Math Page 54 - 56

Nada. Z

Rate of approximation of K-monotone functions in $L_{\psi,p}(I)$ space , 0

Nada Zuhair Abd AL-Sada Department of Mathematics, College of education of Al-Qadisiyah University E-mail:Nadawee70@yahoo.com

Recived : 12\6\2017 Revised : 31\7\2017 Accepted : 22\8\2017

Abstract: In this paper we shown that the relationship with the best algebraic approximation and K-monotone functions with bounded (*i*) such that $(i < k, i \ge 1)$ derivatives by algebraice polynomial of degree $\le k - 1$, which interpolates a K-monotone functions *f* in an interval *I* at K points, and by this worke, we are found the rate of approximation of K-monotone functions in space $L_{\psi,p}(I)$, 0 .

Key word: Monotone functions, approximation, Modulus of smoothness.

Mathematics subject classification

1.Introduction and Main results

Let $f \in L_{\psi,p}(I)$, I = [-b, b], and let p_{k-1} be algebraic polynomials of degree $\leq k-1$ which interpolates f at k points , and let $\omega_{\varphi}^{k}(f, n^{-1})_{\psi,p}$ the Ditzian-Totik modulus of smoothness of $f \in L_{\psi,p}(I)$, 0 , whichdefined by :

$$\omega_{\varphi}^{k}(f,\delta,I)_{\psi,p} = \sup_{0 < h \le \delta} \left\| \Delta_{h}^{k}(f,.) \right\|_{L_{\psi,p}(I)}$$

Where $\|.\|_{L_{\psi,p}(I)}$ denotes the weighted quasi normed space([3]) and

 $\Delta_h^k(f, x, I)_{\psi} = \Delta_h^k(f, x)_{\psi}$

$$= \begin{cases} \sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} \frac{f(x - \frac{kh}{2} - ih)}{\psi(x + \frac{kh}{2})} & , x \pm \frac{kh}{2} \in I \\ 0 & o.w \end{cases}$$

is the *kth* symmetric difference .A functions $f: I \rightarrow R$ is said to be *k*-monotone, $k \ge 1$ on I = [-b, b] iff for all choices of (k + 1) distinct $x_0, ..., x_k$ in *I*, the inequality $[x_0, ..., x_k] f \ge 0 ...(1)$

holds, where $[x_0, ..., x_k]f = \sum_{j=0}^k (f(\frac{x_j}{w(x_j)}))$, denotes the *kth* divided difference of *f* at $x_0, ..., x_k$ and $w(x) = \prod_{j=0}^k (x - x_j)$ ([2]). Note that 1-monotone (2-monotone) functions the class of all *k*-monotone functions on *I* is denoted by $\Delta^k[I]([5])$. A function *f* is called weakly *k*-monotone if the inequility(1) is satisfied for any set of equally spaced points $x_0, ..., x_k$ ([6]). We let $\Delta^1(J)_s$ be the set of functions f which chang their monotone exactly at the points $j_i \in J_s$, and we will write $f \in \Delta^1$. We consider the space $L_{\psi,p}(I)$, consisting of all functions f on an interval I for which

$$\|f\|_{L_{\psi,p}(I)}^{p} = \int_{I} \left| \frac{f(x)}{\psi(x)} \right|^{p} dx < \infty.$$

Recall that for $f \in L_{\psi,p}(I)$ that

$$\|f\|_{L_{\psi,p}(I)} \le 2^{\frac{1}{p}-1} \|f\|_{L_{\psi,1}(I)} \quad \dots (2)$$

That is $L_{\psi,1}(I) \subset L_{\psi,p}(I)$. Suppose for some $k \ge 2$

Suppose for some $k \ge 2$ that $f \to R$ is k-monotone then $(\frac{f}{\psi})_{(x)}^{(j)}$, the derivative of order j, exists on (-b, b) for $j \le k - 2$ and is (k - j)-monotone ([1]).

The following theorem is the main results of this paper :

Theorem (1.1): Let $f \in \Delta^k[I]$, be such that $(\frac{f}{\psi})^{(i)} \in L_{\psi,p}(I)$, $i < k, i \ge 1$, then there exist a polynomial $p_n \in \prod_n$ such that

$$\begin{split} \|f - p_n\|_{L_{\psi,p}(l)} \\ &\leq c(p,k) 2^{\left(\frac{p-1}{p^2}\right)} n^{\frac{-k}{p}} \omega_{\varphi}^k(f,\delta)_{\psi,p}^{1-\frac{1}{p}} \|f^{(i)}\|_{L_{\psi,1}(l)}^{\frac{1}{p}} \end{split}$$

2. Auxiliary Results: Now the following Lemmas are crucial for the proof of theorem (1.1).

Nada. Z

Lemma (2.1) [4]: There exist a polynomial $g_{k-1} \in \prod_{k-1}$, k > 1 interpolate f at k > 1points inside an interval of $J_A = [m_0 + A|I|, m_1 - A|I|]$ where $A < \frac{1}{2}$, is a strictly positive constant then :

$$\|f - g_{k-1}(f)\|_{L_{\psi,p}(I)} \le c(p,k)\omega_{\varphi}^{k}(f,|I|,I)_{\psi,p}.$$

Lemma (2.2)[3]: For $f \in L_{\psi,p}(I)$, k>1, 0 , then

 $\omega_k^{\varphi}(f,\delta)_{\psi,p} \leq c(p)\delta\omega_{\varphi}^{k-1}(f,\delta)_{\psi,p}.$

Lemma (2.3)[3]:For a functions $f \in L_{\psi,n}(I)$, 0<p<1 we have

$$\omega_k^{\varphi}(f,\delta)_{\psi,p} \le c(p,k) \|f\|_{L_{\psi,p}(I)}.$$

Lemma (2.4) :Let $f \in \Delta^k[I]$, i < k, $i \ge 1$, then :

 $\omega_k^\varphi(f,\delta)_{\psi,p} \leq c(p) n^{-i} \omega_\varphi^{k-i}(f^{(i)},\delta)_{\psi,p} \; .$

Proof: By using the definition of the modulus of smoothness, keeping in mind that $\Delta_h^{k-1} f(x) \ge 0$ for $f \in \Delta^k$ and changing variables, we have

$$\begin{split} \Delta_{h\varphi(x)}^{k-1}(f,x)_{\psi} &= \Delta_{h\varphi(x)}^{k-2}(\Delta_{h\varphi(x)}^{1}(f,x)_{\psi} \\ & \left\| \Delta_{h\varphi(\cdot)}^{k-1} \right\|_{L_{\psi,p}(I)} = \left\| \Delta_{h\varphi(\cdot)}^{k-2}[f\left(x + \frac{h}{2}\right) \\ & - \hat{f}\left(x - \frac{h}{2}\right)] \right\|_{L_{\psi,p}(I)} \\ &= \left\| \Delta_{h\varphi(\cdot)}^{k-2}[f\left(x + \frac{h}{2}\right) - \hat{f}(x)] - \\ [f(x - \frac{h}{2}) - \hat{f}(x)] \right\|_{L_{\psi,p}(I)} \\ &= \left\| \Delta_{h\varphi(\cdot)}^{k-2}(\int_{0}^{\frac{h}{2}} [f(x + \iota) - \hat{f}(x - \iota)]) dl \right\|_{L_{\psi,p}(I)} \\ &\leq c(p) \int_{0}^{\frac{h}{2}} \left\| \Delta_{h\varphi(\cdot)}^{k-2}[\hat{f}(x + \iota) - \\ \hat{f}(x - \iota)] dl \right\|_{L_{\psi,p}(I)} \\ &\leq c(p) \int_{0}^{\frac{h}{2}} \omega_{\varphi}^{k-2}(\hat{f}, \delta)_{\psi,p} dl \\ &= c(p) \frac{h}{2} \omega_{\varphi}^{k-2}(\hat{f}, \delta)_{\psi,p} \quad ...(3 \end{split}$$

Now, by lemma (2.2) and the inequality (3)for i < k where $i \ge 1$ we get the result $\omega_{\varphi}^{k}(f,\delta)_{\psi,p} \leq c(p)n^{-i}\omega_{\varphi}^{k-i}(f^{(i)},\delta)_{\psi,p} .$

Lemma (2.5): Let $f \in L_{\psi,p}(I)$, then for i < kwhere $i \ge 1$ there exists a polynomial $p_n \in \prod_n$,which is satisfies

 $\|f - p_n\|_{L_{\psi,1}(l)} \le c(p,k)n^{-k} \|f^{(i)}\|_{L_{\psi,1}(l)}$

Proof: by Lemma (2.1) then there exist a polynomial $p_n \in \prod_{k=1} k > 1$ interpolate f at k points which is satisfies

 $\|f - p_n(f)\|_{L_{\psi,p}(I)} \le c(p,k)\omega_{\varphi}^k(f,|I|,I)_{\psi,p}.$ And by lemma (2.4) for i < k where $i \ge 1$ we get

 $\|f - p_n\|_{L_{\psi,1}(l)} \le c(p,k)n^{-i}\omega_{\varphi}^{k-i}(f^{(i)},\delta)_{\psi,1}.$ By lemma (2.3) we get $\|f - p_n\|_{L_{\psi,1}(l)} \le c(p,k)n^{-i}n^{-(k-i)} \|f^{(i)}\|_{L_{\psi,1}(l)},$

hence

$$||f - p_n||_{L_{\psi,1}(I)} \le c(p,k)n^{-k} ||f^{(i)}||_{L_{\psi,1}(I)}$$

Proof of theorem (1.1): by the inequality (2) then we have

$$\begin{split} \|f - p_n\|_{L_{\psi,p}(I)}^p &\leq 2^{1-\frac{1}{p}} \|f - p_n\|_{L_{\psi,1}(I)}^p \\ \|f - p_n\|_{L_{\psi,1}(I)}^p &= \int_I \left|\frac{f - p_n}{\psi(x + \frac{kh}{2})}\right|^{p-1} \left|\frac{f - p_n}{\psi(x + \frac{kh}{2})}\right| dx \\ \|f - p_n\|_{L_{\psi,p}(I)}^p &\leq c(p)2^{(1-\frac{1}{p})} \|f \\ &- p_n\|_{L_{\psi,p}(I)}^{p-1} \|f - p_n\|_{L_{\psi,1}(I)}^p \end{split}$$

By lemma (2.1), we get $\|f - p_n\|_{L^{\infty}(\Omega)}^p$

$$\|f - p_n\|_{L_{\psi,p}(I)} \leq c(p) 2^{\left(1 - \frac{1}{p}\right)} \omega_{\varphi}^k(f, \delta)_{\psi,p}^{p-1} \|f - p_n\|_{L_{\psi,1}(I)}.$$

By lemma (2.5)
$$\|f - p_n\|_{L_{\psi,n}(I)}^p \leq$$

$$c(p)2^{\left(1-\frac{1}{p}\right)}n^{-k}\omega_{\varphi}^{k}(f,\delta)_{\psi,p}^{p-1}\left\|f^{(i)}\right\|_{L_{\psi,1}(I)}$$

Hence П£

$$\|f - p_n\|_{L_{\psi,p}(I)} \le c(p,k) 2^{\left(\frac{p-1}{p^2}\right)} n^{\frac{-k}{p}} \omega_{\varphi}^k(f,\delta)_{\psi,p}^{1-\frac{1}{p}} \|f^{(i)}\|_{L_{\psi,1}(I)}^{\frac{1}{p}}$$

Where $0 , $i < k$ and ≥ 1 .$

References

[1] Kirill A. Kopotun, Approximation of k-Monotone Functions, December 23,1996; accepted June 4,1997.

[2] K.Kopotun, Simulataneous approximation bv algebraic

polynomials, Constr. Approx. 12(1996), 67-94. [3] N.Z.Abd Al-Sada (2015):" On Positive and Copositive Approximation in $L_{\psi,p}(I)$ Spaces 0 "ph.D dissertation, Al-MustansiriyaUniversity, College of education.

[4] N.Z.Abd Al-Sada , On Comonotony Approximation in Quasi Normed Space ,2017. [5]P.S.Bullen , A criterion for nconvexity, Pacific J. Math. 36 (1971), 81-98.

[6] Z.Ciesielski,Some properties of convex functions of higher orders, Ann.polon.Math.7(1959), 1-7.

Nada. Z

$0 ، <math>L_{\psi,p}(I)$ قيمة تقريب الدالة المتناوبة – K في الفضاء $L_{\psi,p}(I)$

ندى زهير عبد السادة

قسم الرياضيات ، كلية التربية ، جامعة القادسية

E-mail:Nadawee70@yahoo.com

المستخلص:

في هذا البحث اشرنا الى العلاقة بين افضل تقريب والدالة المتناوبة -K ذات المشتقة(i) حيث ان ($i \ge k, i \ge i$) ، باستخدام متعدد حدود لاكرانج التي درجتها $\ge 1 - k$ ، والتي تكون فيها نقاط التقاطع بينها وبين الدالة المتناوبة f ضمن الفترة I عند k من النقاط وبهذا العمل نكون قد اوجدنا قيمة تقريب الدالة المتناوبة في الفضاء $L_{\psi,p}(I)$ المعيار p < 1 .

الكلمات المفتاحية : الدالة المتناوبة ، التقريب ، مقياس النعومة .