac{\circ}{\circ}$ $\frac{\circ}{\circ}$ $\frac{\circ}{\circ}$ $A \subseteq \overline{G} \cup \overline{A} = G \cup \overline{A}$ $\overline{A} \cup \overline{A}$ by definition 1.1 **.**Hence $A \subseteq \mathring{A} \cup \mathring{A}$, therefore *A* is *b* – *open* set.

1.13.Proposition

Let X be a topological space. let Y be an open subset of X and *A* is b - *open* set in *Y*. Then there exists a b - *open* set *B* in *X* such that $A = B \bigcap Y$.

Proof:

Let A is b – *open* set in Y, then by proposition 1.12 there exists an open set U \circ

(*iii*) \rightarrow (*i*) Suppose that there exists *pre*-

Then $G = G^{*p}$ and since $A \subseteq \overline{G}^p = \overline{G^{*p}}^p$

proposition 1.10.

1.12.Proposition

For any subset A of a space X, the fol

(i) A is b -open set

(ii) There exist in *Y* such that $U \subseteq A \subseteq \overline{U}^Y \cup \overline{A}^Y$ $\subseteq A \subseteq U' \cup A'$, then there exists an open set W in X such that $W \bigcap Y = U$. . Let $B = A \cup W$. , then $B \bigcap Y = (A \bigcup W) \bigcap Y = (A \bigcap Y) \bigcup (W \bigcap Y) = A \bigcup U = A$ to prove \circ $W \subset B \subset \overline{W} \cap \overline{B}$, since $W \subset A \cup W = B$, then $W \subset B$, since $B = AUV \subset \overline{W} \cup A$ $\overline{W} \cup \overline{U}^Y \cup \overline{\overline{A}}^Y$ \circ $\subset W \cup U' \cup A' \subseteq$ *Y* $\overline{W} \cup (\overline{U} \cap Y) \cup \overline{A}^Y$ \circ $\bigcup (\overline{U}\cap Y)\bigcup \overline{A}^Y\subset \overline{W}\cup (\overline{W}\cap Y)\cup \overline{A}^Y$ \circ $\subset W \cup (W \cap Y) \cup$ $\overline{W} \cup \overline{A}^{Y \text{ }^\circ Y} = \overline{W} \cup (\overline{A} \cap Y)^\circ Y = \overline{W} \cup (\overline{A} \cap Y) = \overline{W} \cup (\overline{A} \cap Y) = \overline{W} \cup (\overline{A} \cap Y)$ $W \cup (A \cap Y) = W \cup (A \cap Y) = W \cup (A \cap Y)$ *<u><i>Y* \circ *Y W Y Y Y Y Y*</u> $= W \bigcup (A \cap Y) = W \bigcup (A \cap Y)$

 $(since Y = \overset{\circ}{Y}) =$ \circ \circ $\overline{W} \cup \overline{A} \subset \overline{W} \cup \overline{B}$ (since $A \subset A \cup W = B$). Therefore $^{\circ}$ $W \subseteq B \subseteq W \cup B$.

1.14.Proposition

Let X be a topological space and $Y \subseteq X$. If G is a b -open set in X and *Y* is an open set in *X*, then $G \cap Y$ is b – *open* set in *Y*.

Proof :

Since *G* is a *b*-*open* set in *X*, then
$$
G \subseteq \overline{G} \cup \overline{G}
$$
. But
\n
$$
\frac{G \cap Y}{(G \cap Y)}^{Y \circ Y} \cup (\overline{G \cap Y})^{Y} \supseteq \overline{(G \cap Y)}^{Y} \cup (\overline{G \cap Y})^{Y} \cup (\overline{G \cap Y})^{Y} = (\overline{G \cap Y} \cap Y \cap Y) \cup (\overline{G} \cap Y \cap Y) =
$$
\n
$$
(\overline{\overline{G} \cap Y} \cap Y \cap Y) \cup (\overline{\overline{(G \cap Y)} \cap Y} \cap Y) \text{ by proposition 1.3 } \supseteq ((\overline{G} \cap Y) \cap Y \cap Y) \cup (\overline{G} \cap Y \cap Y) \cup (\overline{G} \cap Y \cap Y) =
$$
\n
$$
= (\overline{G} \cup \overline{G} \cap Y \cap Y) = (\overline{G} \cup \overline{G} \cap Y) \cup (\overline{G} \cap Y) \cup \overline{G} \cap Y \cap Y
$$
\n
$$
= (\overline{G} \cup \overline{G} \cap Y) \cap Y \supseteq G \cap Y \text{ . Then } G \cap Y \text{ is a } b \text{ - open in } Y
$$

1.15.Proposition

Let X be a topological space .Let Y be an open subset of X and A is b – *open* set in *Y* . Then *A* is b – *open* in *X*. **Proof :**

Let A is b – *open* set in Y, then by proposition 1.12 there exist an open set G in *Y* such that $G \subseteq A \subseteq \overline{G}^Y \cup \overline{A}^{Y \to Y}$, then there exist an open set *W* in *X* such that $W \cap Y = G$,
 $A \subset \overline{A}^{Y \circ Y} \cup \overline{A^{\circ Y}}^Y = (\overline{A}^{\circ Y} \cap Y^{\circ Y}) \cup (\overline{A^{\circ Y}} \cap Y) \subseteq$ $\overline{A}^{\circ} \cup (\overline{A^{\circ Y} \cap Y}) = \overline{A}^{\circ} \cup (\overline{A^{\circ Y} \cap Y^{\circ}}) = \overline{A}^{\circ} \cup \overline{A^{\circ}}$. Then $A \subseteq \overline{A}^{\circ} \cup \overline{A^{\circ}}$. Hence A is b – *open* in X .

1.16.Proposition

For any subset A of a space X , the following statements are equivalent : (i) A is b – *closed* set in X.

(ii) There exist a closed set C in X such that $C^{\circ} \cap A^{\circ} \subseteq A \subseteq C$. **Proof :**

(i)→(ii) Suppose that *A* is *b* − *closed* set, then *A^c* is *b* − *open* set. By proposition 1.12 there exists an open set G such that \circ $G \subseteq A^c \subseteq \overline{G} \cup A^c$, $(G \cup A^c)^c \subseteq A \subseteq G^c$ \circ $G^{c^{\circ}} \cap A^{c^{c^{c^{c^{\circ}}}}} = G^{c^{\circ}} \cap \overline{A^{\circ}}$ $\frac{c}{c}$ $\frac{c}{c}$ $\frac{c}{c}$ $\frac{c}{c}$ $\overline{(G \cup \overline{A^c})^c} = \overline{G} \cap \overline{A^{c}}^{c^c}$ *c* c° \bigcap A^{c} $= G^{c^{\circ}} \cap A^{c^{c^{c^{c^{c}}}}}$

Then $G^c \cup A^{\circ} \subseteq A \subseteq G^c$, let $C = G^c$. Then $C^{\circ} \cap \overline{A^{\circ}} \subseteq A \subseteq C$. (ii) \rightarrow (i) Suppose that there exists a closed set C such that $C^{\circ} \cap A^{\circ} \subseteq A \subseteq C$, then $C^c \subseteq A^c \subseteq (C^{\circ} \cup A^{\circ})^c$, \circ

 $C^{c} \cup \overline{A^{c}}$ $C^{c} = C^{c^{c}} \cup \overline{A^{c}}^{c} = \overline{C^{c}} \cup \overline{A^{c}}^{c^{c^{c^{c^{c^{c^{c}}}}}}}$ $(C^{\circ} \cup A^{\circ})^c = C^{c^c} \cup A^{c^c} = C^c \cup A^{c^c}$, let $C^c = G$, $G \subseteq A^c \subseteq \overline{G} \cup A^c$, then by proposition 1.12 A^c is b – *open* set. Therefore A is b – *closed* set.

1.17.Proposition [8]

A space X is regular space iff for every $x \in X$ and each open set U in X such that $x \in U$ there exists an *open* set W such that $x \in W \subseteq W \subseteq U$.

1.18.Proposition[8]

A space X is normal space iff for every closed set $C \subseteq X$ and each open set *U* in *X* such that $C \subseteq U$ there exists an open set *W* such that $C \subset W \subset \overline{W} \subset U$.

Section TWO On ind **and** b – ind **2.1.Definition]7[**

Let X be a topological space then *ind* $X = -1$ iff $X = \phi$, and if *n* is a positive integer or 0 then it is said that *ind* $X \le n$ iff the following satisfied :

For each $x \in X$ and for each open set G containing x, there exists an open set U such that $x \in U \subseteq G$ and *ind* $b(U) \le n - 1$. If there exists no integer *n* for which *ind* $X \leq n$ then we put *ind* $X = \infty$

This suggests the following :-

2.2.Definition

Let X be a topological space. we say that b *ind* $X = -1$ iff $X = \phi$, and if n is a positive integer or 0 then we say that b *ind* $X \le n$ iff the following satisfied:

For each $x \in X$ and for each open set G containing x, there exists an b – open set U such that $x \in U \subseteq G$ and $b - ind b$ (U) $\le n - 1$. If there exists no integer *n* for which b – *ind* $X \le n$ then we put b – *ind* $X = \infty$.

To find b – *ind* $b(U) \le n - 1$ we have to know the topology on $b(U)$, then we have to get b – *ind* of the boundary of open set in the topology of $b(U)$.

2.3.Example

The following example of a space X with $ind X = b - ind X = 0$. Let $X = \{a, b, c \}$, $T = \{c\}, \{a, b\}, \phi, X\}$ the *b* – *open* sets are $\{c\}, \{a, b\}, \phi, X, \{a\}$, ${b}$, ${b}$, ${c}$, ${a}$, ${c}$. . Since {*a*,*b*} is an open and closed then $b{a,b} = \phi$, *indb*{ a,b } = -1 hence *indX* ≤ 0 and since *X* ≠ ϕ then *indX* = 0. And by theorem 2.6 then $b - \text{ind}X = 0$.

2.4.Example

Example 1.5 gives *ind* $X = b$ *-ind* $X = 1$. Since $a \in \{a\} \subseteq X$ such that $b{a} = \overline{a}$ \overline{a} \overline{a} *ind* $b{a} = -1$ *if* $b{a} = \phi$ *or ind* $b{a} = 0$ *if* $b{a} \neq \phi$ since X is not regular then *ind* $X \neq 0$ and since *ind* $b\{a\} = 0$ then *ind* $X = 1$. Since e $\{a\}$ is b – *open* then b - *ind* $X = 1$

2.5.Proposition

Let X be a topological space .If indX is exist then b – ind $X \leq \text{ind}X$

Proof:

By induction on *n*. It is clear $n = -1$. Suppose that it is true for $n - 1$. Now suppose that *ind* $X \le n$, to prove b *- ind* $X \le n$, let $x \in X$ and G is an open set in X such that $x \in G$ since $ind X \leq n$, then there exists an open set V in X such that $x \in U \subseteq G$ and *ind* $b(U) \leq n-1$ and since each open set is b -open then U is an b -open set such that $x \in U \subseteq G$ and b -ind $b(U) \le n-1$. Hence b *ind* $X \leq n$.

2.6.Theorem

Let X be a topological space, then *ind* $X = 0$ iff $b - \text{ind } X = 0$. **Proof :**

By 2.5 if *ind* $X = 0$ then $b - \text{ind } X \le 0$ and since $X \ne \phi$, then *b* – *ind* $X = 0$. Now let *b* – *ind* $X = 0$, let $x \in X$ and *G* an open set in *X* such that $x \in G$. Since $b - \text{ind } X = 0$ then there exists an $b - \text{open}$ set U such that $x \in U \subseteq G$ and $b - \text{ind } b(U) \le -1$. Then $b(U) = \phi$, and thus $\text{ind } b(U) = -1$, so that *indX* \leq 0, and since *X* \neq ϕ , then *indX* = 0.

It is known that if X is a topological space with $\text{ind } X = 0$ then X is a regular space (see [7])

Then we have the following :

2.7.Corollary

Let X be a topological space, if b *ind* $X = 0$ then X is a regular space. **Proof:**

Let $x \in X$ and *G* an *open* set such that $x \in G$. Since b *- ind* $X = 0$ then there exists an *b*-*open* set *V* such that $x \in V \subseteq G$ and and b – *ind* $b(V)$ = –1 then $b(V) = \phi$ hence *V* is an open and closed set .Therefore $x \in V \subseteq V \subseteq G$ by proposition 1.17 Then *X* is a regular space .

It is known that a space X satisfies $ind X = 0$ iff it is not empty and has a base for its topology which consists of open and closed sets. (see[7])

Similarity, we have :

2.8.Corollary

A space X satisfies b *ind* $X = 0$ iff it is not empty and has a base for its topology which consists of open and closed sets.

2.9.Theorem

If A is an open subspace of a space X, then b -ind $A \le b$ -ind X.

Proof:

By induction on *n*. It is clear $n = -1$. Suppose that it is true for $n - 1$. Now suppose that b -*ind* $X \le n$, to prove b -*ind* $A \le n$, let $x \in A$ and G is an open subset in A such that $x \in G$, since G is an open in A, then there exists U open set in X such that $U \cap A = G$. Since $x \in U$ and $b - \text{ind } X \leq n$, then there exist an $b - \text{open}$ set W in X such that $x \in W \subseteq U$ and $b - \text{ind } b(W) \leq n - 1$, then $V = W \cap A$ is b – *open* in A by proposition 1.14.

$$
x \in V = W \cap A \subset U \cap A = G
$$

\n
$$
b_A(V) \subseteq b(V) \cap A = (V - \hat{V}) \cap A \subset (\overline{W} - \hat{V}) \cap A)
$$

\n
$$
= (W \cap \hat{V}) \cap A
$$

\n
$$
= \left[\overline{W} \cap (\hat{W} \cup \hat{A})\right] \cap A
$$

\n
$$
= \left[(\overline{W} \cap \hat{W}) \cup (W \cap A^c)\right] \cap A \subseteq [b(W) \cup A^c] \cap A
$$

\n
$$
= (b(W) \cap A) \cup (A^c \cap A)
$$

\n
$$
= b(W) \cap A \subseteq b(W)
$$

\nSince $b - \text{ind } b(w) \le n - 1$, then $b - \text{ind } b_A(v) \le n - 1$, therefore

 b *ind* $A \leq n$.

Section Three : On *Ind* **and** *b Ind*

3.1.Definition [7]

Let X be a topological space. It is said that $Ind X = -1$ iff $X = \phi$ and if n is a positive integer or 0 then we say that *Ind* $X \le n$ iff the following is satisfied :

For each closed set C in X and each open set G, $C \subseteq G$, there exists an open set U such that $C \subseteq U \subseteq G$ and $Ind b(U) \leq n-1$. If there exists no integer n for which *Ind* $X \leq n$ then we put *Ind* $X = \infty$

This suggest the following :

3.2.Definition

Let X be a topological space . we say that b – Ind $X = -1$ iff $X = \phi$, and if *n* is a positive integer or 0 then we say that b – Ind $X \le n$ iff the following is satisfied :

For each closed set C in X and each open set G, such that $C \subseteq G$, there exists an b – *open* set U such that $C \subseteq U \subseteq G$ and b – Ind b (U) $\leq n-1$. If there exists no integer *n* for which $b - Ind X \le n$ then we put $b - Ind X = \infty$. To find b – *Ind* b (U) \leq n – 1 we have to know the topology on b (U), then we have to get b – *Ind* of the boundary of open set in the topology of $b(U)$.

3.3.Example

The following example of a space X with b – Ind $X = Ind X = 0$. Let $X = \{a, b, c, d\}$, $T = \{\{d\}, \{b, c\}, \{b, c, d\}, \phi, X\}$. The $b - open$ sets are $\{b\}, \{c\}, \{b,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{d\}, \{b,c\}, \{b,c,d\}, \{a,d\}, \{a,b,c\}, \phi, X$. Since ${a,b,c} \subseteq X \subseteq X$, $b(X) = \phi$ *then* $Indb(X) = -1$ *hence* $IndX = 0$ and since *X* is an b – *open* then b – *Ind* $X = 0$.

3.4.Example

The following example of a space X with $Ind X = b - Ind X = 1$. Let $X = \{a,b,c,d,e\}, T = \{\{a\},\{c,d\},\{a,c,d\},\{a,b,d,e\},\{d\},\{a,d\},X,\phi\}.$ The *b* – *open* sets are:- $\{a\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}, \{d\}, \{a, b, d\}, \{a, b, d\}, \{a, d, e\}$ ${a,b,c,d}, {a,c,d,e}$ ${b,d,e}, {b,c,d,e}, {a,e}, {b,d}, {d,e}, {c,d,e}, {b,c,d}, {a,b,e}, {a,b}, \phi, X$..Since ${c}$ \subset ${c,d}$ \subset *X* such

that $b\{c,d\} = \{c,d\} - \{c,d\}^{\circ} = \{b,c,d,e\} - \{a,c,d\} = \{b,e\}$. The topology on {*b*,*e*} is an indiscrete then *if* $b{c,d} = \phi$ *or Indb*{ c ,*d*} = 0 *if b*{ c ,*d*} $\neq \phi$ since *X* is not normal then *Ind* X \neq 0 and since *Ind* $b\{c,d\} = 0$ then $Ind X = 1$. Since ${c,d}$ is *b open* then b - *ind X* = 1

3.5.Proposition[7]

Let X be a topological space, if $Ind X = 0$ then X is normal space.

3.6.Corollary

Let X be a topological space, if $b - Ind X = 0$, then X is normal space. **Proof:**

Let C be a closed set in X and U an open set such that $C \subseteq U$. Since $b - Ind X = 0$, then there exist an *b open* set *W* such that $b - Ind b(W) = -1$, hence *W* is an open and closed set .Therefore $C \subseteq W \subseteq W \subseteq U$ by proposition 1.18 .Then *X* is a normal.

3.7.Proposition:

Let *X* be a topological space .If *IndX* is exist then b – *Ind X* \leq *Ind X*. **Proof:**

By induction on *n*. It is clear $n = -1$. Suppose that it is true for $n - 1$. Now suppose that $Ind X \le n$, to prove $b - Ind X \le n$, let C be a closed set in X and *G* is an open set in X such that $C \in G$ since $Ind X \le n$, then there exists an open set V in X such that $C \in U \subseteq G$ and $Ind b(U) \leq n-1$ and since each open set is b -open then *U* is an b -open set such that $C \in U \subseteq G$ and b – Ind $b(U) \le n-1$. Hence b – Ind $X \le n$.

The following analogous to theorem 2.6 and its proof is similar and hence is omitted .

3.8.Theorem

Let X be a topological space. Then $Ind X = 0$ iff $b - Ind X = 0$. It is known and easy to see that if *X* is T_1 -space, then *ind* $X \leq Ind X$ (see[7]). Similarity we have :

3.9.Proposition

Let *X* be a topological space . If *X* is T_1 – space then b *– ind* $X \leq b$ *– Ind* X .

 Proof:

Let $x \in X$ and G be an open set such that $x \in G$, since X is T_1 – space then

 ${x} \subseteq G$ and since $b - Ind X \le n$ then there exist an $b - open$ set V such that

 $\{x\} \subseteq V \subseteq G$ and $Indb(V) \leq n-1$ **.**Hence

ind $b(V) \leq n-1$ *ind* $X \leq n$

It is known and easy to see that if X is a regular topological space, then *ind* $X \leq Ind X$. (see[7])

Similarity , we have

3.10.Theorem

Let *X* be a topological space. If *X* is regular space then b – ind $X \leq b$ – Ind *X*. **Proof :**

By induction on *n*. If $n = -1$ then $b - Ind X = -1$ and $X = \phi$, so that b -*Ind* $X = -1$. Suppose that the statement is true for $n-1$. Now, let b – Ind $X \le n$. Let $x \in X$ and G be an open set such that $x \in G$. Since X is regular space then there exists an open set V such that $x \in V \subseteq V \subseteq G$ by proposition 1.17. Also since b – Ind $X \le n$ and \overline{V} is closed, $V \subseteq G$, then there exists an b -open set U such that $V \subseteq U \subseteq G$ and b -Ind $b(U) \le n-1$, then *b* – *ind b*(U) $\leq n-1$ [by indication] and *b* – *ind* $X \leq n$.

3.11.Proposition[7]

If *A* is a closed subset of a space *X*, then $Ind A \leq Ind X$ We have the following :

3.12.Theorem

If *A* is an open and closed subspace of a space *X*, then $b - Ind A \le b - Ind X$. **Proof :**

By induction on *n*. It is clear if $n = -1$, suppose that it is true for $n - 1$. Now suppose that $b - Ind X \leq n$, to prove $b - Ind A \leq n$, let C is a closed subset of A and G is an open subset in A such that $C \subseteq G$, since C is closed in A and A is closed in X , then C is closed in X . Since G is an open in A , then there exists *U* open set in *X* such that $U \cap A = G$. Since $C \subset U$ and $b - Ind X \le n$, then there exists an b -open set W in X such that $C \subseteq W \subseteq U$ and $b - Ind b(W) \leq n - 1$, since A is an open set then $V = W \cap A$ is $b - open$ set in A by proposition 1.14 , $C \subset V = W \cap A \subset U \cap A = G$ $b_A(V) \subseteq b(V) \cap A = (\overline{V} - V^{\circ}) \cap A \subset (\overline{W} - V^{\circ}) \cap A = (\overline{W} \cap V) \cap A$ *c* $\left[\overline{W}\cap \overline{(W}^\circ \cup A^\circ)\right] \cap A$ $\overline{}$ L $=\n\begin{array}{c}\n\overline{W} \cap (W^{\circ} \cup A^{\circ})\n\end{array}$ $\overline{W} \cap W^{\overset{\circ}{\circ}} \cup (\overline{W} \cap A^c)$ $\bigcap A$ $\overline{}$ L $=\Big|\,(\overline W\cap W^{\stackrel{c}{\circ}})\cup (\overline W\cap A^c\,)\,$ \subseteq $|b(W) \cup A^c| \cap A$ $=(b(W) \cap A) \cup (A^c \cap A) = b(W) \cap A \subseteq b(W)$

Since b – Ind b (W) $\leq n-1$, then b – Ind b_A (V) $\leq n-1$, therefore b – Ind $A \leq n$.

References

[1] Najla Jabbar kaisam Al-Malaki, "Some Kinds of Weakly Connected and Pair wise Connected Space", M.Sc. Thesis University of Baghdad, College of Education \ Abn AL-Haitham ,2005.

[2] D. Andrijevic, "On b – open sets", Mat. Vesnik, 48(1996), 59 – 64.

[3] P. Das, "Note on Some Applications on Semi Open sets", Progress of Mathematics , 7(1973).

[4] J. Dugundji, Topology, Allyn and Bacon Boston, 1966.

[5] A.S. Mashhour, M.E. Abd-El-Mansef and S.N. El-Deeb, "On Pre-continuous and Weak Pre-continuous Mappings" ,Proc.Math. and Phys. Egypt 53(1982),47- 53.

[6] A.AL-Omari and M.S. Noorani, " Decomposition of Continuity Via *b open* set", Bol. Soc. Paran. Math. V. 26(1-2)(2008):53-64.

[7] A.P. Pears, "On Dimension Theory of General Spaces", Cambridge University press ,1975.

[8] N.J. Pervin, "Foundation of General Topology" A cadmic press, New York, 1964.