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On 3 Monotone Approximation by Piecewise Positive 

Functions 
 

  

 

 

 

 

 
 

 

Abstract.  

        

        In 2005 Halgwrd [3], introduced a paper for ]1,1[Cf with  p1 , be 

a convex function, we are interested in estimating the degree of 3-monotone 

approximation for the function f , which are copositive on ]1,1[ . We obtained 

that f  and g  are piecewise positive in  1,1  in terms of the Ditzian-Totik 

modulus of smoothness . 

 

 

1. Introduction and auxiliary results. 
 

       Let  byyyaY ss  ...21 , 0s  . We denote by  sY0 , the set of 

all functions f , such that     01 


xf
ks

, for  1,  jj yyx , k0  s  . 

Functions f  and g , that belong to the same class  sY0  are said to be copositive 

on  ba,  . Copositive approximation is the approximation of a function f , from 

 sY0 , class by polynomials that are copositive with f  . Also , let 
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 be the degree of copositive polynomial 

approximation of f  .  

     We denote         banyynyynJ jnjjnjj ,,,   , 10  sj , 
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     Functions f  and g  are called weakly almost  copositive on I , with respect to 

sY  if they are copositive on  ,\ sn YOI  , where 0  . We define a function 

class         ,01:
0




xffYalm
ks

sn   ,\ sn YOIxfor  , the set of all 

weakly almost nonnegative functions on I , if 0  . 
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     The degree of weakly almost copositive polynomial approximation of f  in 

   sP YbaL 0,  , by means    snn Yalmp
0

   is  
Psn almYfE ,0  

    snnP
Yalmppf

0
:inf    . 

     These results can be summarized in the following theorem ( see [5] and [8] ) . 

 

Theorem A. 
         

       There are functions 1f  and 2f  in  1,11 C , with 1r , sign changes such that  
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,  p1 ,  

where  
Pn rfE ,0  is the degree of the best copositive PL  ( C  if p  ), 

approximation to f , by polynomials from n  . 

      Recently , Y. Hu , D. Leviatan and X. M. Yu [6], showed that theorem A can 

be considerably improved , thus together with theorem A, revealing an interesting 

and unexpected difference between the cases p , and  p1 , for 

copositive polynomial approximation . Their result is stated as follows . 

 

Theorem B. 
        

       Let  1,1Cf , change sign r , times at 1...1 1  ryy , and let 

 ii
ri

yy 


1
0
min , where 1y  and 11 ry  . Then there exists a constant 

 ,rCC  , but otherwise independent of f  and n , such that for each 14  n , 

there is a polynomial Cnnp  , copositive with f ,   

 satisfying  

                          
 

    1.1.1,1,, 1

21,1
 



nfCpf
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      In [2] Bhaya , E. and other , showed that in the second result 2  in (1.1) can 

not replaced by   
Pbaabf ,,,3  , for 10  p , i.e., she proved .  

  

Theorem C.  
     

        Given any 0A , 
~

n , 0a , b0 , 10  p   and 20   , there 

exists f  in    sP YbaL 0,  , such that 

                                2.1.,,,, 3

0
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    The second result in [2], shows that  -modulus of any order 0k  can be used 

for 10  p  . 

 

 

Theorem D.  
   

      Let f in    sP YbaL 0,  , 10  p , and k  be a positive integer . Then there 

exists a polynomial 1kp  in    snk Yalm
0

1    , satisfying 

    
PkPn baabfpcPf ,,,    .  

 

 

2. The main results 
     

       We will modify this polynomial near the points of sign change obtaining a 

smooth piecewise polynomial approximation nf , with controlled first and third 

derivatives . We will consider i  that  its convexity at  iii yyy ,,  with f  .  

 

Theorem 2.1 
 

       Let f  in    sP YbaL 0,   . Then for each 14  n , there exists a function 

nf  in     sYS 03 1,1   , copositive with f  in i

k
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   , such that  
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 , for  4.2,x  

where   sYS 0  is the set of all piecewise positive .   

Proof. Let 14  n , and index ki 1 , be fixed . For  ix , we set i  to be 

the polynomial of degree 2 , which vanishes at iy , 
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where  ii y  and  ii y   are chosen so that  
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       If   0iyf , then   iyf sgn , equals the sign f  on  ii yy ,1  . Since 

2i , and  ii y  and  ii y  , have opposite signs , then the only  zero of i  

in  i  is iy  . 

      Hence , i  is copositive with f  in  i  . Also , the first derivative of i , 
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are of the same sign , which implies that i  , does not change sign in  

i , and for any ix   . 
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From [3], we have  
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      It is well known ( see proof of Lemma 8 in [7] ), that there exists a polynomial 

 xQn , of degree n , which is a polynomial of  best approximation to f  in 

 1,1 , and satisfying  
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      Now , we define the piecewise polynomial function    1,1CxS , as follows  
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Finally , the function  
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  , and indeed nf , coincides with i  in  
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   Also , let us introduce the following auxiliary proposition . 
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Proposition 2.9 
         

        If f̂  in    1,11,13  PLC   is such that      Mxfx  32
3
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where the constant C , depends only on k  and p  . 

Proof. Note that (2,10) is trivial ( see [1] theorem 3.2.1 ) . In (2.11) is valid  since 

 1,1x , then from [1], we get  

                           
   1,11,1

ˆ2ˆ



PP L

n
L

nn pf
n

pfx   

                                                       
P

nf
n

C 1,1,,ˆ
2 1

2    .   

     Now , let us introduce the following theorem as a main result  

 

 

Theorem 2.12 
         

        Let f  in    sP YbaL 0,  , change sign 1k , times at kyy  ...1 1  

1 , and let ii
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min , where 1y  and 11 ky  . Then there exists a 

constant C , such that for each Cn  , there is a function g  in    sP YbaL 0,  , 

copositive with f , and satisfying  
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  Also , let nf  in     sYS 03 1,1    be a function which was described  
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in theorem 2.1 . (3.9) can be written as  
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      It follows from proposition 2.9, that there exists a polynomial Np  N , best 

approximation to nf  and satisfies (2.7), such that    
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