Page 209-221

The inverse of operator matrix A where $A \ge I$ and A > 0

Mohammad Saleh Balasim Department of Mathematics, Collage of Science, AL-Mustansiryah University, Baghdad, Iraq

> محمد صالح بلاسم قسم الرياضيات،كلية العلوم،الجامعه المستنصريه،بغداد،العراق

> > الخلاصة

ليكن كل من H,K فضاء هلبرت وليكن H \oplus هو الضرب الديكارتي لهما وليكن H,K فلبكن كل من H,K فلبرت وليكن B(K,H),B(H,K) B(K),B(H),B(H),B(H) فضاءات باناخ لكل المؤثرات المقيده (المستمره) على H,K, H \oplus K ، ومن H الى H ومن H الى K على الترتيب في هذا البحث سنجد معكوس مصفوفة المؤثر $\mathbf{B} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{C} & \mathbf{E} \end{bmatrix}$ ومن B(H),C \mathbf{E} (K,H),D \mathbf{E} (H,K),E \mathbf{E} (K) حيث أن B(H),C \mathbf{E} (K,H),D \mathbf{E} (H,K),E \mathbf{E} (K) موافق المؤثر $\mathbf{B} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{C} & \mathbf{E} \end{bmatrix}$ وأن $\mathbf{H} = \mathbf{E} = \mathbf{A}$

ABSTRACT

Let H and K be Hilbert spaces and let $H \bigoplus K$ be the cartesian product of them.Let $B(H),B(K),B(H \bigoplus K),B(K,H),B(H,K)$ be the Banach spaces of bounded(continuous) operators on $H,K,H \bigoplus K$,and from K into H and from H into K respectively.In this paper we find the inverse of operator matrix $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B(H \bigoplus K)$ where $B \in B(H)$, $C \in B(K,H)$, $D \in B(H,K)$, $E \in B(K)$ and $A \ge I_{H \oplus K}$, A > 0 where $I_{H \oplus K}$ is the identity operator on $H \bigoplus K$

Introduction

Let <,> denotes an inner product on a Hilbert space, and we will denote Hilbert spaces by H, K, H_i, K_i and $H \oplus K$ denotes the Cartesian product of the Hilbert spaces H, K ,and B(H) ,B(H + K),B(K,H), be the Banach spaces of bounded(continuous) operators on H, $H \oplus K$, and from Κ into Η respectively[see2]. The inner product on $H \oplus K$ is define by: $< (x, y), (w, z) \ge < x, w > + < y, z > x, w \in H, y, z \in K$ we say that A is positive operator on H and denote that by $A \ge 0$ if $\langle Ax, x \rangle \geq 0$ for all x in H, and in this case it has a unique positive square root , we denote this square root by \sqrt{A} [see2], it is easy to check that A is invertible if and only if \sqrt{A} is invertible. A^{*} denotes the adjoint of A and I_H denotes the identity

operator on the Hilbert space H.We define the operator matrix $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K, L \oplus M)$ where $B \in B(H, L)$, $C \in B(K, L)$, $E \in B(H, M)$, $D \in B(K, M)$ as following $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} Bx + Cy \\ Ex + Dy \end{bmatrix}$, where $\begin{pmatrix} x \\ y \end{pmatrix} \in H \oplus K$, and similar for the case $m \times n$ operator matrix [see 1&3&6]. If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ then $A^* = \begin{bmatrix} B^* & E^* \\ C^* & D^* \end{bmatrix}$. If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ then $A^* = \begin{bmatrix} B^* & E^* \\ C^* & D^* \end{bmatrix}$. If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \ge 0$ then A is a self- adjoint and so has the form $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix}$ and similar for the case $n \times n$ operator matrix [see 1&3]. For related topics[see 7&8]. For elementary facts about matrices [see5 & 9] and for elementary facts about Hilbert spaces and operator theory [see 2&6].

Remark:

we will sometimes denote $I_{H\oplus K}$ (the identity on $H\oplus K$)or I_H (the identity on H)or I_K (the identity on K) or any identity operator by I, and also we will sometimes denote any zero operator by 0

1)Preliminaries:

Proposition1.1.:

Let $T \in B(H, K)$ then

1)if $T^*T \ge I$ and $TT^* \ge I$ then T is invertible,

2) if T is self-adjoint, $T^2 \ge I$ then T is invertible,

3) if $T \ge 0$ then T is invertible if and only if \sqrt{T} is invertible, and in this case we have $(\sqrt{T})^2)^{-1} = ((\sqrt{T})^{-1})^2$,

4) if T is self-adjoint then T is invertible from right if and only if it is invertible from left,

5) if $T \ge I$ then T is invertible,

6) if $T \ge 0$ and it is invertible then $T^{-1} \ge 0$, and in this case we have $\sqrt{T^{-1}} = (\sqrt{T})^{-1}$

7) $T \ge I$ if and only if $0 \le T^{-1} \le I$.

Proof:

1)see[2]p.156 2)from 1)

3) if T is invertible then there exists an operator S such that ST = TS = I, so $(S\sqrt{T})\sqrt{T} = \sqrt{T}(\sqrt{T}S) = I$ i.e. \sqrt{T} is invertible. Conversely if \sqrt{T} is invertible then there exists an operator R such that $R\sqrt{T} = \sqrt{T} R = I$, so I = I I = I. $(\sqrt{T}R)(\sqrt{T}R) = \sqrt{T}(R\sqrt{T})R = \sqrt{T}(\sqrt{T}R)R = TR^2 = R^2T$, hence T is invertible, and in this case we have $(\sqrt{T})^2)^{-1} = T^{-1} = R^2 = ((\sqrt{T})^{-1})^2$. 4) if T is self-adjoint then $T = T^*$, but T is invertible from right if and only if T^* is invertible from left. 5) if $T \ge I$ then $T \ge 0$, so \sqrt{T} exists and it is self-adjoint and $(\sqrt{T})^2 \ge I$.so \sqrt{T} is invertible and hence T is invertible. 6) if $T \ge 0$ and then $(Tx, x) \ge 0.so$ it is invertible $\langle TT^{-1}x, T^{-1}x \rangle \ge 0$. i.e. $\langle x, T^{-1}x \rangle \ge 0, \forall x$. Hence $T^{-1} \ge 0$.Now $\sqrt{I} = I$, because $\sqrt{I} \cdot \sqrt{I} = I$, and $I \cdot I = I$, but the positive square root is unique(see[2]p.149) so $\sqrt{I} = I$ and since $T \ge 0$, $T^{-1} \ge 0$, $T^{-1}T = I \ge 0$, we have $\sqrt{T^{-1}}\sqrt{T} = \sqrt{T^{-1}T}$ (see[2]p.149), so $\sqrt{T^{-1}}\sqrt{T} = \sqrt{I} = I$.hence $\sqrt{T^{-1}} = \left(\sqrt{T}\right)^{-1} .$ 7) if $T \ge I$ then $T \ge 0$ and it is invertible .so[from 6)] we have $T^{-1} \ge 0$.Now $T^{-1} \ge 0$ & $T^{-1} \ge 0$ & $T^{-1}(T-I) = (T-I) T^{-1}$ $T^{-1}(T-I) = T^{-1}T - T^{-1} = I - T^{-1}$ [because and $(T-I) T^{-1} = T T^{-1} - T^{-1} = I - T^{-1}$].So, $T^{-1}(T-I) \ge 0$ (see[2]p.149) ,hence $T^{-1} \leq I$. D Conversely if $0 \leq T^{-1} \leq I$ then [from 6)]we have $T \ge 0$ but $I - T^{-1} \ge 0$ and $T(I - T^{-1}) = (I - T^{-1})T$, so $T(I - T^{-1}) \ge 0$, hence $T \ge I$.

Proposition1.2:

1) if
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge 0$$
 then $C=D^*$ and $B\ge 0$ & $E\ge 0$
2) if $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge I$ then $C=D^*$ and $B\ge I$ & $E\ge I$
3) if $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \le I$ then $C=D^*$ and $B\le I$ & $E\le I$

Proof:

1)see[1]p.18.□

2) if $A \ge I$ then $A - I \ge 0$ but $I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$, so $\begin{bmatrix} B & C \\ D & E \end{bmatrix} - \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} B - I & C \\ D & E - I \end{bmatrix} \ge 0$. Then from 1) we have that $C = D^*$, $B - I \ge 0, E - I \ge 0$ i.e. $B \ge I \& E \ge I.n$ 3) Similar to 2)

Proposition1.3.:

if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible, $A \ge I$ then B,E are invertible

Proof:

from Proposition 1.2. 2) we have $B \ge I \& E \ge I$, so B, E are invertible. To show that the converse is not true we need the following theorem from [1]p.19:-

Theorem1.4.:

Let $B \in B(H), E \in B(K), C \in B(K,H)$ such that $B \ge 0$ & $E \ge 0$ then: $\begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge 0$ if and only if there exists a contraction $X \in B(K,H)$ such that $C = \sqrt{B} X \sqrt{E}$.

Now the following example show that the converse of proposition 1.3. is not true

Example1.5:

Let $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$, so $B=2 \ge 1, E=2 \ge 1$ and they are invertible but A is not invertible[since det A=0]. Note that $A \ge 0$ [since $C=2=\sqrt{2}\sqrt{2}=\sqrt{B} X\sqrt{E}$ where X = 1, hence $|X| \le 1$], but $A \not\ge I$ [since $A - I = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, and if $\exists X$ such that $2=\sqrt{1} X\sqrt{1}$, so X = 2, hence $|X| \le 1$ i.e. $A - I \not\ge 0$, hence $A \not\ge I$].

Remark1.6.:

it is easy to check that:

1) if **A** is invertible $\mathbf{m} \times \mathbf{n}$ operator matrix (i.e. $\exists an n \times m$ operator matrix $B \le t.AB = I_m \& BA = I_m$

Where $I_m \& I_n$ are the $m \times m \&$ the $n \times n$ identity operator matrices respectively) and if matrix C results from A by interchanging two rows(columns) of A then C is also invertible.

2)if two rows(columns) of an $m \times n$ operator matrix A are equal then A is not invertible.

3) if a row(column) of an $m \times n$ operator matrix A consists entirely of zero operators then A is not invertible.

4) $A = \begin{bmatrix} B & 0 \\ 0 & E \end{bmatrix}$ is invertible if and only if B,E are invertible, and in this case $A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & E^{-1} \end{bmatrix}$.

Remark1.7.:

from remark1.6. 1) we can conclude : if $\mathbf{A} = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in \mathbb{B}(\mathbf{H} \oplus \mathbf{K}, \mathbf{L} \oplus \mathbf{M})$ then $\mathbf{A} = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} C & B \\ E & D \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix}$ is invertible. 2) The inverse of a 2 × 2 operator matrix A where A≥I

Theorem2.1.:

$$\begin{split} \text{1)if } A &= \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq I \text{ then } B, E, B - CE^{-1}C^*, E - C^*B^{-1}C \text{ are invertible} \\ \text{and } A^{-1} &= \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix} \\ \text{In } & \text{fact } & :2)\text{if } A &= \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq I & \text{then } \\ B &\geq I, E \geq I, B - CE^{-1}C^* \geq I, E - C^*B^{-1}C \geq I & \text{Proof } 1) & \text{if } \\ A &= \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq I & \text{then } A & \text{is invertible}[\text{proposition1.1.5})] & \text{and } \\ B &\geq I, E \geq I[\text{proposition1.2.2}] \text{ ,so } B, E \text{ are invertible } [\text{proposition1.1.5})] \end{aligned}$$

 $A^{-1} = \begin{bmatrix} J & G \\ G^* & F \end{bmatrix}$ i.e. $AA^{-1} = I = \begin{bmatrix} I_H & 0 \\ 0 & I_H \end{bmatrix}$ let Now, then $I \ge 0, F \ge 0$ since $A^{-1} \ge 0$. And $i)BJ + CG^* = I_H, ii)BG + CF = 0, iii)C^*J + EG^* = 0, iv)C^*G + EF = I_K.$ So from iii) we have IC + GE=0.So, $G = -ICE^{-1} = -B^{-1}CF$. Then we have from iv) that i.e. $\mathbf{E} - \mathbf{C}^* \mathbf{B}^{-1} \mathbf{C}$ is $(E - C^*B^{-1}C)F = I_K$ invertible $F = (E - C^*B^{-1}C)^{-1}$ and from i) we have $[(B - CE^{-1}C^*)=I_H$, so $B - CE^{-1}C^*$ is invertible, and $\mathbf{J} = (\mathbf{B} - \mathbf{C}\mathbf{E}^{-1}\mathbf{C}^*)^{-1}, \mathbf{G} = -(\mathbf{B} - \mathbf{C}\mathbf{E}^{-1}\mathbf{C}^*)^{-1}\mathbf{C}\mathbf{E}^{-1} = -\mathbf{B}^{-1}\mathbf{C}(\mathbf{E} - \mathbf{C}^*\mathbf{B}^{-1}\mathbf{C})^{-1}$ it is clear that, $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$ Then

2) if
$$A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$$
 then
 $0 \le A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix} \le I$

,so from proposition 1.2.1&3)We have $0 \le (B - CE^{-1}C^*)^{-1} \le I, 0 \le (E - C^*B^{-1}C)^{-1} \le I$, then from proposition 1.1.7) $B - CE^{-1}C^* \ge I, E - C^*B^{-1}C \ge I$,

also from proposition 1.2.2) We have that $B \ge I \& E \ge I$.

Remark2.2.:

it is easy to check that if $B, E, B - CE^{-1}C^*, E - C^*B^{-1}C$ are invertible then $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible and $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$.

Remark2.3.:

$$\begin{split} & \text{since} \quad (B - CE^{-1}C^*)^{-1}CE^{-1} = B^{-1}C(E - C^*B^{-1}C)^{-1}, \text{and} \quad \text{since} \\ A &= \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq I \quad \text{,hence} \quad A - I \geq 0 \quad \text{and} \; A \geq 0, \text{therefore} \quad \text{there} \quad \text{exists} \; \text{ a} \\ & \text{contraction X and a contraction Y such that} \\ C &= \sqrt{B} \; X\sqrt{E} \; = \sqrt{B - I} \; Y\sqrt{E - I} \\ & \text{then we have alternative forms of} \; A^{-1} \; \text{such:} \\ & 1) \; A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -B^{-1}C(E - C^*B^{-1}C)^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix} \text{or} \\ & 2)A^{-1} = \begin{bmatrix} (\sqrt{B})^{-1}(I - XX^*)^{-1}(\sqrt{B})^{-1} & -(\sqrt{B})^{-1}(I - XX^*)^{-1}X(\sqrt{E})^{-1} \\ -(\sqrt{E})^{-1}X^*(I - XX^*)^{-1}(\sqrt{B})^{-1} & (\sqrt{E})^{-1}(I - X^*X)^{-1}(\sqrt{E})^{-1} \end{bmatrix} \dots \text{etc.} \end{split}$$

Remark2.4.:

the second form of A^{-1} above show that $I - XX^*$, $I - X^*X$ are invertible and this is easy to check.

Remark2.5.:

we know that if a ,c , e are complex numbers(the complex number is a special case of an operator) and

$$A = \begin{bmatrix} b & c \\ c^* & e \end{bmatrix} \text{ where } c^* \text{ is the conjugate of c then } A^{-1} = \begin{bmatrix} c & c \\ be - |c|^2 & be - |c|^2 \\ -c^* & b \\ be - |c|^2 & be - |c|^2 \end{bmatrix}$$

but from above:

$$\begin{split} A^{-1} &= \begin{bmatrix} (b - ce^{-1}c^*)^{-1} & -(b - ce^{-1}c^*)^{-1}ce^{-1} \\ -e^{-1}c^*(b - ce^{-1}c^*)^{-1} & (e - c^*b^{-1}c^*)^{-1} \end{bmatrix} = \\ \begin{bmatrix} \frac{1}{b - \frac{|c|^2}{e}} & -\frac{1}{b - \frac{|c|^2}{e}}c\frac{1}{e} \\ -\frac{1}{e}c^*\frac{1}{b - \frac{|c|^2}{e}} & \frac{1}{e - \frac{|c|^2}{b}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{e}{be - |c|^2} & \frac{-c}{be - |c|^2} \\ \frac{-c^*}{be - |c|^2} & \frac{b}{be - |c|^2} \end{bmatrix} . \end{split}$$

Remark2.6.:

of course we can generalize the 2 × 2 case to the n × n case by iteration. For example: if $A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix} \ge I$, then $A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} & \begin{bmatrix} D \\ G \end{bmatrix} \\ \begin{bmatrix} D \\ C^* & E \end{bmatrix} & \begin{bmatrix} D \\ G \end{bmatrix} \\ \begin{bmatrix} D \\ G \end{bmatrix}^* & F \end{bmatrix}$, and we can first find the inverse of $\begin{bmatrix} B & C \\ C^* & F \end{bmatrix} \ge I$, then find the inverse of A.

Remark2.7.:

there is no general relation between the invertibility of $A = \begin{bmatrix} B \\ D \end{bmatrix} \begin{bmatrix} C \\ E \end{bmatrix}$ and the invertibility of B, C, D, E, and all the 32 cases can be hold, for example 1) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not invertible but B, C, D, E are invertible 2) $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ is invertible and also B, C, D, E are invertible 3) $A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \end{bmatrix}$ is not invertible [sincedet A=0]andB = $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not invertible, but $C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $E = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ are invertible. And so on. of course, $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} C & B \\ E & D \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} C & B \\ C & B \end{bmatrix}$ is invertible, is useful here

3) The inverse of a 2×2 operator matrix A where A > 0In this section we generalize the results of $A \ge I$ to A > 0.

Theorem 3.1.:

if $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible then so are B&D. Proof: $C = \sqrt{B} X \sqrt{D}$, $C^* = \sqrt{D} X^* \sqrt{E}$ and $\exists M = \begin{bmatrix} E & G \\ G^* & F \end{bmatrix}$ s.t. $AM = I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$ then $BE + \sqrt{B} X \sqrt{D}G^* = I$, $\sqrt{D} X^* \sqrt{B}G + DF = I$.Hence, $\sqrt{B} (\sqrt{B} E + X \sqrt{D}G^*) = I$, $\sqrt{D} (X^* \sqrt{B}G + \sqrt{D} F) = I$.So, \sqrt{B} , \sqrt{D} are invertible ,then B, D are invertible

Remark 3.2.:

the converse of theorem 3.1.is not true as we can see by the following example.

Example 3.3.:

let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} > 0$ (since $C = 1 = \sqrt{1} X \sqrt{1}$ where X = 1 and ||X|| = |1| = 1so A > 0), then B = 1, D = 1 are invertible but A is not an invertible (det A = 0).

Remark 3.4.:

if **A** is not positive then it is may be that $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{E} & \mathbf{D} \end{bmatrix}$ is an invertible but **B**, **D** are not , as we can see by the following example.

Example 3.5.:

let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then A is not positive $(C = 1 \neq \sqrt{B} X \sqrt{D} = 0)$ and A is an invertible (detA $\neq 0$) but B = 0, D = 0 are not invertible.

The main result in this section is the following:

Theorem 3.6.:

 $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0 \text{ is an invertible if and only if } B, D, B - CD^{-1}C^*, D - C^*B^{-1}C$ are invertible, and in this case we have: $A^{-1} = \begin{bmatrix} (B - CD^{-1}C^*)^{-1} & -(B - CD^{-1}C^*)^{-1}CD^{-1} \\ -D^{-1}C^*(B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \end{bmatrix}.$ Proof: \Rightarrow)If $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible $A^{-1} > 0$ so let $A^{-1} = \begin{bmatrix} E & G \\ G^* & F \end{bmatrix}$ then i)BE + CG^* = I, ii) BG + CF = 0, iii)C^*E + DG^* = 0, iv)C*G + DF = I, then we have $G = -ECD^{-1} = -B^{-1}CF$. Hence $E(B - CD^{-1}C^*) = I$, i.e. $B - CD^{-1}C^*$ is an invertible and $E = (B - CD^{-1}C^*)^{-1}.$ $(D - C^*B^{-1}C)F = I$, i.e. $D - C^*B^{-1}C$ is an invertible and $F = (D - C^*B^{-1}C)^{-1}$. Then it is clear that $A^{-1} = \begin{bmatrix} (B - CD^{-1}C^*)^{-1} & -(B - CD^{-1}C^*)^{-1}CD^{-1} \\ -D^{-1}C^*(B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \end{bmatrix}.$ \Leftrightarrow)if we let $M = \begin{bmatrix} (B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \\ -D^{-1}C^*(B - CD^{-1}C^*)^{-1} & (D - C^*B^{-1}C)^{-1} \end{bmatrix}$ then it is easy to check that AM = I i.e. $M = A^{-1}$ \square From the proof of theorem 3.6 we can prove that

Theorem 3.7.:

if B&D are invertible then $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \bigoplus K, L \bigoplus M) \text{ is an invertible if and only if}$ $B - CD^{-1}E, D - EB^{-1}C \text{ are invertible and in this case we have}$ $A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -(B - CD^{-1}E)^{-1}CD^{-1} \\ -(D - EB^{-1}C)^{-1}EB^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix} \in B(L \bigoplus M, H \bigoplus K)$ Proof: Similar to proof of theorem 3.6..

Remark 3.8.:

Also we can get the following alternative forms of
$$A^{-1}$$

1) $A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -B^{-1}C(D - EB^{-1}C)^{-1} \\ -(D - EB^{-1}C)^{-1}EB^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}$.
2) $A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -(B - CD^{-1}E)^{-1}CD^{-1} \\ -D^{-1}E(B - CD^{-1}E)^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}$.

3)
$$A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -B^{-1}C(D - EB^{-1}C)^{-1} \\ -D^{-1}E(B - CD^{-1}E)^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}$$

Remark 3.9.:

 $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I \text{ is special case of } A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0 \text{ (because } A \ge I > 0 \text{). And if } A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I \text{ then it is necessary that } A \text{ is invertible then } B, D, B - CD^{-1}C^*, D - C^*B^{-1}C \text{ are invertible , in fact } B \ge I, D \ge I, B - CD^{-1}C^* \ge I, D - C^*B^{-1}C \ge I, \text{ (and hence they are invertible). And if they are invertible then } A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \text{ is an invertible. So we may ask the following question : }$

Question 3.10.:

is it true that if $B \ge I$, $D \ge I$, $B - CD^{-1}C^* \ge I$, $D - C^*B^{-1}C \ge I$ then $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I$?

But the following example show that this is not true:-

Example 3.11.:

$$A = \begin{bmatrix} 5 & 4.1 \\ 4.1 & 5 \end{bmatrix} \text{ then } B \ge 1 \text{ , } D \ge 1 \text{,}$$

$$B - CD^{-1}C^* = B - \frac{|C|^2}{D} = 5 - \frac{16.81}{5} = 1.638 \ge 1 \text{,}$$

$$D - C^*B^{-1}C = D - \frac{|C|^2}{B} = 5 - \frac{16.81}{5} = 1.638 \ge 1 \text{ but},$$

$$A = \begin{bmatrix} 5 & 4.1 \\ 4.1 & 5 \end{bmatrix} \ge \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ if and only if } \begin{bmatrix} 4 & 4.1 \\ 4.1 & 4 \end{bmatrix} \ge 0 \text{ but this is not}$$

true(because it is true if and only if there exists X , $|X| \le 1$ such that

$$4.1 = \sqrt{4} X \sqrt{4} \text{,but then}$$

$$|X| = \frac{4.1}{4} > 1 \text{,a contradiction}.$$

Remark3.12:

If $T \in B(H, K)$ then it is easy to check T is an invertible if and only if $T^*T \in B(H, H)$ & $TT^* \in B(K, K)$ are invertible and in this case we have $T^{-1} = (T^*T)^{-1}T^* = T^*(TT^*)^{-1}$ Also from [2] we have:

i) $T^*T \ge 0$ and $TT^* \ge 0$

ii) $T \neq 0$ if and only if $T^*T \neq 0$ if and only if $T^*T \neq 0$ so we have that

T is an invertible if and only if $T^*T > 0 \& TT^* > 0$ are invertible and in this case we have $T^{-1} = (T^*T)^{-1}T^* = T^*(TT^*)^{-1}$. Hence we can use this fact to find the inverse of $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ (if it exists) by first find the inverses of $AA^* > 0 \& A^*A > 0$ and use them to find the inverse of A, so

Theorem3.13:

 $\begin{aligned} A &= \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K, L \oplus M) \text{ is an invertible if and only if} \\ 1)a &= BB^* + CC^* 2) b = EE^* + DD^* 3)c = a - (BE^* + CD^*)b^{-1}(BE^* + CD^*)^* \\ 4)d &= b - (EB^* + DC^*)a^{-1}(EB^* + DC^*)^* 5) e = B^*B + E^*E & 6) f = C^*C + D^*D \\ 7)g &= e - (B^*C + E^*D)f^{-1}(B^*C + E^*D)^* \\ 8)h &= f - (C^*B + D^*E)e^{-1}(C^*B + D^*E)^* \\ are invertible and in this case we have \\ A^{-1} &= \begin{bmatrix} g^{-1}(B^* - (B^*C + E^*D)f^{-1}C^*) & g^{-1}(E^* - (B^*C + E^*D)f^{-1}D^*) \\ h^{-1}C^* - f^{-1}(C^*B + D^*E)g^{-1}B^* & h^{-1}D^* - f^{-1}(C^*B + D^*E)g^{-1}E^* \end{bmatrix} \\ &= \begin{bmatrix} (B^* - E^*b^{-1}(EB^* + DC^*))c^{-1} & E^*d^{-1} - B^*c^{-1}(BE^* + CD^*)b^{-1} \\ (C^* - D^*b^{-1}(EB^* + DC^*))c^{-1} & D^*d^{-1} - C^*c^{-1}(BE^* + CD^*)b^{-1} \end{bmatrix} \\ Proof: A is an invertible if and only if AA^* > 0 & A^*A > 0 are invertible if and only if a, b, c, d, e, f, g, h are invertible and we have \\ A^{-1} &= (A^*A)^{-1}A^* = \begin{bmatrix} g^{-1}(B^* - (B^*C + E^*D)f^{-1}C^*) & g^{-1}(E^* - (B^*C + E^*D)f^{-1}D^*) \\ h^{-1}C^* - f^{-1}(C^*B + D^*E)g^{-1}B^* & h^{-1}D^* - f^{-1}(C^*B + D^*E)g^{-1}E^* \end{bmatrix} \\ = A^*(AA^*)^{-1} \end{aligned}$

$$= \begin{bmatrix} (B^{*} - E^{*}b^{-1}(EB^{*} + DC^{*}))c^{-1} & E^{*}d^{-1} - B^{*}c^{-1}(BE^{*} + CD^{*})b^{-1} \\ (C^{*} - D^{*}b^{-1}(EB^{*} + DC^{*}))c^{-1} & D^{*}d^{-1} - C^{*}c^{-1}(BE^{*} + CD^{*})b^{-1} \end{bmatrix}$$

Remark3.14:

we can generalize theorem3.13 and find the inverse of the $m \times n$ operator matrix A by first we find the inverse of $AA^* > 0$ & $A^*A > 0$ by iteration as we did in remark2.6.then we find A^{-1} by the relation $A^{-1} = (A^*A)^{-1}A^* = A^*(AA^*)^{-1}$

REFERENCES

[1] **Balasim**, **M.S.** (1999), *completion of operator matrices*, thesis , university of Baghdad, collage of science , department of mathematics.

[2]**Berberian, S.K. 1976**,*Introduction to Hilbert space*, CHELESEA PUBLISHING COMPANY,NEW YORK,N.Y.

[3]Choi M.D, Hou j.and Rosehthal P. (1997), Completion of operator partial matrices to square-zero contractions, Linear algebra and its applications 2561-30 [4]Douglas R.G. (1966), On majorization, factorization and range inclusion of operators on Hilbert space. Proc.Amer.Math.Soc.17413-416

[5] Frank Ayres1962 , Matrices, Schaum outline series,

[6] Halmos ,P.R. 1982, *A Hilbert space problem book*, Van Nostrand princetron, Nj.

[7]**Heuser, H.J. 1982**, *Functional analysis*, John Wiley, New york

[7] Israel .A. B and. Greville .T. N. E, 2003. Generalized inverses: theory and applications, Sec. Ed., Springer,.

[8] KIM.A.H and KIM.I.H. 2006, ESSENTIAL SPECTRA OF QUASISIMILAR (p,k)-QUASIHYPONORMAL OPERATORS, Journal of Inequalities and Applications, Article ID 72641, Volume, Pages 1–7.

[9]**Kolman, B. 1988**, *Introductory linear algebra with applications*, 4th edition, Macmillan Publishing Company, New york, Collier Macmillan Publishers, London,

Page 222-229 ON A NEW SUBFAMILY OF MALTIVALENT FUNCTIONS WITH NEGATIVE COFFICIENTS

Waggas Glib Atshan Department of Mathematics Collage of Computer Science and Mathematics University of Al-Qadisiya Email: <u>Waggashnd@yahoo.com</u>

Abstract:

In the present paper, we establish a new subfamily of multivalent functions with negative coefficients. Sharp results concerning coefficients, distortion theorem and the radius of convexity for the class $WH_p(\alpha, \beta, \varepsilon)$ are obtained. Furthermore it is shown that the class $WH_p(\alpha, \beta, \varepsilon)$ is closed under convex linear combinations. The arithmetic mean is also obtained.

2000 Mathematics Subject Classification: Primary 30C45.

Key Words: