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Abstract: 

 
        In the present paper, we establish a new subfamily of multivalent functions 

with negative coefficients. Sharp results concerning coefficients, distortion 

theorem and the radius of convexity for the class   ,,pWH  are obtained. 

Furthermore it is shown that the class   ,,pWH is closed under convex linear 

combinations. The arithmetic mean is also obtained.  
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1. Introduction :    

 

      Let pW (p a fixed integer greater than 1) denote the class of functions of 

the form:  
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which are analytic and multivalent functions in the open unit disk 

 1:  zCzU  . Also let Hp denote the subclass of Wp consisting of 

functions of the form:  

 

Page 222-229 

   

 

mailto:Waggashnd@yahoo.com


Journal of Al-Qadisiyah for Computer Science and Mathematics 

3
nd

.  Sinentific Conference 19-20/ APRIL -2011 

Vol 3       No.2          Year 2011 

 

 222 









1

)(
n

pn

pn

p zazzf   , .,,0 INpna pn                       (1.2)  

 

A function pHf   is said to be in the class    ,,pWH  if and only if  
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Such type of study and study another different classes of univalent and 

multivalent functions was carried out by Aouf [1] caplinger [5], Gupte – Jain 

[6], Juneja – Mogra [7], Kulkarni [8], Atshan [2] and Atshan – Kulkarni [3,4].  

 

In the present paper, sharp results concerning coefficients, distortion theorem 

and the radius of convexity for the class   ,,pWH  are obtained. Finally, 

we prove that the class   ,,pWH  is closed under the arithmetic mean and 

convex linear combinations.  

 

2. Coefficient Theorem :   

 

Theorem 1:  

 

A function 
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The result (2.1) is sharp, the extermal function being  
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Proof: Let .1z Then 
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by hypothesis. Hence, by the maximum modulus theorem ).,,( pWHf    

 

Conversely, suppose that  
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Since zz )Re(  for all z, we have 
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     We select the values of z on the real axis so that pzzf  2)(  , pzzf  1)(  are 

real. Simplifying the denominator in the in the above expression and letting z 

1 through real values, we obtain  
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and it results in the required condition.  

The result is sharp for the function (2.2) . 
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3. Distortion Theorem:  

 

Theorem2: 

 

 Let ).,,( pWHf   Then for ,rz   
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Proof: 

 In view of Theorem 1 , we have 
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In the same way, we have  
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This complete the proof of the theorem.  

The above bounds are sharp. Equalities are attended for the following function  
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4. Radius of Convexity : 
  

Theorem 3:  

 
 Let ).,,( pWHf   Then f  is convex in the                

                     disk z < ),,,,( prr    where 
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The result is sharp, the extermal function being of the form (2.2).  

 

Proof: 
    It is enough to show that.  
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Thus, the result follows if  
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or, equivalently, 
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But, in view of Theorem 1, we have  
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Thus f is convex if   
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which complete the proof.  

 

5. Closure Theorem:  
 
        Next, two results respectively show that the family ),,( pWH  is 

closed under taking "arithmetic mean" and "convex linear combination".  

 

Theorem4: 
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Proof: 

      f and g both being members of ),,( pWH , we have in accordance with 

Theorem 1,  
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To show that h is member of ),,( pWH it is enough to show  
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This is exactly an immediate consequence of (5.1) and (5.2).  

 

Let the function )(zf j    ),...,2,1( j   be defined by  
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Theorem 5: 

 
    ),,( pWH  is closed under convex linear combination.  

 
Proof:  

      Let the function )2,1)(( jzf j    defined by (5.3) be in the class 

),,( pWH . It is sufficient to show that the function h(z) defined by  
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is in the class ),,( pWH .Since, for 10    ,  
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by applying Theorem 1, we have 
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which implies that h(z) is in the class ),,( pWH  and this completes the proof.  
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