Page 209-221

The inverse of operator matrix A where A≥I and A

Mohammad Saleh Balasim Department of Mathematics,Collage of Science,AL-Mustansiryah University,Baghdad,Iraq

> **هحوذ صالح بالسن قسن الرياضيات,كلية العلوم,الجاهعه الوستنصريه,بغذاد,العراق**

> > **الخالصة**

ليكن كل من H,K فضاء هلبرت ولليکن~~X~~ن)404هو الضرب الديكارتي لهما وليكن
\n
$$
B(K,H),B(H,K) B(K),B(H),B(H\bigoplus K)
$$
\n
$$
\text{P}(K,H)\cdot B(K),B(H),B(H\bigoplus K)
$$
\n
$$
\text{P}(K,H)\cdot B(K),B(H)\cdot B(H\bigoplus K)
$$
\n
$$
\text{P}(H\bigoplus K) \cdot A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}
$$
\n
$$
\text{P}(H)\cdot C\cdot B(H),C\cdot B(H,K),D\cdot C\cdot B(H,K),E\cdot C\cdot B(K)
$$
\n
$$
\text{P}(H\bigoplus K) \cdot A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}
$$
\n
$$
\text{P}(H\bigoplus K) \cdot A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}
$$

ABSTRACT

 Let H and K be Hilbert spaces and let H⊕K be the cartesian product of them. Let $B(H), B(K), B(H \oplus K), B(K,H), B(H,K)$ be the Banach spaces of bounded(continuous) operators on H,K,H⊕K,and from K into H and from H into K respectively.In this paper we find the inverse of operator matrix $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ $\in B(H \oplus K)$ where $BeB(H)$, $CeB(K,H)$, $DeB(H,K)$, $E\in B(K)$ and A≥ $I_{H\oplus K}$, A> 0where $I_{H\oplus K}$ is the identity operator on H⊕K

Introduction

Let \leq , $>$ denotes an inner product on a Hilbert space, and we will denote Hilbert spaces by H, K, H_i K_i and H \oplus K denotes the Cartesian product of the Hilbert spaces H, K and $B(H)$, $B(H \oplus K), B(K,H)$, be the Banach spaces of bounded(continuous) operators on H, $H \oplus K$, and from K into H respectively[see2]. The inner product on $H \oplus K$ is define by: $\langle (x, y), (w, z) \rangle \ge \langle x, w \rangle + \langle y, z \rangle, x, w \in H, y, z \in K$ we say that A is positive operator on H and denote that by $A \ge 0$ if $f(x, x) \ge 0$ for all x in H,and in this case it has a unique positive square root ,we denote this square root by \overline{A} [see2], it is easy to check that **A** is invertible if and only if \sqrt{A} is invertible. A^{*} denotes the adjoint of A and I_H denotes the identity

operator on the Hilbert space H.We define the operator matrix $A = \begin{bmatrix} B & C \\ F & D \end{bmatrix} \in B(H \oplus K, L \oplus M)$ where $B \in B(H, L)$, $C \in B(K, L)$, $E \in B(H, M)$, D $\epsilon B(K,M)$ as following $A\begin{pmatrix}x\\ y\end{pmatrix} = \begin{bmatrix}B & C\\ E & D\end{bmatrix}\begin{pmatrix}x\\ y\end{pmatrix} = \begin{bmatrix}Bx + Cy\\ Ex + Dy\end{bmatrix}$, where $\begin{pmatrix}x\\ y\end{pmatrix} \in H \oplus K$, and similar for the case $m \times n$ operator matrix [see 1&3&6]. If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ then $A^* = \begin{bmatrix} B^* & E^* \\ C^* & D^* \end{bmatrix}$. If $A = \begin{bmatrix} B & C \\ R & D \end{bmatrix} \ge 0$ then A is a self- adjoint and so has the form $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix}$ and similar for the case $n \times n$ operator matrix [see 1&3]. For related topics[see 7&8]. For elementary facts about matrices [see5 &9] and for elementary facts about Hilbert spaces and operator theory [see 2&6].

Remark:

we will sometimes denote $I_{H\oplus K}$ (the identity on $H\oplus K$) or I_H (the identity on H) or I_K (the identity on K) or any identity operator by I , and also we will sometimes denote any zero operator by 0

1)Preliminaries:

Proposition1.1.:

Let $TeB(H,K)$ then

1) if $T^*T \geq I$ and $TT^* \geq I$ then T is invertible,

2)if T is self-adjoint, $T^2 \geq I$ then T is invertible,

3) if $T \ge 0$ then T is invertible if and only if \sqrt{T} is invertible, and in this case we have $(\sqrt{T})^2$ ⁻¹ = $((\sqrt{T})^{-1})^2$,

4)if T is self-adjoint then T is invertible from right if and only if it is invertible from left,

5)if $T \geq I$ then T is invertible,

6) if $T \ge 0$ and it is invertible then $T^{-1} \ge 0$, and in this case we have $\sqrt{T^{-1}} = (\sqrt{T})^{-1}$

7) $T \ge I$ if and only if $0 \le T^{-1} \le I$.

Proof: 1)see[2]p.156

2)from 1)

3) if T is invertible then there exists an operator S such that $ST = TS = I$, so $(S\sqrt{T})\sqrt{T} = \sqrt{T}(\sqrt{T}S) = I$ i.e. \sqrt{T} is invertible. Conversely if \sqrt{T} is invertible then there exists an operator R such that $R\sqrt{T} = \sqrt{T} R = I$, so $I = I$, $I =$ $(\sqrt{TR})(\sqrt{T}R) = \sqrt{T}(R\sqrt{T})R = \sqrt{T}(\sqrt{T}R)R = TR^2 = R^2T$, hence T is invertible, and in this case we have $(\sqrt{T})^2$ ⁻¹ = T⁻¹ = R² = $((\sqrt{T})^{-1})^2$. 4) if T is self-adjoint then $T = T^*$, but T is invertible from right if and only if T^* is invertible from left. \Box 5) if $T \ge I$ then $T \ge 0$, so \sqrt{T} exists and it is self-adjoint and $(\sqrt{T})^2 \ge I$, so \sqrt{T} is invertible and hence T is invertible. Δ 6)if $T \ge 0$ and it is invertible then $\langle Tx, x \rangle \ge 0$, so $\langle TT^{-1}x, T^{-1}x \rangle \ge 0$. i.e. $\langle x, T^{-1}x \rangle \ge 0, \forall x$. Hence $T^{-1} \ge 0$. Now \sqrt{I} =I,because $\sqrt{I} \cdot \sqrt{I} = I$ and $I \cdot I = I$, but the positive square root is unique(see[2]p.149) so $\sqrt{I} = I$ and since $T > 0$ $T^{-1} > 0$. $T^{-1}T = I > 0$ we have $\sqrt{T^{-1}}\sqrt{T} = \sqrt{T^{-1}T}$ (see[2]p.149),so $\sqrt{T^{-1}}\sqrt{T} = \sqrt{I}$ =I hence $\sqrt{T^{-1}} = (\sqrt{T})^{-1}$ ם. 7)if $T \ge 1$ then $T \ge 0$ and it is invertible .so[from 6)]we have $T^{-1} \ge 0$. Now $T^{-1} \ge 0$ $\& T - I \ge 0$ $& T^{-1}(T - I) = (T - I) T^{-1}$ [because $T^{-1}(T-I) = T^{-1}T - T^{-1} = I - T^{-1}$ and $(T-I)T^{-1} = T T^{-1} - T^{-1} = I - T^{-1}$].So, $T^{-1}(T-I) \ge 0$ (see[2]p.149), hence $T^{-1} \leq I$ a Conversely if $0 \leq T^{-1} \leq I$ then [from 6)]we have $T \ge 0$ but $I - T^{-1} \ge 0$ and $T(I - T^{-1}) = (I - T^{-1})T$, so $T(I - T^{-1}) \ge 0$, hence, $T \ge I$. \Box

Proposition1.2:

1) if
$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge 0
$$
 then C=D^{*} and B₂0 & E₂0
2) if $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge I$ then C=D^{*} and B₂ I & E₂I
3) if $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \le I$ then C=D^{*} and B $\le I$ & E $\le I$

Proof:

1)see[1]p.18.□

2)if $A \ge I$ then $A - I \ge 0$ but $I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$, so $\begin{bmatrix} B & C \\ D & F \end{bmatrix} - \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} B-I & C \\ D & F-I \end{bmatrix} \ge 0$. Then from 1) we have that $C=D^*$, $B - I \geq 0$, $E - I \geq 0$ i.e. $B \geq I$ & $E \geq I$.n 3)Similar to 2)

Proposition1.3.:

if
$$
A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}
$$
 is invertible, $A \ge I$ then B,E are invertible.

Proof:

from Proposition1.2. 2) we have $B \geq I \& E \geq I$, so B, E are invertible. To show that the converse is not true we need the following theorem from[1]p.19:-

Theorem1.4.:

Let B ϵ B(H),E ϵ B(K),C ϵ B(K,H) such that B \geq 0 & E \geq 0 then: $\begin{bmatrix} B & C \\ C^* & F \end{bmatrix} \ge 0$ if and only if there exists a contraction X $\epsilon B(K,H)$ such that $C = \sqrt{B} X \sqrt{E}$.

Now the following example show that the converse of proposition1.3. is not true

Example1.5:

Let $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$, so B=2≥1, E=2≥1 and they are invertible but A is not invertible[since det A=0].Note that $A \ge 0$ [since C=2= $\sqrt{2} \sqrt{2} = \sqrt{B} X \sqrt{E}$ where X =1,hence $|X| \le 1$, but $A \ge \lim_{n \to \infty} A - I = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, and if $\exists X$ such that $2=\sqrt{1}$ X $\sqrt{1}$, so X = 2, hence | X | ≤ 1 i.e. $A - I \geq 0$, hence $A \geq I$].

Remark1.6.:

it is easy to check that:

1)if \bf{A} is invertible $\bf{m} \times \bf{n}$ operator matrix (i.e. \exists an n × m operator matrix B s.t. AB = I_m &BA = I_n ,

Where $I_m \& I_n$ are the $m \times m \&$ the $n \times n$ identity operator matrices respectively) and if matrix C results from A by interchanging two rows(columns) of A then C is also invertible.

2) if two rows(columns) of an $m \times n$ operator matrix A are equal then A is not invertible.

3) if a row(column) of an $m \times n$ operator matrix A consists entirely of zero operators then A is not invertible.

4) $A = \begin{bmatrix} B & 0 \\ 0 & F \end{bmatrix}$ is invertible if and only if B,E are invertible, and in this $\case A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & E^{-1} \end{bmatrix}.$

Remark1.7.:

from remark1.6. 1) we can conclude :if $A = \begin{bmatrix} B & C \\ D & F \end{bmatrix}$ $\in B(H \oplus K, L \oplus M)$ then $A = \begin{bmatrix} B & C \\ D & F \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} C & B \\ F & D \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix}$ is invertible. **2)** The inverse of a 2×2 operator matrix A where A \geq I

Theorem2.1.:

1)if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$ then $B, E, B - CE^{-1}C^*, E - C^*B^{-1}C$ are invertible and $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$ In fact $:2$) if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq I$ then $B \ge I, E \ge I, B - CE^{-1}C^* \ge I, E - C^*B^{-1}C \ge I$ Proof 1) if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$ then A is invertible[proposition1.1.5)] and $B \geq I, E \geq I$ [proposition1.2.2)], so B,E are invertible [proposition1.1.5)]

Now, let $A^{-1} = \begin{bmatrix} J & G \\ G^* & F \end{bmatrix}$ i.e. $AA^{-1} = I = \begin{bmatrix} I_H & 0 \\ 0 & I_V \end{bmatrix}$,then $I \ge 0$, $F \ge 0$ since $A^{-1} \ge 0$. And i) $BJ + CG^* = I_H$, ii) $BG + CF = 0$, iii) $C^*J + EG^* = 0$, iv) $C^*G + EF = I_K$. So from iii) we have $\overline{C} + \overline{GE} = 0.$ So, $G = -ICE^{-1} = -B^{-1}CF$. Then we have from iv) that $(E - C^*B^{-1}C)F = I_K$ i.e. $E - C^*B^{-1}C$ is invertible $, F = (E - C^*B^{-1}C)^{-1}$ and from i) we have $[(B - CE^{-1}C^*)=I_H, so B - CE^{-1}C^*]$ is invertible, and $J = (B - CE^{-1}C^*)^{-1}$, $G = -(B - CE^{-1}C^*)^{-1}CE^{-1} = -B^{-1}C(E - C^*B^{-1}C)^{-1}$. Then it is clear that, $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$

$$
\begin{array}{l} \displaystyle 2) \text{ if } \displaystyle A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \geq I \text{ then} \\ \displaystyle 0 \leq \text{\mathbb{A}}^{-1} \displaystyle = \begin{bmatrix} (\texttt{B-CE}^{-1}\texttt{C}^*)^{-1} & -(\texttt{B-CE}^{-1}\texttt{C}^*)^{-1}\texttt{CE}^{-1} \\ -E^{-1}\texttt{C}^*(\texttt{B-CE}^{-1}\texttt{C}^*)^{-1} & (E-C'\texttt{B}^{-1}\texttt{C})^{-1} \end{bmatrix} \leq I \end{array}
$$

, so from proposition 1.2.1&3) We have $(B - CE^{-1}C^{*})^{-1} \leq I, 0 \leq (E - C^{*}B^{-1}C)^{-1} \leq I$. then from proposition1.1.7) $B - CE^{-1}C^* \ge I, E - C^*B^{-1}C \ge I,$ also from proposition 1.2.2) We have that $B \ge I \& E \ge I$.

Remark2.2.:

it is easy to check that if $B, E, B - CE^{-1}C^*, E - C^*B^{-1}C$ are invertible then $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible and $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}.$

Remark2.3.:

since $(B - CE^{-1}C^*)^{-1}CE^{-1} = B^{-1}C(E - C^*B^{-1}C)^{-1}$, and since $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$,hence $A - I \ge 0$ and $A \ge 0$, therefore there exists a contraction X and a contraction Y such that $C = \sqrt{B} X \sqrt{E} = \sqrt{B - I} Y \sqrt{E - I}$ then we have alternative forms of A^{-1} such: 1) $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -B^{-1}C(E - C^*B^{-1}C)^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$ or $2)A^{-1} = \begin{bmatrix} (\sqrt{B})^{-1}(I - XX^*)^{-1}(\sqrt{B})^{-1} & -(\sqrt{B})^{-1}(I - XX^*)^{-1}X(\sqrt{E})^{-1} \\ -(\sqrt{E})^{-1}X^*(I - XX^*)^{-1}(\sqrt{B})^{-1} & (\sqrt{E})^{-1}(I - X^*X)^{-1}(\sqrt{E})^{-1} \end{bmatrix} \dots \text{etc.}$

Remark2.4.:

the second form of A^{-1} above show that $I - XX^*$, $I - X^*X$ are invertible and this is easy to check.

Remark2.5.:

we know that if a ,c, e are complex numbers the complex number is a special case of an operator) and 'n h

$$
A = \begin{bmatrix} b & c \\ c^* & e \end{bmatrix}
$$
 where c^* is the conjugate of c then $A^{-1} = \begin{bmatrix} \frac{c}{be - |c|^2} & \frac{c}{be - |c|^2} \\ \frac{-c^*}{be - |c|^2} & \frac{b}{be - |c|^2} \end{bmatrix}$

but from above:

$$
A^{-1} = \begin{bmatrix} (b - ce^{-1}c^*)^{-1} & -(b - ce^{-1}c^*)^{-1}ce^{-1} \\ -e^{-1}c^*(b - ce^{-1}c^*)^{-1} & (e - c^*b^{-1}c)^{-1} \end{bmatrix} =
$$

$$
\begin{bmatrix} \frac{1}{b - \frac{|c|^2}{e}} & -\frac{1}{b - \frac{|c|^2}{e}}c\frac{1}{e} \\ -\frac{1}{e}c^*\frac{1}{b - \frac{|c|^2}{e}} & \frac{1}{e - \frac{|c|^2}{b}} \end{bmatrix}
$$

$$
= \begin{bmatrix} \frac{e}{be - |c|^2} & \frac{-e}{be - |c|^2} \\ -\frac{e^*}{be - |c|^2} & \frac{b}{be - |c|^2} \end{bmatrix} . D
$$

Remark2.6.:

of course we can generalize the 2×2 case to the $n \times n$ case by iteration. For example: if $A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & C^* & F \end{bmatrix} \geq I$, then $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} & \mathbf{D} \\ \mathbf{C}^* & \mathbf{E} & \mathbf{G} \\ \mathbf{D}^* & \mathbf{G}^* & \mathbf{F} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{C}^* & \mathbf{E} \end{bmatrix} & \begin{bmatrix} \mathbf{D} \\ \mathbf{G} \end{bmatrix} \\ \begin{bmatrix} \mathbf{D}^* & \mathbf{G}^* \end{bmatrix} & \mathbf{F} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf$ first find the inverse of $\begin{bmatrix} B & C \\ C^* & F \end{bmatrix} \geq I$, then find the inverse of A.

Remark2.7.:

there is no general relation between the invertiblity of $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ and the invertiblity of $\overline{B}, \overline{C}, \overline{D}, \overline{E}$, and all the 32 cases can be hold, for example 1) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not invertible but **B**, **C**, **D**, **E** are invertible 2) $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ is invertible and also **B**, **C**, **D**, **E** are invertible $3)$ A = $\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ is not invertible [sincedet $A=0$]and $B=\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not invertible, but $C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $E = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ are invertible. And so on. of course, $A = \begin{bmatrix} B & C \\ D & F \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} C & B \\ F & D \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} D & E \\ R & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} E & D \\ C & R \end{bmatrix}$ is invertible, is useful here

3) The inverse of a 2×2 operator matrix A where $A > 0$ In this section we generalize the results of $A \ge I$ to $A > 0$.

Theorem 3.1.:

if $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible then so are B&D. Proof: $C = \sqrt{B} X \sqrt{D}$, $C^* = \sqrt{D} X^* \sqrt{B}$ and $\exists M = \begin{bmatrix} E & G \\ G^* & F \end{bmatrix}$ s.t. $AM = I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$ then $BE + \sqrt{B} X \sqrt{D} G^* = I \sqrt{D} X^* \sqrt{B} G + DF = I$. Hence, $\sqrt{B}(\sqrt{B}E + X\sqrt{D}G^*) = I$, $\sqrt{D}(X^*\sqrt{B}G + \sqrt{D}F) = I$. So, \sqrt{B} , \sqrt{D} are invertible , then \bf{B} , \bf{D} are invertible

Remark 3.2.:

 the converse of theorem 3.1.is not true as we can see by the following example.

Example 3.3.:

let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} > 0$ (since $C = 1 = \sqrt{1} X \sqrt{1}$ where $X = 1$ and $||X|| = |1| = 1$ so $A > 0$), then $B = 1$, $D = 1$ are invertible but A is not an invertible (detA = 0).

Remark 3.4.:

if **A** is not positive then it is may be that $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$ is an invertible but **B**, **D** are not, as we can see by the following example.

Example 3.5.:

let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then A is not positive($C = 1 \neq \sqrt{B} X \sqrt{D} = 0$) and A is an invertible ($\text{det}A \neq 0$) but $B = 0$, $D = 0$ are not invertible.

The main result in this section is the following:

Theorem 3.6.:

 $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible if and only if **B**, **D**, **B** - **CD⁻¹C**^{*}, **D** - **C**^{*}**B**⁻¹**C** are invertible, and in this case we have: . Proof: \Rightarrow)If $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ is an invertible $A^{-1} > 0$ so let $A^{-1} = \begin{bmatrix} E & G \\ G^* & E \end{bmatrix}$ then i) $BE + CG^* = I$, ii) $BG + CF = 0$, iii) $C^*E + DG^* = 0$, $iv)C^*G + DF = I$, then we have $G = -ECD^{-1} = -B^{-1}CF$. Hence $E(B - CD^{-1}C^*) = I$, i.e. $B - CD^{-1}C^*$ is an invertible and $E = (B - CD^{-1}C^*)^{-1}$. $(D - C^*B^{-1}C)F = I$, i.e. $D - C^*B^{-1}C$ is an invertible and $F = (D - C^*B^{-1}C)^{-1}$. Then it is clear that . \Leftarrow)if we let $M = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix}$ and \therefore if $M = \begin{bmatrix} 1 & 2 & 5 \end{bmatrix}$ if then it is easy to check that $AM = I$ i.e. $M = A^{-1}$ From the proof of theorem 3.6 we can prove that

Theorem 3.7.:

 if B&D are invertible then $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \bigoplus K, L \bigoplus M)$ is an invertible if and only if $B - \overline{CD}^{-1}E$, $D - EB^{-1}C$ are invertible and in this case we have $A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -(B - CD^{-1}E)^{-1}CD^{-1} \\ -(D - EB^{-1}C)^{-1}EB^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix} \in B(L \bigoplus M, H \bigoplus K)$ Proof: Similar to proof of theorem 3.

Remark 3.8.:

Also we can get the following alternative forms of
$$
A^{-1}
$$

\n
$$
1)A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -B^{-1}C(D - EB^{-1}C)^{-1} \\ -(D - EB^{-1}C)^{-1}EB^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}
$$
\n
$$
2) A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -(B - CD^{-1}E)^{-1}CD^{-1} \\ -D^{-1}E(B - CD^{-1}E)^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}
$$

$$
3) A^{-1} = \begin{bmatrix} (B - CD^{-1}E)^{-1} & -B^{-1}C(D - EB^{-1}C)^{-1} \\ -D^{-1}E(B - CD^{-1}E)^{-1} & (D - EB^{-1}C)^{-1} \end{bmatrix}
$$

Remark 3.9.:

 $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \ge I$ is special case of $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} > 0$ (because $A \ge I > 0$).And if $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \geq I$ then it is necessary that A is invertible then B, $D,B - CD^{-1}C^*$, $D - C^*B^{-1}C$ are invertible, in fact $B \ge I$, $D \ge I$, $B - CD^{-1}C^* \ge I$, $D - C^*B^{-1}C \ge I$, (and hence they are invertible). And if they are invertible then $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix}$ is an invertible. So we may ask the following question :

Question 3.10.:

is it true that if $B \ge I$, $D \ge I$, $B - CD^{-1}C^* \ge I$, $D - C^*B^{-1}C \ge I$ then $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix} \geq I$?

But the following example show that this is not true:-

Example 3.11.:

$$
A = \begin{bmatrix} 5 & 4.1 \\ 4.1 & 5 \end{bmatrix}
$$
 then $B \ge 1$, $D \ge 1$,
\n
$$
B - CD^{-1}C^* = B - \frac{|C|^2}{D} = 5 - \frac{16.81}{5} = 1.638 \ge 1,
$$
\n
$$
D - C^*B^{-1}C = D - \frac{|C|^2}{B} = 5 - \frac{16.81}{5} = 1.638 \ge 1 \text{ but,}
$$
\n
$$
A = \begin{bmatrix} 5 & 4.1 \\ 4.1 & 5 \end{bmatrix} \ge \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
 if and only if $\begin{bmatrix} 4 & 4.1 \\ 4.1 & 4 \end{bmatrix} \ge 0$ but this is not true(because it is true if and only if there exists X, $|X| \le 1$ such that
\n
$$
4.1 = \sqrt{4}X\sqrt{4}
$$
, but then
\n $|X| = \frac{4.1}{4} > 1$, a contradiction).

Remark3.12:

If $T \in B(H,K)$ then it is easy to check T is an invertible if and only if $T^*T \in B(H, H)\& T T^* \in B(K, K)$ are invertible and in this case we have $T^{-1} = (T^*T)^{-1}T^* = T^*(TT^*)^{-1}$

Also from [2] we have:

 i) $T^*T \ge 0$ and $TT^* \ge 0$

ii) $T \neq 0$ if and only if $T^*T \neq 0$ if and only if $T^*T \neq 0$ so we have that

T is an invertible if and only if $T^*T > 0$ & $TT^* > 0$ are invertible and in this case we have $T^{-1} = (T^*T)^{-1}T^* = T^*(TT^*)^{-1}$. Hence we can use this fact to find the inverse of $A = \begin{bmatrix} B \\ E \\ D \end{bmatrix}$ (if it exists) by first find the inverses of $AA^* > 0$ & $A^*A > 0$ and use them to find the inverse of A,so

Theorem3.13:

 $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K, L \oplus M)$ is an invertible if and only if 1) $a = BB^* + CC^*$ 2) $b = EE^* + DD^*$ 3) $c = a - (BE^* + CD^*)b^{-1}(BE^* + CD^*)^*$ $4)$ d = b - (EB^{*} + DC^{*})a⁻¹(EB^{*} + DC^{*})^{*} 5) e = B^{*}B + E^{*}E 6) f = C^{*}C + D^{*}D 7) $g = e - (B^*C + E^*D)f^{-1}(B^*C + E^*D)^*$ 8) $h = f - (C^*B + D^*E)e^{-1}(C^*B + D^*E)^*$ are invertible and in this case we have
 $A^{-1} = \begin{bmatrix} g^{-1}(B^* - (B^*C + E^*D)f^{-1}C^*) & g^{-1}(E^* - (B^*C + E^*D)f^{-1}D^*) \\ h^{-1}C^* - f^{-1}(C^*B + D^*E)g^{-1}B^* & h^{-1}D^* - f^{-1}(C^*B + D^*E)g^{-1}E^* \end{bmatrix}$
 $= \begin{bmatrix} (B^* - E^*b^{-1}(EB^* + DC^*))c^{-1} & E^*d^{-1} - B^*c^{-1}(BE$ Proof: A is an invertible if and only if $AA^* > 0 \& A^*A > 0$ are invertible if and only if a, b, c, d, e, f, g, h are invertible and we have
 $A^{-1} = (A^*A)^{-1}A^* = \begin{bmatrix} g^{-1}(B^* - (B^*C + E^*D)f^{-1}C^*) & g^{-1}(E^* - (B^*C + E^*D)f^{-1}D^*) \\ h^{-1}C^* - f^{-1}(C^*B + D^*E)g^{-1}B^* & h^{-1}D^* - f^{-1}(C^*B + D^*E)g^{-1}E^* \end{bmatrix}$ $= A^*(AA^*)$ $= \begin{bmatrix} (B^* - E^*b^{-1}(EB^* + DC^*))c^{-1} & E^*d^{-1} - B^*c^{-1}(BE^* + CD^*)b^{-1} \\ (C^* - D^*b^{-1}(EB^* + DC^*))c^{-1} & D^*d^{-1} - C^*c^{-1}(BE^* + CD^*)b^{-1} \end{bmatrix}$

Remark3.14:

we can generalize theorem 3.13 and find the inverse of the $m \times n$ operator matrix A by first we find the inverse of $AA^* > 0 \& A^*A > 0$ by iteration as we did in remark2.6.then we find A^{-1} by the relation $A^{-1} = (A^*A)^{-1}A^* = A^*(AA^*)^{-1}$

REFERENCES

[1] **Balasim, M.S. (1999)**,*completion of operator matrices*, thesis ,university of Baghdad, collage of science , department of mathematics.

[2]**Berberian, S.K. 1976**,*Introduction to Hilbert space* ,CHELESEA PUBLISHING COMPANY,NEW YORK,N.Y.

[3]**Choi M.D, Hou j.and Rosehthal P**. **(1997),***Completion of operator partial matrices to square-zero contractions*,Linear algebra and its applications 2561-30 [4]**Douglas R.G. (1966),***On majorization,factorization and range inclusion of operators on Hilbert space* .Proc.Amer.Math.Soc.17413-416

[5]**Frank Ayres1962 ,***Matrices*,Schaum outline series,

[6] **Halmos ,P.R. 1982**,*A Hilbert space problem book*,Van Nostrand princetron,Nj.

[7]**Heuser, H.J. 1982,***Functional analysis*,John Wiley,New york

[7] Israel .A. B and. Greville .T. N. E, **2003**. Generalized inverses: theory and applications, Sec. Ed., Springer,**.**

[8] KIM.A.H and KIM.I.H. 2006, ESSENTIAL SPECTRA OF QUASISIMILAR (p,k)**-**QUASIHYPONORMAL OPERATORS**,** Journal of Inequalities and Applications, Article ID 72641, Volume, Pages 1–7**.**

[9]**Kolman, B. 1988 ,***Introductory linear algebra with applications* ,4th edition,Macmillan Publishing Company,New york, Collier Macmillan Publishers,London,

ON A NEW SUBFAMILY OF MALTIVALENT FUNCTIONS WITH NEGATIVE COFFICIENTS Page 222-229

Waggas Glib Atshan **Department of Mathematics Collage of Computer Science and Mathematics University of Al-Qadisiya Email: Waggashnd@yahoo.com**

Abstract:

 In the present paper, we establish a new subfamily of multivalent functions with negative coefficients. Sharp results concerning coefficients, distortion theorem and the radius of convexity for the class $WH_p(\alpha, \beta, \varepsilon)$ are obtained. Furthermore it is shown that the class $WH_p(\alpha, \beta, \varepsilon)$ is closed under convex linear combinations. The arithmetic mean is also obtained.

2000 Mathematics Subject Classification: Primary 30C45.

Key Words: