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Abstract: 

      A harvested prey-predator model with infectious disease in prey is 

investigated. It is assumed that the predator feeds on the infected prey only 

according to Holling type-II functional response. The existence, uniqueness and 

boundedness of the solution of the model are investigated. The local stability 

analysis of the harvested prey-predator model is carried out. The necessary and 

sufficient conditions for the persistence of the model are also obtained. Finally, 

the global dynamics of this model is investigated analytically as well as 

numerically. It is observed that, the model have different types of dynamical 

behaviors including chaos. 

 

1. Introduction: 

 There has been growing interest in the study of diseases in prey-predator 

models. It is well know that, in nature species does not exist alone. In fact, any 

given habitat may contain dozens or hundreds of species, sometimes thousands. 

Since any species has at least the potential to interact with any other species in its 

habitat, the possibility of spreading of the disease in a community rapidly 

becomes astronomical as the number of infected species in the habitat increases. 

Therefore, it is more of biological significance to study the effect of disease on 

the dynamical behavior of interacting species. In the last two decades, some prey-

predator models with infections diseases have been considered [1-5] and the 

references their in. All these studies, reached at the conclusion that disease may 

cause vital changes in the dynamics of an ecosystem. 

 On the other hand, harvesting has generally a strong impact on the 

population dynamics of a harvested species. The severity of this impact depends 
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on the nature of the implemented harvesting strategy, which in turn may range 

from the rapid depletion to the complete preservation of a population. The study 

of population dynamics with harvesting is a subject of mathematical bio 

economics, and it is related to the optimal management of renewable resources 

[6]. The effect of constant rate of harvesting on the dynamical behavior of 

interacting species has been considered by many researchers [7-8] and the 

references their in. The conclusions of these studies can be summarized as 

follows: Harvesting may be used as a biological control for the coexistence of the 

species, but unregulated harvesting might lead to extinction in one or more 

species. 

 Keeping the above in view, the effect of disease on the dynamical behavior 

of the harvested prey-predator systems is important from economical viewpoint. 

Little attention has been paid so far in this direction Chattopadhyay et al [9], 

proposed and analyzed a mathematical model of a harvested prey-predator system 

with infection on prey population. They assumed that, the predator feeds on the 

susceptible prey population according to Holling type-II functional response, 

while it feeds on infected prey population according to Lotka-Volterra predation 

form. They reached to the following result, harvesting of infected prey may be 

used as a biological control for the persistence in an infected prey-predator 

system. In this chapter, Chattopadahyay et al model [9] modified by assuming that 

the predator feeds on the infected prey only according to the Holling type-II 

functional response. The possibility of occurrence of chaotic behavior is also 

considered, and then the effects of disease and harvesting on such chaotic 

behavior are studied. 
 

2. The Mathematical Model 

        Let  tS  and  tI  be the numbers of the susceptible and infected prey 

population at time t  respectively. Let  tZ  be the number of the predator 

population at time t . The dynamics of a harvested prey-predator model with 

infection on prey population can be represented by the following set of 

differential equations: 
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Here the positive constants r  and  K  are, respectively, the intrinsic growth rate 

and carrying capacity of the prey species in the absence of predation and 
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harvesting. The positive constants  , ,c and   represent the infection rate, 

maximum attack rate, and the half saturation coefficient, respectively. However, 

the positive constants   and   denote to the death rates of the infected prey and 

the predator, respectively. The positive constant h  represents the growth rate of 

predator due to predation of infected prey and hence it can be written as eh   

with 10  e . Finally, the non-negative constants  ,, 21 EE and 3E  are the 

harvesting efforts for the susceptible prey, infected prey and predator, 

respectively. 

Obviously, the interaction functions in the right hand side of system (1) are 

continuously differentiable functions on    0,0,0,ZI,S, 33  ZISRR  

and hence they are Lipschitzian functions. Therefore the solution of system (1) 

exists and is unique.  

Note that, according to the form of  ZISf ,,1  in system (1), it is easy to verify 

that the necessary condition of coexistence of all species in system (1) is given by 

11 0 ErEr                                                                                    (2) 

Therefore, from now onward, we assume that condition (2) is always holds.  

Furthermore, the solution of system (1) with non-negative initial conditions is 

bounded as shown in the following theorem. 

 

Theorem 1. 

       All the solutions of system (1), which initiate in  3

R are uniformly bounded. 

Proof: 

      Let        ,, tZtItS be any solution of the system (1) with non-negative initial 

conditions. According to first equation of system (1) we have 

   .1 1SErS
K
S

dt
dS      

Then due to the comparison theorem [10], we obtain 

    
.0 ;1 


ttS

r

ErK
                   (3) 

Let          ,tZtItStW h 


then by straight forward computations we get that  

  ZISNrS h
dt

dW 


 

where   .,,min 321 EEEN   Hence, by using Eq. (3) we obtains that: 

  1ErKNW
dt

dW   

Again, by applying the comparison theorem on the above differential inequality 

gives 

   0t ; 
L

tW


, where   01  ErK . 
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Hence all the solutions of system (1) that initiate in  3
R are confined in the region 

  0any for  :,, 3   


L
WRZIS . Thus these solutions are uniformly 

bounded, and then the proof is complete.                                                                             

 Now, since an ecological system is said to be dissipative if the solution of the 

system, which initiate in  3
R is uniformly bounded as  t . Therefore, system 

(1) is dissipative. 

 

 3. Stability analysis with Persistence: 

       In this section, the existence and stability analysis of all possible equilibrium 

points of system (1) are discussed and the following results are obtained 

1. The equilibrium points  0,0,00 F  and 
  0,0,1

1 r

ErK
F


  are always exist. 

2. The planar equilibrium point    , 0,,2 ISF  where  

c

E
S 2
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; 
   

 cKrc

ErErcK
I




 21 

                                               (4) 

         exists in the Int. 2
R  of the SI  plane under the following condition 

     21 ErErcK                                                                                (5)                                                 

3. The positive equilibrium point  ***
3 ,, ZISF  , where:  
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Z


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 exists in the Int. 3
R  if and only if the following set of conditions hold. 
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




 

 

3

31




                                                                   (7 a)                                                                                         

03  Eh                                                                                          (7 b) 

 0 2*

2

* S
c

E
SEcS 





                                                   (7 c)                                                         

Now to analyze the local stability of system (1) around each of these equilibrium 

points, the Jacobian matrix   3,2,1,0; iFJ i  of system (1) at each equilibrium 

point is computed and then the eigenvalues are determined. The following results 

are obtained. 

The eigenvalues of  0FJ  are given by 0101  Er ,   0,202  E  

  0303  E , and hence 0F  is a saddle point. However, the eigenvalues of 

 1FJ  are   0111  Er , 
 

212
1 E

r

ErcK



 , and   .0313  E  

Therefore, 1F  is locally asymptotically stable provided that: 

     21 ErErcK                                                                                (8) 

While, it is a saddle point, with locally stable manifold in the SZ  plane and 

with locally unstable manifold in the I direction, under condition (5).  

Obviously, if 1F  is locally asymptotically stable then 2F  does not exist. 

However, 1F  is a saddle when 2F  exists. 

The eigenvalues of  2FJ  satisfy the following relations  

 
 
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




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Where, i2  ( 3 ,2 ,1i ) represent the eigenvalues in the S , I  and 

Z direction respectively. Note that, from Eqs. (9 a)-(9 b) we obtain that, the 

eigenvalues 2221  and  , which are describe the dynamics in the S - and I -

direction respectively, have negative real parts under the condition (5). Therefore, 

2F  is locally asymptotically stable in the 2. RInt  of the SI  plane whenever it is 
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exists. Further, 2F  is locally asymptotically stable or saddle point in the  . 3
RInt , 

depending on whether the eigenvalue 23  is negative or positive respectively. 

 

Theorem 2. 

       The equilibrium point 2F  is a globally asymptotically stable in the 2. RInt  of 

the SI  plane. 

 

Proof:  

       Clearly in the 2. RInt  of the SI  plane, system (1) reduces to the following 

subsystem 
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for which ( IS , ) is a unique positive equilibrium point. 

Let  
SI
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1

,   be a 1C  positive function in the 2. RInt  of the SI  plane. 

Now, since 
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   
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










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IK
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I
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IS  

is not change sign and does not identically zero. Hence, according to Bendixson-

Dulic criterion [11], there is no closed curve in the 2. RInt  of the SI  plane. 

Therefore, 2F  is a globally asymptotically stable in the 2. RInt  of the SI  plane.                                      

Finally, the Jacobian matrix of system (1) at the positive equilibrium point 

 ***
3 ,, ZISF   is given by     3,2,1,;

333 


jiaFJ ij  where: 

0
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K
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K
r ; 013 a ; 0*
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0
* 

23 
B
Ia  ; 031 a ; 0

2

* 
32 

B

Zh
a


; 033 a  and  *IB   . 

Then the characteristic equation of    3FJ can be written as  

  032
2

1
3  AAA                                                                    (10 a) 

with  22111 aaA  ;  2211211232232 aaaaaaA   and 3223113 aaaA  . 

Then, by substituting the values of jia  , and then simplifying the resulting terms 

we obtain: 
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And    . 3223112112322322112211321 aaaaaaaaaaaAAA   
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Now, it is easy to verify that 01 A  and  0 under the following set of 

conditions 

 ***2 ZKISrB                                                                                    (11 a) 

     *2 ZrcKrcB                                                                            (11 b) 
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
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
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Therefore, according to the above analysis, the following theorem can be easily 

proved. 

 

Theorem 3. 

         Assume that the positive equilibrium point 3F  exists in the  . 3
RInt . Then, 

 3F is locally asymptotically stable if and only if conditions   (11 a)-(11 c)  hold. 

 

Keeping the above in view the persistence conditions of system (1) are established 

in the following theorem. 

 

Theorem 4. 

        Suppose that, 2F  exists in the 2. RInt  of the SI  plane. Then the necessary 

condition for the persistence of system (1) is  

       0)()( 33  EEhI                                                                   (12) 

 However, the sufficient condition for the persistence of the system (1) is 

 0)()( 33  EEhI                                                                   (13) 

 

Proof: 
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      Clearly the solution of system (1) is bounded as shown in theorem 1. Now, 

since 
)(

)()(
23

33

I

EEhI









  is the eigenvalue, which gives the stability in the 

positive direction orthogonal to the SI plane. In addition, 2F  is a globally 

asymptotically stable in the 2. RInt  of the SI  plane whenever it exists, therefore 

if condition (12) violates then 023   and there are orbits in the positive cone 

approach 2F . Hence condition (12) is the necessary condition for the persistence.  

For the sufficient condition (13), it is easy to verify that; system (1) satisfies the 

following hypotheses: 
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

S
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 
0

 
2

3 







I

h

I

f




;   0,,02 ZIf  and   0,0,03 Zf . 

(M2) The prey grows to carrying capacity in the absence of predation, infection 

and harvesting, that is   00,0,01  rf ,   0,,1 




K
r

S

f
ZIS . However, the 

predator population dies in the absence of the prey (i.e     00,0,0 33  Ef   ).  

(M3) There are no equilibria in the - IZ plane and  SZ plane. 

(M4) In the absence of the predator the susceptible prey and then the infected prey 

can survive in the interior of positive quadrant of SI  plane. Therefore, there 

exists an equilibrium point 2F  in the SI  plane, which is globally asymptotically 

stable.                                                                         

Hence, an application to the Freedman and Waltman persistence theorem [12], 

system (1) persists provided that condition (13) satisfied, and that completes the 

proof.                     

Finally, the global dynamics of system (1) in the  . 3
RInt  is investigated in the 

following theorem.                                                                             

 

Theorem 5. 

       Assume that, the positive equilibrium point 3F  is locally asymptotically 

stable with  

    2*2*
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
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                                                           (14) 

Here   * IIR   . Then 3F  is a globally asymptotically stable in the 

 . 3
RInt . 

Proof: Consider the following positive definite function  
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Where 321   and  , CCC  are positive constants to be determined. Now, straight 

forward calculations give that 
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By choosing the positive constants as ;
)(1 cKr

cKC


  12 C ; 

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I
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Hence  0
dt
dV  provided that condition (14) holds, and then  V is a Lyapunov 

function. Therefore,  3F is a globally asymptotically stable in the Int. 3
R .                                        

 

4. Numerical Simulation:  

        The globally dynamical behavior of the prey-predator system (1) with 

infectious disease in prey species is studied numerically. The solution of the 

system with a positive initial condition is obtained for biologically feasible range 

of parametric values. In all the cases being considered here the data is chosen 

depending on two factors: first, we wanted to investigate biologically reasonable 

harvested prey-predator system with disease, and the second, we wanted to 

determine if chaotic dynamics were likely. Therefore, as the solution of the 

system is bounded we expect that system (1) have a rich dynamic including limit 

cycle, and chaos. Consequently, system (1) is solved numerically, and then 

number of bifurcation diagrams are drawn between the Maximum value of 

predator and the control parameter.  

The first bifurcation diagram, Fig. 1, shows the dynamical behavior of system (1) 

as a function of the intrinsic growth rate   r parameter   .ei in the range 

15  25 r keeping other parameters fixed at  

 0.0 , 0.10 , 8.0 , 0.0 , 3.4

, 15.5 , 0.0 , 15.0 , 0.06c , 400

32

1





EhE

EK




                                 (15) 
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The evidence for the existence of cascade of periodic doubling leading to chaos 

can be seen clearly in Fig. 1, and then the solution becomes chaotic in between 

there are periodic windows too. Finally, the predator species, still survive for 

7.23r  and the solution returns to periodic dynamic. 

 

Fig. 1 Bifurcation diagram as a function of r  in the range 2515  r  keeping other parameters 

fixed as in Eq. (15). 

 Now the projection of the attracting set of the solution of the system (1) in 

the SI  plane is drawn in Fig. 2 (a-d) for the parametric values given in Eq. (15) 

with r =15, 16.55, 17, and 18 respectively. The figures show the evidence of 

periodic doubling leading to chaos.  

 

Fig. 2 The projection of the attracting set of the solution of system (1) in the S-I plane, at the 

parametric values given in Eq. (15). (a) 15r . (b) 55.16r . (c) 17r . (d) 18r . 

Fig. 3 shows the bifurcation diagram as a function of the natural death rate of 

infected species     .ei  in the range 5.65.1   , keeping other parameters 

fixed as in Eq. (15) with 18r . It is observed that there are number of periodic 
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regions followed by the chaotic regions, and then the system return to periodic for 

 5.68.4   . Finally the infected prey species and then the predator species 

approaches to extinction for 5.6  due to the effect of increasing in the natural 

death rate of the infected species, which is the sole food for predator. 

 

Fig. 3 Bifurcation diagram as a function of   in the range 5.65.1   , keeping 

the other parameters fixed as in Eq. (15) with 18r . 

Again, the projection of the attracting set of the solution of the system (1) in the 

SI  plane is drawn in Fig. 4 (a-d) for the parametric values given in Eq. (15); 

18r , with  =4.5, 5.0, 5.5, and 6.0 respectively. The figures show the evidence 

of return to periodic attractor from chaotic attractor through cascade of periodic 

halving. 

 

Fig. 4. The projection of the attracting sets of the solution of system (1) in the S-I 

plane, at the parametric values given in the Eq. (15) and 18r . (a) 5.4 . (b) 

0.5 . (c) 5.5 . (d) 0.6 . 

Now the dynamical behavior of system (1), as a function of varying in the 

infection rate  in the range 1.003.0  c  keeping other parameters fixed as in Eq. 
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(15) with , 18r  is investigated in the bifurcation diagram given by Fig. 5. It is 

observed that, the solution start with periodic and then periodic doubling leading 

to chaos. The figure also shows the existence of narrow periodic windows within 

the chaotic region and decline of predator species for 063.0c , approaching to 

extinction, due to the effect of increasing in the infection rate. 

 

Fig. 5. Bifurcation diagram as a function of c  in the range 1.003.0  c , keeping 

other parameters fixed as in Eq. (15) with 18r . 

In the following, bifurcation diagrams as a function of harvest rate 20 1  E , 

30 2  E , and 6.00 3  E  are drawn in Figs. 6(a-c) respectively keeping other 

parameters fixed as in Eq. (15) with 18r . All these figures show the alternate 

between the chaotic and periodic dynamic, and then the solution approaches to 

periodic attractors through sequence of periodic halving. Moreover, increasing the 

bifurcation parameter 3,2,1; iEi  further, will leads to decaying in the predator 

species Z  approaching to extinction. 

Finally, the effect of infection rate on the dynamics of system (1), in case of 

existence harvesting, is investigated in Figs. 7(a-e) for the range 1.003.0  c  

and 1.5 , 1.25 , 1.0 , 0.4 , 2.02 E  respectively holding the rest of parameters as: 

02.0 ,10 8, 3.4, 15.5, ,4.0 15, ,400 ,18 31  EhEKr       (16) 
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Fig. 6. Bifurcation diagram as a function of harvest rate keeping other parameters 

fixed as in Eq. (15) with 18r : (a) 20 1  E ; (b) 30 2  E ; (c) 6.00 3  E . 

 

      According to Figs. 7(a-e), it is observed that, system (1) has rich dynamics 

including periodic, period doubling leading to chaos, chaos, and periodic halving. 

The predator species Z  start increasing as c  increases reaching its maximum, in 

the range 065.005.0  c , due to abundance of its sole food, and then declines 
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for 07.0c , approaching to extinction due to rarity of its sole food. The chaotic 

regions become wider as the harvest rate 2E  increases from 0.2 to 0.4 keeping 

other parameters fixed as in Eq. (16). However these regions become narrower, as 

2E  increases further, and they are fully disappear for 5.12 E  and the system 

becomes periodic. 
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Fig. 7. Bifurcation diagram as a function of c  in the range 1.003.0  c , keeping 

other parameters fixed as in Eq. (16). (a) 2.02 E .(b) 4.02 E . (c) 0.12 E . (d) 

25.12 E . (e) 5.12 E . 

       The projection of the attracting set of the solution of the system (1) in the 

SI  plane is drawn in Fig. 8(a-d) for the parametric values given in Eq. (16) with 
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06.0c  and 2E =0.2, 0.4, 1.0, and 1.5 respectively. The figures show the 

evidence of return to periodic attractor from chaotic attractor as the harvest rate of 

infected prey increases. 

 

Fig. 8. The projection of the attracting set of the solution of system (1) in the S-I 

plane, at the parametric values given in Eq. (16) with 06.0c . (a) 2.02 E . (b) 

4.02 E . (c) 0.12 E . (d) 5.12 E .  

 

5. Discussion and Conclusion: 

        A harvested prey-predator model with disease in prey population is proposed 

and analyzed. It is assumed that, in the absence of predation and harvesting, the 

prey species grows logistically. However, the predator species feeds on the 

infected preys (infected preys are weakened and hence become easier to predate) 

according to Holling type-   functional response. Further, the mode of disease 

transmission within the prey population follows the simple law of mass action. 

The qualitative dynamical behavior of the proposed model is investigated 

analytically. Numerical integration is used to investigate the global dynamical 

behavior of the model system (1). The objective is to explore the possibility of 

chaotic behavior. Extensive numerical simulations are carried out for various 

values of control parameters and for different sets of initial conditions. It has been 

shown that, the system (1) is very sensitive to the parameters 

( 321  and, , , , , EEEcr  ) and has different types of interesting attracting sets 

including periodic, periodic doubling, chaos, and periodic halving. Moreover, 

depending on the simulation results, the following conclusion can be drawn: 

 

1. For small value of intrinsic growth rate of the susceptible prey population 

( 16r ) the system (1) has a periodic attracting set. However, increasing the 

growth rate slightly increases the possibility of occurrence of chaotic dynamics. In 

fact, if the intrinsic growth rate of susceptible prey increases further, the number 
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of the infected prey increases and hence the predator population still survives and 

periodic dynamics is observed. 

2. The situation is different in case of varying the infection rate  c  keeping 

other parameters fixed as in Eq. (16) with 18r . In this case, for small value of 

03.0c  there is small number of infected prey and hence the system undergo 

periodic dynamic due to the rarity in the sole food of predator. As the infection 

rate increases slightly  065.003.0  c  the number of infected prey start 

increases, consequently the number of predator species will be increase, and 

hence chaos is observed. Finally, increases the value of infection rate further 

 c065.0  causes decreasing in the number of susceptible prey and then 

decreases the infected prey due to the effect of the predation. Accordingly the 

system approaches to the extinction. 

3. Similar conclusions can be drawn, in case of increases the natural death rate of 

infected prey, as those in case of increasing of infection rate. 

4. Obviously, the chaotic behavior of the system can be avoided and the system 

returns to periodic dynamic by increasing the harvest rates, up to specific values. 

However, increasing the harvest rates further will causes extinction of the system. 

Finally, according to the above observation to control the chaotic behavior of the 

system (1), and hence control the disease, the value of intrinsic growth rate of the 

susceptible prey should not be very high.  

 

REFERENCES 

[1]  D. Mukherjee, Uniform persistence in a generalized prey-predator system 

with parasite infection, Biosystems, 47, pp.149-155, 1998. 

[2] Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with 

disease in the prey, Mathematical Biosciences, 171, pp.59-82, 2001. 

[3] J. Chattopadhyay and O. Arino, A predator-prey model with disease in the 

prey, Nonlinear Analysis, 36, pp.747-766, 1999. 

[4] J. Chattopadhyay and S. Pal, Viral infection on phytoplankton zooplankton 

system-a mathematical model, Ecological Modeling, 151, pp.15-28, 2002. 

[5] D. Mukherjee, Persistence in a prey-predator system with disease in the prey, 

J. of Biological systems, 11, pp.101-112, 2003. 

[6] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of 

Renewable Resources, Wiley, New York, USA, 1990. 

[7] G. Dai and M. Tang, Coexistence region and global dynamics of a harvested 

predator prey system, Siam. J. of Applied Mathematical, 58, pp.193-210, 

1998. 

[8] W.P. Cropper and D. Jr. DiResta, Simulation of a Biscayne Bay, Florida 

commercial sponge population: effects of harvesting after Hurricane Andrew, 

Ecological Modeling, 118, pp.1-15, 1999. 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

3
nd

.  Sinentific Conference 19-20/ APRIL -2011 

Vol 3       No.2          Year 2011 

 

 855 

[9]  J. Chattopadhyay, R.R. Sarkar, and G. Ghosal, Removal of infected prey    

prevent limit cycle oscillations in an infected prey-predator system-a  

mathematical study, Ecological modeling, 156, pp. 13-121, 2002. 

[10]  J.H. Hale, Ordinary differential equation, New York, Wiley-Interscience,                                                                             

1969. 

[11] S. Wiggins, Introduction to applied non-linear dynamical system and        

chaos, spring-verlag, New York, Inc., 1990. 

[12] H.I. Freedman and P. Waltman, Persistence in models of three interaction 

predator-prey populations, Mathematical Biosciences, 68, pp.213-231, 1984. 

 

هعذى في الفريسة الوفترس هع هرض-الفوضى في نورج حصاد الفريسة  

 هبة عبذ الله ابراهين                 رائذ كاهل ناجي

 العراق -بغذاد  –جاهعة بغذاد  –كلية العلوم  –قسن الرياضيات 

 الوستخلص:

افحشضىا ان المفحشس مغ مشض مؼذن في الفشيسة. -في هزا البحث بحثىا ومىرج حصاد الفشيسة      

المفحشس يحغزي ػلً الفشيسة المصابة فقظ اػحمادا ػلً دالة هىلىل مه الىىع الثاوي. وجــىد, وحذاوية و 

حــــذود الحل للىمىرج المقحشح بحثــث. جحليـــلات الاسحقشاسية المحليـة للىمىرج وىقشث. الششوط 

يكية الشاملة للىمىرج دسسث جحليليا الضشوسية والكافية للاصشاس في الىمىرج وجذت. واخيشا الذيىام

 وػذديـــا. لاحظىـــا بأن الىمىرج قيذ الذساسة يمحلل اوـــىاع مخحلفة مه السلىك الذيىاميكي بضمىها الفىضً.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


