Journal of AL-Qadisiyah for computer science and mathematics Vol.9 No.2 Year 2017 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 57 - 70

Akeel .R / Adel .S

SS-Injective Modules and Rings

Akeel Ramadan Mehdi

Department of Mathematics, College of Education, , University of Al-Qadisiyah, Iraq Email: akeel.mehdi@qu.edu.iq Adel Salim Tayyah Department of Mathematics College of Computer Science and Information Technology, University of Al-Qadisiyah, Iraq Email: adel.tayh@qu.edu.iq

Recived : 19\6\2017

Revised : 20\8\2017

Accepted : 21\8\2017

Abstract

We introduce and investigate SS-injectivity as a generalization of both soc-injectivity and small injectivity. A right module M over a ring R is said to be SS-N-injective (where N is a right R-module) if every R-homomorphism from a semisimple small submodule of N into M extends to N. A module M is said to be SS-injective (resp. strongly SS-injective), if M is SS-R-injective (resp. SS-N-injective for every right R-module N). Some characterizations and properties of (strongly) SS-injective modules and rings are given. Some results on soc-injectivity are extended to SS-injectivity.

Key words and phrases: Small Injective rings (modules); Soc-Injective rings (modules); SS-Injective rings (modules); Perfect rings; quasi-Frobenius rings.

Mathematics subject classification: Primary: 16D50, 16D60, 16D80; Secondary: 16P20, 16P40, 16L60.

1. Introduction

Throughout this paper, *R* is an associative ring with identity, and all modules are unitary right *R*-modules. For a right *R*-module *M*, we write soc(M), J(M), Z(M), $Z_2(M)$, E(M) and End(M) for the socle, the Jacobson radical, the singular submodule, the second singular submodule, the injective hull and the endomorphism ring of *M*, respectively. Also, we use S_r , S_ℓ , Z_r , Z_ℓ , Z_r^2 and *J* to indicate

the right socle, the left socle, the right singular ideal, the left singular ideal, the right second singular ideal, and the Jacobson radical of R, respectively. For a submodule N of M, we write $N \subseteq^{ess} M$, $N \ll M$, $N \subseteq^{\oplus} M$, and $N \subseteq^{max} M$ to indicate that N is an essential submodule, a small submodule, a direct summand, and a maximal submodule of M, respectively. If X is a subset of a right R-module M. The right (resp. left) annihilator of X in R is denoted by $r_R(X)$ (resp. $l_R(X)$). If M = R, we write $r_R(X) = r(X)$ and $l_R(X) = l(X)$.

Let M and N be right R-modules, M is called soc-Ninjective if every R-homomorphism from the soc(N) into M extends to N. A right R-module M is called socinjective, if M is soc-R-injective. A right R-module Mis called strongly soc-injective, if M is soc-N-injective for all right R-module N [1].

Recall that a right *R*-module *M* is called mininjective [2] (resp. small injective [3], principally small injective

[4]) if every *R*-homomorphism from any simple (resp. small, principally small) right ideal to *M* extends to *R*. A ring *R* is called right mininjective (resp. small injective, principally small injective) ring, if it is right mininjective (resp. small injective, principally small injective) as right *R*-module. A ring *R* is called right Kasch if every simple right *R*-module embeds in *R* (see for example [5]). Recall that a ring *R* is called semilocal if *R/J* is a semisimple [6]. Also, a ring *R* is said to be right perfect if every right *R*-module has projective cover. Recall that a ring *R* is said to be quasi-Frobenius (or *QF*) ring if it is right (or left) artinian and right (or left) self-injective; or equivalently, every injective right *R*-module is projective.

In this paper, we introduce and investigate the notions of SS-injective and strongly SS-injective modules and rings. Examples are given to show that the (strong) SS-injectivity is distinct from that of mininjectivity, principally small injectivity, small injectivity, simple J-injectivity, and (strong) soc-injectivity. Some characterizations and properties of (strongly) SS-injective modules and rings are given.

In Section 2, we give some basic properties of SSinjective modules. For examples, we prove that a ring Ris right universally mininjective if and only if every simple right ideal is SS-injective. We also prove that if M is projective right R-module, then every quotient of an SS-M-injective right R-module is SS-M-injective if and only if $\operatorname{soc}(M) \cap J(M)$ is projective. We show that

if every simple singular right *R*-module is SS-injective, then S_r is projective and $r(a) \subseteq^{\oplus} R_R$ for all $a \in S_r \cap J$.

In Section 3, we show that a right *R*-module *M* is strongly SS-injective if and only if every small submodule *A* of a right *R*-module *N*, every *R*homomorphism $\alpha: A \rightarrow M$ with $\alpha(A)$ semisimple extends to *N*. In particular, *R* is semiprimitive if every simple right *R*-module is strongly SS-injective, but not conversely. We also prove that if *R* is a right perfect ring, then a right *R*-module *M* is strongly soc-injective if and only if *M* is strongly SS-injective. A results ([1, Theorem 3.6 and Proposition 3.7]) are extended. We prove that a ring *R* is right artinian if and only if every direct sum of strongly SS-injective right *R*-modules is injective, and *R* is *QF* ring if and only if every strongly SS-injective right *R*-module is projective.

In Section 4, we extend the results ([1, Proposition 4.6 and Theorem 4.12]) from a soc-injective ring to an SS-injective ring (see Proposition 4.9 and Corollary 4.10).

In Section 5, we show that a ring *R* is *QF* if and only if it is strongly SS-injective and right noetherian with essential right socle if and only if it is strongly SSinjective, $l(J^2)$ is countable generated left ideal, $S_r \subseteq^{ess} R_R$, and the chain $r(x_1) \subseteq r(x_2x_1) \subseteq \cdots \subseteq$ $r(x_nx_{n-1} \dots x_1) \subseteq \cdots$ terminates for every infinite sequence x_1, x_2, \dots in *R* (see Theorem 5.9 and Theorem 5.11). Finally, we prove that a ring *R* is *QF* if and only if *R* is strongly left and right SS-injective, left Kasch, and *J* is left *t*-nilpotent (see Theorem 5.14), extending a result of I. Amin, M. Yousif and N. Zeyada [1, Proposition 5.8] on strongly soc-injective rings.

General background material can be found in [7], [8] and [9].

2. SS-Injective Modules

Definition 2.1. Let *N* be a right *R*-module. A right *R*-module *M* is said to be SS-*N*-injective, if for any semisimple small submodule *K* of *N*, any right *R*-homomorphism $f: K \to M$ extends to *N*. A module *M* is said to be SS-quasi-injective if *M* is SS-*M*-injective. *M* is said to be SS-injective if *M* is SS-*R*-injective. A ring *R* is said to be right SS-injective if the right *R*-module R_R is SS-injective.

Definition 2.2. A right *R*-module *M* is said to be strongly SS-injective if *M* is SS-*N*-injective, for all right *R*-module *N*. A ring *R* is said to be strongly right SS-injective if the right *R*-module R_R is strongly SS-injective.

Example 2.3.

- (1) Every soc-injective module is SS-injective, but not conversely (see Example 5.7).
- (2) Every small injective module is SS-injective, but not conversely (see Example 5.5).

- (3) Every Z-module is SS-injective. In fact, if *M* is a Z-module, then *M* is small injective (by [3, Theorem 2.8) and hence it is SS-injective.
- (4) The two classes of principally small injective rings and SS-injective rings are different (see [5, Example 5.2], Example 4.4 and Example 5.5).
- (5) Every strongly soc-injective module is strongly SS-injective, but not conversely (see Example 5.7).
- (6) Every strongly SS-injective module is SS-injective, but not conversely (see Example 5.6).

Theorem 2.4. The following statements hold:

- (1) Let *N* be a right *R*-module and let $\{M_i: i \in I\}$ be a family of right *R*-modules. Then the direct product $\prod_{i \in I} M_i$ is SS-*N*-injective if and only if each M_i is SS-*N*-injective, $i \in I$.
- (2) Let M, N and K be right R-modules with $K \subseteq N$. If M is SS-N-injective, then M is SS-K-injective.
- (3) Let M, N and K be right R-modules with $M \cong N$. If M is SS-K-injective, then N is SS-K-injective.
- (4) Let M, N and K be right R-modules with $K \cong N$ and M is SS-K-injective. Then M is SS-Ninjective.
- (5) Let *M*, *N* and *K* be right *R*-modules with *N* is a direct summand of *M*. If *M* is SS-*K*-injective, then *N* is SS-*K*-injective.

Proof. Clear.

Corollary 2.5.

- (1) If N is a right R-module, then a finite direct sum of SS-N-injective modules is again SS-Ninjective. Moreover, a finite direct sum of SSinjective (resp. strongly SS-injective) modules is again SS-injective (resp. strongly SS-injective).
- (2) A direct summand of an SS-quasi-injective (resp., SS-injective, strongly SS-injective) module is again SS-quasi-injective (resp., SS-injective, strongly SS-injective).

Proof. (1) Take the index I to be a finite set and apply Theorem 2.4 (1).

(2) This follows from Theorem 2.4 (5).

Proposition 2.6. Every SS-injective right *R*-module is a right mininjective.

Proof. Let *I* be a simple right ideal of *R*. By [10, Lemma 3.8, p. 29] we have that either *I* is nilpotent or a direct summand of *R*. If *I* is a nilpotent, then $I \subseteq J$ by [11, Corollary 6.2.8, p. 181] and hence *I* is a simple small right ideal of *R*. Thus every SS-injective right *R*-module is right mininjective.

It easy to prove the following proposition.

Proposition 2.7. Let *N* be a right *R*-module. If J(N) is a small submodule of *N*, then a right *R*-module *M* is SS-*N*-injective if and only if any *R*-homomorphism $f: \operatorname{soc}(N) \cap J(N) \longrightarrow M$ extends to *N*.

Proposition 2.8. Let *N* be a right *R*-module and $\{A_i: i = 1, 2, ..., n\}$ be a family of finitely generated right *R*-modules. Then *N* is SS- $\bigoplus_{i=1}^n A_i$ -injective if and only if *N* is SS- A_i -injective, for all i = 1, 2, ..., n.

Proof. (\Rightarrow) This follows from Theorem 2.4 ((2), (4)). (\Leftarrow) By [12, Proposition (I.4.1) and Proposition (I.1.2), p. 28 and 16] we have $\operatorname{soc}(\bigoplus_{i=1}^{n} A_i) \cap J(\bigoplus_{i=1}^{n} A_i) =$ $(\operatorname{soc} \cap J)(\bigoplus_{i=1}^{n} A_i) = \bigoplus_{i=1}^{n} (\operatorname{soc} \cap J)(A_i) =$ $\bigoplus_{i=1}^{n} (\operatorname{soc}(A_i) \cap J(A_i))$ For i = 1, 2, n consider the

 $\bigoplus_{i=1}^{n} (\operatorname{soc}(A_i) \cap J(A_i))$. For j = 1, 2, ..., n consider the following diagram:

where i_1, i_2 are inclusion maps and i_{K_j}, i_{A_j} are injection maps. By hypothesis, there exists an *R*-homomorphism $h_j: A_j \rightarrow N$ such that $h_j i_2 = f i_{K_j}$, also there exists exactly one *R*-homomorphism $h: \bigoplus_{i=1}^n A_i \rightarrow N$ satisfying $h_j = h i_{A_j}$ by [8, Theorem 4.1.6 (2), p. 83]. Thus $f i_{K_j} = h_j i_2 = h i_{A_j} i_2 = h i_1 i_{K_j}$ for all j =1, 2, ..., n. Let $(a_1, a_2, ..., a_n) \in \bigoplus_{i=1}^n (\operatorname{soc}(A_i) \cap J(A_i))$, thus $a_j \in \operatorname{soc}(A_j) \cap J(A_j)$, for all j = 1, 2, ..., n, and

 $f((a_1, a_2, \dots, a_n)) = f\left(i_{K_1}(a_1)\right) + f\left(i_{K_2}(a_2)\right) + \dots + f\left(i_{K_n}(a_n)\right) = (hi_1)((a_1, a_2, \dots, a_n)).$ Thus $f = hi_1$ and the proof is complete.

Corollary 2.9.

- (1) Let $1 = e_1 + e_2 + \dots + e_n$ in *R*, where the e_i are orthogonal idempotents. Then *M* is SS-injective if and only if *M* is SS- e_iR -injective for every i = 1, 2, ..., n.
- (2) For idempotents e and f of R. If $eR \cong fR$ and M is SS-eR-injective, then M is SS-fR-injective.

Proof. (1) From [7, Corollary 7.3, p. 96], we have $R = \bigoplus_{i=1}^{n} e_i R$, thus it follows from Proposition 2.8 that *M* is SS-injective if and only if *M* is SS- $e_i R$ -injective for all $1 \le i \le n$.

(2) This follows from Theorem 2.4 (4).

Corollary 2.10. A right *R*-module *M* is SS-injective if and only if *M* is SS-*P*-injective, for every finitely generated projective right *R*-module *P*.

Proof. By Proposition 2.8 and Theorem 2.4 ((2), (4)).

Proposition 2.11. The following statements are equivalent for a right *R*-module *M*:

- (1) Every right *R*-module is SS-*M*-injective.
- (2) Every simple submodule of *M* is SS-*M*-injective.
- $(3) \quad \operatorname{soc}(M) \cap J(M) = 0.$

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (1) are obvious.

 $(2) \Rightarrow (3)$ Assume that $\operatorname{soc}(M) \cap J(M) \neq 0$, thus $\operatorname{soc}(M) \cap J(M) = \bigoplus_{i \in I} x_i R$ where $x_i R$ is a simple small submodule of M, for each $i \in I$. Therefore $x_i R$ is SS-*M*-injective for each $i \in I$ by hypothesis. For any $i \in I$, the inclusion map from $x_i R$ to M is split, so we have that $x_i R \subseteq^{\oplus} M$. Since $x_i R$ is small submodule of M, it follows that $x_i R = 0$ and hence $x_i = 0$ for all $i \in I$ and this a contradiction.

A ring *R* is called right universally mininjective ring if it is satisfies the condition $S_r \cap J = 0$ (see for example [2, Lemma 5.1]).

Corollary 2.12. The following statements are equivalent for a ring *R*:

- (1) *R* is right universally mininjective.
- (2) Every right *R*-module is SS-injective.
- (3) Every simple right ideal is SS-injective.

Proof. By Proposition 2.11. ■ **Theorem 2.13.** (SS-Baer's condition) The following

statement are equivalent for a ring *R*:

- (1) M is an SS-injective right R-module.
- (2) If $S_r \cap J = A \oplus B$, and $\alpha: A \to M$ is an *R*-homomorphism, then there exists $m \in M$ such that $\alpha(a) = ma$ for all $a \in A$ and mB = 0.

Proof. Clear.

Theorem 2.14. If *M* is a projective right *R*-module, then the following statements are equivalent:

- Every quotient of an SS-M-injective right Rmodule is SS-M-injective.
- (2) Every quotient of a soc-*M*-injective right *R*-module is SS-*M*-injective.
- (3)

Akeel .R / Adel .S

- (4) Every quotient of an injective right *R*-module is SS-*M*-injective.
- (5) Every sum of two SS-*M*-injective submodules of a right *R*-module is SS-*M*-injective.
- (6) Every sum of two soc-*M*-injective submodules of a right *R*-module is SS-*M*-injective.
- (7) Every sum of two injective submodules of a right *R*-module is SS-*M*-injective.
- (8) Every semisimple small submodule of M is projective.
- (9) Every simple small submodule of M is projective.
- (10) $\operatorname{soc}(M) \cap J(M)$ is projective.

Proof. $(1)\Rightarrow(2)\Rightarrow(3)$, $(4)\Rightarrow(5)\Rightarrow(6)$ and $(9)\Rightarrow(7)\Rightarrow(8)$ are obvious.

(8)⇒(9) Since soc(M) ∩ J(M) is a direct sum of simple submodules of M and since every simple in J(M) is small in M, thus soc(M) ∩ J(M) is projective.

(3)⇒(7) Let *D* and *N* be right *R*-modules and consider the diagram: $_{h}$

where *K* is a semisimple small submodule of *M*, *h* is a right *R*-epimorphism, *f* is a right *R*-homomorphism, and *i* is the inclusion map. We can take *D* to be injective *R*-module (by [13, Proposition 5.2.10, p. 148]). Since *N* is SS-*M*-injective, then we can extend *f* to an *R*-homomorphism $\alpha: M \to N$. By projectivity of *M*, thus α can be lifted to an *R*-homomorphism $\tilde{\alpha}: M \to D$ such that $h\tilde{\alpha} = \alpha$. Let $\tilde{f}: K \to D$ be the restriction of $\tilde{\alpha}$ over *K*. Obviously, $h\tilde{f} = f$ and this implies that *K* is projective.

(7) \Rightarrow (1) Let $h: N \rightarrow L$ be an *R*-epimorphism, where *N* and *L* are right *R*-modules, and *N* is SS-*M*-injective. Let *K* be any semisimple small submodule of *M*, $f: K \rightarrow L$ be any *R*-homomorphism, and *i* is the inclusion map. By hypothesis, *K* is projective, thus *f* can be lifted to *R*-homomorphism $g: K \rightarrow N$ such that hg = f. Since *N* is SS-*M*-injective, then there exists *R*-homomorphism $\tilde{g}: M \rightarrow N$ such that $\tilde{g}i = g$. Put $\beta = h\tilde{g}: M \rightarrow L$. Thus $\beta i = h\tilde{g}i = hg = f$. Hence *L* is an SS-*M*-injective right *R*-module.

(1) \Rightarrow (4) Let N_1 and N_2 be two SS-*M*-injective submodules of a right *R*-module *N*. Then $N_1 + N_2$ is a homomorphic image of the direct sum $N_1 \bigoplus N_2$. Since $N_1 \bigoplus N_2$ is SS-*M*-injective, thus $N_1 + N_2$ is SS-*M*injective by hypothesis. (6) \Rightarrow (3) Let *E* be an injective right *R*-module and $N \hookrightarrow E$. Let $Q = E \bigoplus E, K = \{(n,n) | n \in N\}, \overline{Q} = Q/K, H_1 = \{y + K \in \overline{Q} | y \in E \oplus 0\}$ and $H_2 = \{y + K \in \overline{Q} | y \in 0 \oplus E\}$. Then $\overline{Q} = H_1 + H_2$. Since $(E \oplus 0) \cap K = 0$ and $(0 \oplus E) \cap K = 0$, thus $E \cong H_i$, i = 1, 2. Since $H_1 \cap H_2 = \{y + K \in \overline{Q} | y \in N \oplus 0\} = \{y + K \in \overline{Q} | y \in 0 \oplus N\}$, thus $H_1 \cap H_2 \cong N$ under $y \mapsto y + K$ for all $y \in N \oplus 0$. By hypothesis, \overline{Q} is SS-*M*-injective. Since H_1 is injective, thus $\overline{Q} = H_1 \oplus A$ for some $A \hookrightarrow \overline{Q}$, so $A \cong (H_1 + H_2)/H_1 \cong H_2/(H_1 \cap H_2) \cong E/N$. By Theorem 2.4 (5), E/N is SS-*M*-injective.

Corollary 2.15. The following statements are equivalent for a ring R:

- (1) Every quotient of an SS-injective right *R*-module is SS-injective.
- (2) Every quotient of a soc-injective right *R*-module is SS-injective.
- (3) Every quotient of a small injective right *R*-module is SS-injective.
- (4) Every quotient of an injective right *R*-module is SS-injective.
- (5) Every sum of two SS-injective submodules of any right *R*-module is SS-injective.
- (6) Every sum of two soc-injective submodules of any right *R*-module is SS-injective.
- (7) Every sum of two small injective submodules of any right *R*-module is SS-injective.
- (8) Every sum of two injective submodules of any right *R*-module is SS-injective.
- (9) Every semisimple small submodule of any projective right *R*-module is projective.
- (10) Every semisimple small submodule of any finitely generated projective right *R*-module is projective.
- (11) Every semisimple small submodule of R_R is projective.
- (12) Every simple small submodule of R_R is projective.
- (13) $S_r \cap J$ is projective.
- (14) S_r is projective (*R* is a right *PS*-ring).

Proof. The equivalence between (1), (2), (4), (5), (6), (8), (11), (12) and (13) is from Theorem 2.14. $(1)\Rightarrow(3)\Rightarrow(4)$, $(5)\Rightarrow(7)\Rightarrow(8)$ and $(9)\Rightarrow(10)\Rightarrow(13)$ are clear.

 $(14)\Rightarrow(9)$ By [1, Corollary 2.9].

(13)⇒(14) Let $S_r = (S_r \cap J) \bigoplus A$, where $A = \bigoplus_{i \in I} S_i$ and S_i is a right simple and direct summand of R_R , for all $i \in I$. Thus A is projective, but $S_r \cap J$ is projective, so it follows that S_r is projective. ■ Journal of AL-Qadisiyah for computer science and mathematics Vol.9 No.2 Year 2017 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Akeel .R / Adel .S

Theorem 2.16. If every simple singular right *R*-module is SS-injective, then $r(a) \subseteq^{\oplus} R_R$ for every $a \in S_r \cap J$ and S_r is projective.

Proof. Let $a \in S_r \cap J$ and let A = RaR + r(a). Thus there exists $B \hookrightarrow R_R$ such that $A \bigoplus B \subseteq ^{ess} R_R$. Assert that $A \oplus B \neq R_R$, then we find $I \subseteq^{max} R_R$ such that $A \oplus B \subseteq I$, and so $I \subseteq ess R_R$. By hypothesis, R/I is SSinjective. Consider the map $\alpha: aR \to R/I$ is given by $\alpha(ar) = r + I$ which is well define *R*-homomorphism. Thus, there exists $c \in R$ with 1 + I = ca + I and hence $1 - ca \in I$. But $ca \in RaR \subseteq I$ which leads to $1 \in I$, a contradiction. Thus $A \oplus B = R_R$ and hence RaR + $(r(a) \oplus B) = R$. Since $RaR \ll R_R$, then $r(a) \subseteq^{\oplus} R_R$. Put r(a) = (1 - e)R, for some $e^2 = e \in R$, so it follows that ax = aex (because $(1 - e)x \in r(a)$, and so a(1-e)x = 0 for all $x \in R$ and this leads to aR = aeR. Let $\gamma: eR \rightarrow aeR$ be defined by $\gamma(er) =$ aer for all $r \in R$. Then γ is a well defined Repimorphism. Clearly, $ker(\gamma) = \{er: aer = 0\} =$ $\{er: er \in r(a)\} = eR \cap r(a) = 0$. Hence γ is an isomorphism and so aR is projective. Since $S_r \cap J$ is a direct sum of simple small right ideals, thus $S_r \cap I$ is projective and it follows from Corollary 2.15 that S_r is projective.

Corollary 2.17. A ring R is right mininjective and every singular simple right R-module is SS-injective if and only if R is a right universally mininjective.

Proof. By Theorem 2.16 and [2, Lemma 5.1].

Recall that a ring *R* is called zero insertive if aRb = 0 for all $a, b \in R$ with ab = 0 (see [3]). Note that if *R* is zero insertive ring, then $RaR + r(a) \subseteq^{ess} R_R$ for every $a \in R$ (see [3, Lemma 2.11]).

Proposition 2.18. Let R be a zero insertive ring. If every simple singular right R-module is SS-injective, then R is right universally mininjective.

Proof. Let $a \in S_r \cap J$. We claim that RaR + r(a) = R, thus r(a) = R (since $RaR \ll R$), so a = 0 and this means that $S_r \cap J = 0$. Otherwise, if $RaR + r(a) \subsetneq R$, then there exists a maximal right ideal *I* of *R* such that $RaR + r(a) \subseteq I$. Since $I \subseteq^{ess} R_R$ by Lemma 2.1.22, then R/I is SS-injective by hypothesis. Consider $a: aR \rightarrow R/I$ is given by a(ar) = r + I for all $r \in R$ which is well defined *R*-homomorphism. Thus 1 + I = ca + I for some $c \in R$. Since $ca \in RaR \subseteq I$, then $1 \in I$ and this contradicts the maximality of *I*, so we must have RaR + r(a) = R and this ends the proof.

Theorem 2.19. If *M* is a finitely generated right *R*-module, then the following statements are equivalent:

- (1) $\operatorname{soc}(M) \cap J(M)$ is a noetherian *R*-module.
- (2) $\operatorname{soc}(M) \cap J(M)$ is finitely generated.
- (3) Any direct sum of SS-*M*-injective right *R*-modules is SS-*M*-injective.
- (4) Any direct sum of soc-*M*-injective right *R*-modules is SS-*M*-injective.

- (5) Any direct sum of injective right *R*-modules is SS-*M*-injective.
- (6) K^(S) is SS-M-injective for every injective right R-module K and for any index set S.
- (7) $K^{(\mathbb{N})}$ is SS-*M*-injective for every injective right *R*-module *K*.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) Clear.

 $(2)\Rightarrow(3)$ Let $E = \bigoplus_{i \in I} M_i$ be a direct sum of SS-*M*-injective right *R*-modules and $f: N \to E$ be a right *R*-homomorphism where *N* is a semisimple small submodule of *M*. Since $\operatorname{soc}(M) \cap J(M)$ is finitely generated, thus *N* is finitely generated and hence $f(N) \subseteq \bigoplus_{i \in I_1} M_i$, for a finite subset I_1 of *I*. Since a finite direct sums of SS-*M*-injective right *R*-modules is SS-*M*-injective, thus $\bigoplus_{i \in I_1} M_i$ is SS-*M*-injective and hence *f* can be extended to an *R*-homomorphism $g: M \to E$. Thus *E* is SS-*M*-injective.

(7)⇒(1) Let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules of soc(*M*) ∩ *J*(*M*). For each $i \ge 1$, let $E_i = E(M/N_i)$ and $E = \bigoplus_{i=1}^{\infty} E_i$. For every $i \ge 1$, we put $M_i = \prod_{j=1}^{\infty} E_j = (N_j)$

$$E_i \oplus \left(\prod_{\substack{j=1\\j\neq i}}^{\infty} E_j\right)$$
, then M_i is injective. By hypothesis,

$$\bigoplus_{i=1}^{\infty} M_i = \left(\bigoplus_{i=1}^{\infty} E_i\right) \bigoplus \left(\bigoplus_{i=1}^{\infty} \prod_{\substack{j=1\\j\neq i}}^{\infty} E_j\right) \quad \text{is} \quad \text{SS-}M$$

injective, so it follows from Theorem 2.4 (5) that E is SS-*M*-injective. Define $f: U = \bigcup_{i=1}^{\infty} N_i \to E$ by $f(m) = (m + N_i)_i$. It is clear that f is a well defined *R*-homomorphism. Since M is finitely generated, thus $soc(M) \cap J(M)$ is a semisimple small submodule of M and hence $\bigcup_{i=1}^{\infty} N_i$ is a semisimple small submodule of M, so f can be extended to a right R-homomorphism $g: M \rightarrow E$. Since M is finitely generated, then we have $g(M) \subseteq \bigoplus_{i=1}^{n} E(M/N_i)$ for some *n* and hence $f(U) \subseteq$ $\bigoplus_{i=1}^{n} E(M/N_i)$. Since $\pi_i f(x) = \pi_i \left(\left(x + N_j \right)_{j \ge 1} \right) =$ $x + N_i$ for all $x \in U$ and $i \ge 1$, where $\pi_i: \bigoplus_{i \ge 1} E(M/N_i) \longrightarrow E(M/N_i)$ be the projection map. Thus $\pi_i f(U) = U/N_i$ for all $i \ge 1$. Since $f(U) \subseteq$ $\bigoplus_{i=1}^{n} E(M/N_i)$. Thus $U/N_i = \pi_i f(U) = 0$, for all $i \ge n+1$, so $U = N_i$ for all $i \ge n+1$ and hence the $N_1 \subseteq N_2 \subseteq \cdots$ terminates at N_{n+1} . Thus chain $soc(M) \cap J(M)$ is a noetherian *R*-module.

Corollary 2.20. If *N* is a finitely generated right *R*-module, then the following statements are equivalent:

- (1) $\operatorname{soc}(N) \cap J(N)$ is finitely generated.
- (2) $M^{(S)}$ is SS-*N*-injective for every soc-*N*-injective right *R*-module *M* and for any index set *S*.
- (3) $M^{(S)}$ is SS-*N*-injective for every SS-*N*-injective right *R*-module *M* and for any index set *S*.
- (4) $M^{(\mathbb{N})}$ is SS-*N*-injective for every soc-*N*-injective right *R*-module *M*.
- (5) $M^{(\mathbb{N})}$ is SS-*N*-injective for every SS-*N*-injective right *R*-module *M*.

Proof. By Theorem 2.19.

Corollary 2.21. The following statements are equivalent :

- (1) $S_r \cap J$ is finitely generated.
- (2) Any direct sum of SS-injective right *R*-modules is SS-injective.
- (3) Any direct sum of soc-injective right *R*-modules is SS-injective.
- (4) Any direct sum of small injective right *R*-modules is SS-injective.
- (5) Any direct sum of injective right *R*-modules is ssinjective.
- (6) $M^{(S)}$ is SS-injective for every injective right *R*-module *M* and for any index set *S*.
- (7) $M^{(S)}$ is SS-injective for every soc-injective right *R*-module *M* and for any index set *S*.
- (8) $M^{(S)}$ is SS-injective for every small injective right *R*-module *M* and for any index set *S*.
- (9) M^(S) is SS-injective for every SS-injective right *R*-module *M* and for any index set *S*.
- (10) $M^{(\mathbb{N})}$ is SS-injective for every injective right *R*-module *M*.
- (11) $M^{(\mathbb{N})}$ is SS-injective for every soc-injective right *R*-module *M*.
- (12) $M^{(\mathbb{N})}$ is SS-injective for every small injective right *R*-module *M*.
- (13) $M^{(\mathbb{N})}$ is SS-injective for every SS-injective right *R*-module *M*.

Proof. By applying Theorem 2.19 and Corollary 2.20.

3. Strongly SS-Injective Modules

Proposition 3.1. A right *R*-module *M* is a strongly SS-injective if and only if every *R*-homomorphism $\alpha: A \to M$ extends to *N*, for all right *R*-module *N*, where $A \ll N$ and $\alpha(A)$ is a semisimple submodule in *M*.

Proof. (\Leftarrow) Clear.

(⇒) Let *A* be a small submodule of *N*, and $\alpha: A \to M$ be an *R*-homomorphism with $\alpha(A)$ is a semisimple submodule of *M*. If $B = \ker(\alpha)$, then α induces an *R*homomorphism $\tilde{\alpha}: A/B \to M$ defined by $\tilde{\alpha}(a + B) =$ $\alpha(a)$, for all $a \in A$. Clearly, $\tilde{\alpha}$ is well define because if $a_1 + B = a_2 + B$ we have $a_1 - a_2 \in B$, so $\alpha(a_1) =$ $\alpha(a_2)$, that is $\tilde{\alpha}(a_1 + B) = \tilde{\alpha}(a_2 + B)$. Since *M* is strongly SS-injective and *A/B* is semisimple and small in *N/B*, thus $\tilde{\alpha}$ extends to an *R*-homomorphism $\gamma: N/B \to M$. If $\pi: N \to N/B$ is the canonical map, then the *R*-homomorphism $\beta = \gamma \pi: N \to M$ is an extension of α such that if $a \in A$, then $\beta(a) =$ $(\gamma \pi)(a) = \gamma(a + B) = \tilde{\alpha}(a + B) = \alpha(a)$ as desired. ■

Corollary 3.2.

- (1) Let *M* be a semisimple right *R*-module. If *M* is a strongly SS-injective, then *M* is a small injective.
- (2) If every simple right *R*-module is strongly SS-injective, then *R* is a semiprimitive ring.

Proof. (1) By Proposition 3.1.

(2) By (1) and applying [3, Theorem 2.8].

Remark 3.3. The converse of Corollary 3.2 is not true (see Example 3.8).

Theorem 3.4. If *M* is a strongly SS-injective (or just SS-*E*(*M*)-injective) right *R*-module, then for every semisimple small submodule *A* of *M*, there is an injective *R*-module E_A such that $M = E_A \bigoplus T_A$ where $T_A \hookrightarrow M$ with $T_A \cap A = 0$. Moreover, if $A \neq 0$, then E_A can be taken $A \subseteq ^{ess} E_A$.

Proof. Let *A* be a semisimple small submodule of *M*. If A = 0, we end the proof by taking $E_A = 0$ and $T_A = M$. Suppose that $A \neq 0$ and let i_1, i_2 and i_3 be inclusion maps and $D_A = E(A)$ is the injective hull of A in E(M). Since M is strongly SS-injective, thus M is SS-E(M)-injective. Since A is a semisimple small submodule of M, so it follows from [8, Lemma 5.1.3 (a)] that A is a semisimple small submodule in E(M)and hence there exists an *R*-homomorphism $\alpha: E(M) \longrightarrow M$ such that $\alpha i_2 i_1 = i_3$. Put $\beta =$ $\alpha i_2: D_A \to M$, thus β is an extension of i_3 . Since $A \subseteq^{ess} D_A$, β is an *R*-monomorphism. Put $E_A = \beta(D_A)$. Since E_A is an injective submodule of M, thus M = $E_A \oplus T_A$ for some $T_A \hookrightarrow M$. Since $\beta(A) = A$, $A \subseteq$ $\beta(D_A) = E_A$ and this means that $T_A \cap A = 0$. Moreover, define $\tilde{\beta} = \beta : D_A \longrightarrow E_A$, thus $\tilde{\beta}$ is an isomorphism. Since $A \subseteq^{ess} D_A$, thus $\tilde{\beta}(A) \subseteq^{ess} E_A$. But $\tilde{\beta}(A) =$ $\beta(A) = A$, so $A \subseteq^{ess} E_A$.

Corollary 3.5. If *M* is a right *R*-module has a semisimple small submodule *A* such that $A \subseteq ^{ess} M$, then the following statements are equivalent:

- (1) M is injective.
- (2) M is strongly SS-injective.
- (3) M is SS-E(M)-injective.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious.

(3)⇒(1) By Theorem 3.4, we can write $M = E_A \bigoplus T_A$ where E_A injective and $T_A \cap A = 0$. Since $A \subseteq^{ess} M$, thus $T_A = 0$ and hence $M = E_A$. Therefore *M* is an injective *R*-module.

Example 3.6. \mathbb{Z}_4 as \mathbb{Z} -module is not strongly SS-injective. In particular, \mathbb{Z}_4 is not SS- \mathbb{Z}_2^{∞} -injective.

Proof. Assume that \mathbb{Z}_4 is strongly SS-injective \mathbb{Z} -module. Let $A = \langle \overline{2} \rangle = \{\overline{0}, \overline{2}\}$. It is clear that A is a semisimple small and essential submodule of \mathbb{Z}_4 as \mathbb{Z} -module. By Corollary 3.5, \mathbb{Z}_4 is injective \mathbb{Z} -module and this a contradiction. Thus \mathbb{Z}_4 as \mathbb{Z} -module is not strongly SS-injective. Moreover, Since $E(\mathbb{Z}_{2^2}) = \mathbb{Z}_{2^{\infty}}$ as \mathbb{Z} -module, thus \mathbb{Z}_4 is not SS- $\mathbb{Z}_{2^{\infty}}$ -injective, by Corollary 3.5.

Corollary 3.7. Let *M* be a right *R*-module such that $soc(M) \cap J(M) \ll M$ (in particular, if *M* is finitely generated). If *M* is strongly SS-injective, then $M = E \oplus T$, where *E* is injective and $T \cap soc(M) \cap J(M) = 0$. Moreover, if $soc(M) \cap J(M) \neq 0$, then we can take $soc(M) \cap J(M) \subseteq e^{ss} E$.

Proof. By taking $A = soc(M) \cap J(M)$ and applying Theorem 3.4.

The following example shows that the converse of Theorem 3.4 and Corollary 3.7 is not true.

Example 3.8. Let $M = \mathbb{Z}_6$ as \mathbb{Z} -module. Since J(M) = 0 and $\operatorname{soc}(M) = M$, thus $\operatorname{soc}(M) \cap J(M) = 0$. So, we can write $M = 0 \bigoplus M$ with $M \cap (\operatorname{soc}(M) \cap J(M)) = 0$. Let $N = \mathbb{Z}_8$ as \mathbb{Z} -module. Since $J(N) = \langle \overline{2} \rangle$ and $\operatorname{soc}(N) = \langle \overline{4} \rangle$. Define $\gamma : \operatorname{soc}(N) \cap J(N) \rightarrow M$ by $\gamma(\overline{4}) = \overline{3}$, thus γ is a \mathbb{Z} -homomorphism. Assume that M is strongly SS-injective, thus M is SS-*N*-injective, so there exists \mathbb{Z} -homomorphism $\beta : N \rightarrow M$ such that $\beta \circ i = \gamma$, where i is the inclusion map from $\operatorname{soc}(N) \cap J(N)$ to N. Since $\beta(J(N)) \subseteq J(M)$, thus $\overline{3} = \gamma(\overline{4}) = \beta(\overline{4}) \in \beta(J(N)) \subseteq J(M) = 0$ and this contradiction, so M is not strongly SS-injective \mathbb{Z} -module.

Corollary 3.9. The following statements are equivalent:

- (1) $\operatorname{soc}(M) \cap J(M) = 0$, for all right *R*-module *M*.
- (2) Every right *R*-module is strongly SS-injective.
- (3) Every simple right *R*-module is strongly SS-injective.

Proof. By Proposition 2.11.

Lemma 3.10. Let *M* and *C* be right *R*-modules and $N \hookrightarrow M$ with M/N is a semisimple. Then every *R*-homomorphism from a submodule (resp. semisimple submodule) *A* of *M* to *C* can be extended to an *R*-homomorphism from *M* to *C* if and only if every *R*-homomorphism from a submodule (resp. semisimple submodule) *B* of *N* to *C* can be extended to an *R*-homomorphism from *M* to *C*.

Proof. (\Rightarrow) is obtained directly.

(⇐) let *f* be an *R*-homomorphism from a submodule *A* of *M* to *C*. Since *M*/*N* is a semisimple, there exists $L \hookrightarrow M$ such that A + L = M and $A \cap L \subseteq N$ (see [6, Proposition 2.1]). Thus there exists an *R*-homomorphism $g: M \to C$ such that g(x) = f(x) for all $x \in A \cap L$. Define $h: M \to C$ such that for any $x = a + \ell$, $a \in A$, $\ell \in L$, $h(x) = f(a) + g(\ell)$. Thus *h* is a well define *R*-homomorphism, because if $a_1 + \ell_1 = a_2 + \ell_2$, $a_i \in A$, $\ell_i \in L$, i = 1, 2, then $a_1 - a_2 = \ell_2 - \ell_1 \in A \cap L$, that is $f(a_1 - a_2) = g(\ell_2 - \ell_1)$ which leads to $h(a_1 + \ell_1) = h(a_2 + \ell_2)$. Therefore *h* is a well define *R*-homomorphism and extension of *f*.

Corollary 3.11. For right *R*-modules *M* and *N*, the following hold:

- (1) If M is finitely generated and M/J(M) is semisimple right R-module, then N is soc-M-injective if and only if N is SS-M-injective.
- (2) If M/soc(M) is semisimple right R-module, then N is soc-M-injective if and only if N is M-injective.
- (3) If R/S_r is semisimple as right *R*-module, then *N* is soc-injective if and only if *N* is injective.
- (4) If R/S_r is semisimple as right *R*-module, then *N* is SS-injective if and only if *N* is small injective.

Proof. (1) (\Rightarrow) Clear.

(⇐) Since *N* is a right SS-*M*-injective, thus every *R*-homomorphism from a semisimple small submodule of *M* to *N* extends to *M*. Since *M* is finitely generated, thus $J(M) \ll M$ and hence every *R*-homomorphism from any semisimple submodule of J(M) to *N* extends to *M*. Since M/J(M) is semisimple, thus every *R*-homomorphism from any semisimple submodule of *M* to *N* extends to *M* by Lemma 3.10. Therefore, *N* is soc-*M*-injective right *R*-module.

(2) (\Rightarrow) Since *N* is soc-*M*-injective. Thus every *R*-homomorphism from any submodule of soc(*M*) to *N* extends to *M*. Since *M*/soc(*M*) is semisimple, thus Lemma 3.10 implies that every *R*-homomorphism from any submodule of *M* to *N* extends to *M*. Hence *N* is *M*-injective.

(⇐) Clear.

(3) By (2).

(4) Since R/S_r is semisimple as right *R*-module, thus $J(R/S_r) = 0$. By [8, Theorem 9.1.4(b)], we have $J \subseteq S_r$ and hence $J = J \cap S_r$. Thus *N* is SS-injective if and only is *N* is small injective.

Corollary 3.12. Let *R* be a semilocal ring, then $S_r \cap J$ is finitely generated if and only if S_r is finitely generated.

Proof. Suppose that $S_r \cap J$ is finitely generated. By Corollary 2.21, every direct sum of soc-injective right *R*-modules is SS-injective. Thus it follows from Corollary 3.11 (1) and [1, Corollary 2.11] that S_r is finitely generated.

Theorem 3.13. If *R* is a right perfect ring, then *M* is a strongly soc-injective right *R*-module if and only if *M* is a strongly SS-injective.

Proof. (\Rightarrow) Clear.

(⇐) Let *R* be a right perfect ring and *M* be a strongly SS-injective right *R*-module. Since *R* is a semilocal ring, thus it follows from [14, Theorem 3.5] that every right *R*-module *N* is semilocal and hence N/J(N) is semisimple right *R*-module. Since *R* is a right perfect ring, the Jacobson radical of every right *R*-module is small by [13, Theorem 4.3 and 4.4, p. 69]. Thus N/J(N) is semisimple and $J(N) \ll N$, for any $N \in$ Mod-*R*. Since *M* is strongly SS-injective it follows Lemma 3.10 implies that *M* is strongly soc-injective.

Corollary 3.14. A ring *R* is *QF* if and only if every strongly SS-injective right *R*-module is projective.

Proof. (\Rightarrow) If *R* is *QF* ring, then *R* is a right perfect ring, so by Theorem 3.13 and [1, Proposition 3.7] we have that every strongly SS-injective right *R*-module is projective.

(⇐) By hypothesis we have that every injective right *R*-module is projective and hence *R* is *QF* ring (see for instance [11, Proposition 12.5.13]). \blacksquare

Theorem 3.15. The following statements are equivalent for a ring R:

- (1) Every direct sum of strongly SS-injective right *R*-modules is injective.
- (2) Every direct sum of strongly soc-injective right *R*-modules is injective.
- (3) *R* is right artinian.

Proof. (1) \Rightarrow (2) Clear.

 $(2) \Rightarrow (3)$ Since every direct sum of strongly soc-injective right *R*-modules is injective. Thus *R* is right noetherian and right semiartinian by [1, Theorem 3.3 and Theorem 3.6], so it follows from [15, Proposition VIII.5.2, p. 189] that *R* is right artinian.

 $(3)\Rightarrow(1)$ By hypothesis, *R* is right perfect and right noetherian. It follows from Theorem 3.13 and [1, Theorem 3.3] that every direct sum of strongly SS-injective right *R*-modules is strongly soc-injective. Since *R* is right semiartinian, so [1, Theorem 3.6] implies that every direct sum of strongly SS-injective right *R*-modules is injective.

Recall that a submodule K of a right R-module M is called *t*-essential in *M* (written $K \subseteq^{tes} M$) if for every submodule L of M, $K \cap L \subseteq Z_2(M)$ implies that $L \subseteq Z_2(M)$ (see [16]). A right *R*-module *M* is said to be t-semisimple if every submodule A of M there exists a direct summand B of M such that $B \subseteq^{tes} A$ (see [16]). A ring R is said to be right V-ring (GV-ring, SI-ring, respectively) if every simple (simple singular, singular, respectively) right R-module is injective. A right Rmodule is called strongly s-injective if every Rhomomorphism from K to M extends to N for every right *R*-module *N*, where $K \subseteq Z(N)$ (see [17]). In the next results, we will give the connection between injectivity and strongly s-injectivity and we characterize V-rings, GV-rings, SI-rings and semisimple rings by this connection.

Theorem 3.16. If R is a right t-semisimple, then a right R-module M is injective if and only if M is strongly s-injective.

Proof. (\Rightarrow) Obvious.

(⇐) Let *M* be a strongly s-injective, $Z_2(M)$ is injective by [17, Proposition 3, p. 27]. Thus every *R*homomorphism $f: K \to M$, where $K \subseteq Z_2^r$ extends to *R* by [17, Lemma 1, p. 26]. Since *R* is a right *t*semisimple, thus R/Z_2^r is a right semisimple by [16, Theorem 2.3]. So by applying Lemma 3.10, we conclude that M is injective.

Corollary 3.17. A ring *R* is right *SI* and right *t*-semisimple if and only if it is semisimple.

Proof. (\Rightarrow) Since *R* is a right *SI*-ring, thus every right *R*-module is strongly s-injective by [17, Theorem 1, p. 29]. By Theorem 3.16, we have that every right *R*-module is injective and hence *R* is semisimple ring.

 (\Leftarrow) Clear.

Corollary 3.18. If *R* is a right *t*-semisimple ring. Then *R* is right *V*-ring if and only if *R* is right *GV*-ring.

Proof. By [17, Proposition 5, p. 28] and Theorem 3.16. ■

Corollary 3.19. If *R* is a right *t*-semisimple ring, then R/S_r is noetherian right *R*-module if and only if *R* is right noetherian.

Proof. If R/S_r is noetherian right *R*-module, then every direct sum of injective right *R*-modules is strongly s-injective by [17, Proposition 6]. Since *R* is right *t*-semisimple, so it follows from Theorem 3.16 that every direct sum of injective right *R*-modules is injective and hence *R* is right noetherian. The converse is clear.

4. SS-Injective Rings

We recall that the dual of a right *R*-module *M* is $M^d = Hom_R(M, R_R)$ and clearly that M^d is a left *R*-module.

Proposition 4.1. The following statements are equivalent for a ring *R*:

- (1) R is a right SS-injective ring.
- (2) If K is a semisimple right *R*-module, P and Q are finitely generated projective right *R*-modules, β: K → P is an *R*-monomorphism with β(K) ≪ P and f: K → Q is an *R*-homomorphism, then f can be extended to an *R*-homomorphism h: P → Q.
- (3) If M be a right semisimple R-module and f is a nonzero R-monomorphism from M to R_R with $f(M) \ll R_R$, then $M^d = Rf$.

Proof. (2) \Rightarrow (1) Clear.

(1) \Rightarrow (2) Since Q finitely generated, there is an R-epimorphism $\alpha_1: \mathbb{R}^n \to Q$ for some $n \in \mathbb{Z}^+$. Since Q is a projective, there is an R-homomorphism $\alpha_2: Q \to \mathbb{R}^n$ such that $\alpha_1 \alpha_2 = I_Q$. Define $\tilde{\beta}: K \to \beta(K)$ by $\tilde{\beta}(a) = \beta(a)$ for all $a \in K$. Since R is a right SS-injective ring by hypothesis, it follows from Proposition 2.8 and Corollary 2.5 (1) that \mathbb{R}^n is a right SS-P-injective R-module. So there exists an R-homomorphism $h: P \to \mathbb{R}^n$ such that $hi = \alpha_2 f \tilde{\beta}^{-1}$. Put $g = \alpha_1 h: P \to Q$. Thus $gi = (\alpha_1 h)i = \alpha_1(\alpha_2 f \tilde{\beta}^{-1}) = f \tilde{\beta}^{-1}$ and hence $(g\beta)(a) = g(i(\beta(a))) = (f \tilde{\beta}^{-1})(\beta(a)) = f(a)$ for all $a \in K$. Therefore, there is an R-homomorphism $g: P \to Q$ such that $g\beta = f$.

Akeel .R / Adel .S

(1) \Rightarrow (3) Let $g \in M^d$, we have $gf^{-1}: f(M) \to R_R$, since f(M) is a semisimple small right ideal of R and Ris a right SS-injective ring (by hypothesis), $gf^{-1} = a$. for some $a \in R$. Therefore, g = af and hence $M^d = Rf$.

 $(3) \Rightarrow (1)$ Let $f: K \to R$ be a right *R*-homomorphism, where *K* is a semisimple small right ideal of *R* and $i: K \to R$ be the inclusion map, thus by (3) we have $K^d = Ri$ and hence f = ci in K^d for some $c \in R$. Thus there is $c \in R$ such that f(a) = ca for all $a \in K$ and this implies that *R* is a right SS-injective ring.

Example 4.2.

- (1) Every universally mininjective ring is SS-injective, but not conversely (see Example 5.6).
- (2) The two classes of universally mininjective rings and soc-injective rings are different (see Example 5.6 and Example 5.7).

Lemma 4.3. Let *R* be a right SS-injective ring. Then:

- (1) R is a right mininjective ring.
- (2) lr(a) = Ra for all $a \in S_r \cap J$.
- (3) $r(a) \subseteq r(b), a \in S_r \cap J, b \in R$ implies $Rb \subseteq Ra$.
- (4) $l(bR \cap r(a)) = l(b) + Ra$, for all $a \in S_r \cap J$, $b \in R$.
- (5) $l(K_1 \cap K_2) = l(K_1) + l(K_2)$, for all semisimple small right ideals K_1 and K_2 of R.

Proof. Clear. ■

The following is an example of a right mininjective ring which is not right SS-injective.

Example 4.4. (The Björk Example [5, Example 2.5, p. 38]). Let F be a field and let $a \mapsto \overline{a}$ be an isomorphism $F \to \overline{F} \subseteq F$, where the subfield $\overline{F} \neq F$. Let R denote the left vector space on basis $\{1, t\}$, and make R into an F-algebra by defining $t^2 = 0$ and $ta = \overline{a}t$ for all $a \in F$. By [5, Example 2.5 and 5.2, p. 38 and 97] we have R is a right principally injective and local ring. It is mentioned in [1, Example 4.15], that R is not right soc-injective. Since R is local, thus by Corollary 3.11 (1), R is not right SS-injective ring.

Proposition 4.5. Let *R* be a right SS-injective ring. Then :

- (1) If Ra is a simple left ideal of R, then $soc(aR) \cap J(aR)$ is zero or simple.
- (2) $rl(S_r \cap J) = S_r \cap J$ if and only if rl(N) = N for all semisimple small right ideals N of R.

Proof. (1) Suppose that $soc(aR) \cap J(aR)$ is a nonzero. Let x_1R and x_2R be any simple small right ideals of R with $x_i \in aR$, i = 1, 2. If $x_1R \cap x_2R = 0$, then by Lemma 4.3 (5), $l(x_1) + l(x_2) = R$. Since $x_i \in aR$, thus $x_i = ar_i$ for some $r_i \in R$, i = 1, 2, that is $l(a) \subseteq l(ar_i) = l(x_i)$, i = 1, 2. Since Ra is a simple, then $l(a) \subseteq max R$, that is $l(x_1) = l(x_2) = l(a)$.

Therefore, l(a) = R and hence a = 0 and this contradicts the minimality of Ra. Thus $soc(aR) \cap J(aR)$ is simple.

(2) Suppose that $rl(S_r \cap J) = S_r \cap J$ and let N be a semisimple small right ideal of R, trivially we have $N \subseteq rl(N)$. If $N \cap xR = 0$ for some $x \in rl(N)$, then by Lemma 4.3 (5), $l(N \cap xR) = l(N) + l(xR) = R$, since $x \in rl(N) \subseteq rl(S_r \cap J) = S_r \cap J$. If $y \in l(N)$, then yx = 0, that is y(xr) = 0 for all $r \in R$ and hence $l(N) \subseteq l(xR)$. Thus l(xR) = R, so x = 0 and this means that $N \subseteq e^{ss} rl(N)$. Since $N \subseteq e^{ss} rl(N) \subseteq rl(S_r \cap J) = S_r \cap J$, it follows that N = rl(N). The converse is trivial.

Recall that a right ideal *I* of *R* is said to be lie over summand of R_R , if there exists a direct decomposition $R_R = A_R \bigoplus B_R$ with $A \subseteq I$ and $B \cap I \ll R_R$ (see [18]) which leads to $I = A \bigoplus (B \cap I)$.

Lemma 4.6. Let *K* be an *m*-generated semisimple right ideal lies over summand of R_R . If *R* is a right SS-injective ring, then every *R*-homomorphism from *K* to R_R can be extended to an endomorphism of R_R .

Proof. Let $\alpha: K \to R$ be a right *R*-homomorphism. By hypothesis, $K = eR \oplus B$, for some $e^2 = e \in R$, where B is an m-generated semisimple small right ideal of R. Now, we need to prove that $K = eR \oplus (1 - e)B$. Clearly, eR + (1 - e)B is a direct sum. Let $x \in K$, then x = a + b, for some $a \in eR, b \in B$, so we can write x = a + eb + (1 - e)b and this implies that $x \in eR \oplus$ (1-e)B. Conversely, let $x \in eR \oplus (1-e)B$. Thus x = a + (1 - e)b, for some $a \in eR, b \in B$. We obtain $x = a + (1 - e)b = (a - eb) + b \in eR \oplus B.$ It is obvious that (1 - e)B is an *m*-generated semisimple small right ideal. Since R is a right SS-injective, then there exists $\gamma \in \text{End}(R_R)$ such that $\gamma_{|(1-e)B} = \alpha_{|(1-e)B}$. Define $\beta: R_R \to R_R$ by $\beta(x) = \alpha(ex) + \gamma((1-e)x)$, for all $x \in R$ which is well defined *R*-homomorphism. If $x \in K$, then x = a + b where $a \in eR$ and $b \in$ (1-e)B, so $\beta(x) = \alpha(ex) + \gamma((1-e)x) = \alpha(a) + \gamma(a) + \gamma($ $\gamma(b) = \alpha(a) + \alpha(b) = \alpha(x)$ which yields β is an extension of α .

Corollary 4.7. Let S_r be a finitely generated and lies over summand of R_R . Then R is a right SS-injective ring if and only if R is a right soc-injective .

Proof. By Lemma 4.6. ■

Recall that a ring *R* is called right minannihilator if rl(K) = K for every simple right ideal *K* of *R* (see [2]) (equivalently, for every simple small right ideal *K* of *R*).

Corollary 4.8. For a right SS-injective ring *R*, the following hold:

- (1) If $rl(S_r \cap J) = S_r \cap J$, then *R* is right minannihilator.
- (2) If $S_{\ell} \subseteq S_r$, then:
- (a) $S_{\ell} = S_r$.
- (b) R is a left minannihilator ring.

Akeel .R / Adel .S

Proof. (1) By Proposition 4.5 (2). (2) (a) By [2, Proposition 1.14 (4)].

(b) By Lemma 4.3 (2). ■

Proposition 4.9. The following statements are equivalent for a right SS-injective ring *R*:

(1) $S_{\ell} \subseteq S_r$.

- $(2) \quad S_\ell = S_r.$
- (3) R is a left mininjective ring.

Proof. (1) \Rightarrow (2) By Corollary 4.8 (2) (a).

 $(2) \Rightarrow (3)$ By Corollary 4.8 (2) and [5, Corollary 2.34, p. 53], we must show that R is right minannihilator ring. Let *aR* be a simple small right ideal, then *Ra* is a simple small left ideal by [2, Theorem 1.14]. Let $0 \neq x \in$ rl(aR), then $l(a) \subseteq l(x)$. Since $l(a) \subseteq^{max} R$, thus l(a) = l(x) and hence Rx is simple left ideal, that is $x \in S_r$. Now, if Rx = Re for some $e^2 = e \in R$, then e = rx for some $0 \neq r \in R$. Since (e - 1)e = 0, then (e-1)rx = 0, that is (e-1)ra = 0 and this implies that $ra \in eR$. Thus $raR \subseteq eR$, but eR is semisimple right ideal, so $raR \subseteq^{\oplus} R$ and hence ra = 0. Therefore, rx = 0, that is e = 0, a contradiction. Thus $x \in I$ and hence $x \in S_r \cap J$. Therefore, $aR \subseteq rl(aR) \subseteq S_r \cap J$. Now, let $aR \cap yR = 0$ for some $y \in rl(aR)$, thus $l(aR) + l(yR) = l(aR \cap yR) = R$. Since $y \in rl(aR)$, thus $l(aR) \subseteq l(yR)$ and hence l(yR) = R, that is y =0. Therefore, $aR \subseteq^{ess} rl(aR)$, so aR = rl(aR) as desired.

(3)⇒(1) Follows from [5, Corollary 2.34, p. 53]. ■

Recall that a ring *R* is said to be right minfull if it is semiperfect, right mininjective and $soc(eR) \neq 0$ for each local idempotent $e \in R$ (see [5]). A ring *R* is called right min-*PF*, if it is a semiperfect, right mininjective, $S_r \subseteq^{ess} R_R$, lr(K) = K for every simple left ideal $K \subseteq eR$ for some local idempotent $e \in R$ (see [5]).

Corollary 4.10. Let *R* be a right SS-injective ring, semiperfect with $S_r \subseteq^{ess} R_R$. Then *R* is a right minfull ring and the following statements hold:

- (1) Every simple right ideal of R is essential in a summand.
- (2) $\operatorname{soc}(eR)$ is simple and essential in eR for every local idempotent $e \in R$. Moreover, R is right finitely cogenerated.
- (3) For every semisimple right ideal *I* of *R*, there exists $e^2 = e \in R$ such that $I \subseteq e^{ss} rl(I) \subseteq e^{ss} eR$.
- (4) $S_r \subseteq S_\ell \subseteq rl(S_r).$
- (5) If *I* is a semisimple right ideal of *R* and *aR* is a simple right ideal of *R* with $I \cap aR = 0$, then $rl(I \oplus aR) = rl(I) \oplus rl(aR)$.
- (6) $rl(\bigoplus_{i=1}^{n} a_i R) = \bigoplus_{i=1}^{n} rl(a_i R)$, where $\bigoplus_{i=1}^{n} a_i R$ is a direct sum of simple right ideals.
- (7) The following statements are equivalent:
- (a) $S_r = rl(S_r)$.
- (b) K = rl(K), for every semisimple right ideals K of R.

- (c) kR = rl(kR), for every simple right ideals kR of R.
- (d) $S_r = S_\ell$.
- (e) $\operatorname{soc}(Re)$ is a simple for all local idempotent $e \in R$.
- (f) $\operatorname{soc}(Re) = S_r e$, for all local idempotent $e \in R$.
- (g) R is a left mininjective.
- (h) L = lr(L), for every semisimple left ideals L of R.
- (i) R is a left minfull ring.
- (j) $S_r \cap J = rl(S_r \cap J).$
- (k) K = rl(K), for every semisimple small right ideals K of R.
- (1) L = lr(L), for every semisimple small left ideals L of R.
- (8) If R satisfies any condition of (7), then $r(S_{\ell} \cap J) \subseteq^{ess} R_R$.

Proof. (1), (2), (3), (4), (5) and (6) are obtained by Corollary 2.1.32 (1) and [1, Theorem 4.12].

(7) The equivalence of (a), (b), (c), (d), (e), (f), (g), (h) and (i) follows from Corollary 3.11 and [1, Theorem 4.12].

(b) \Rightarrow (j) Clear.

- (j)⇔(k) By Proposition 4.5 (2).
- (k)⇒(c) By Corollary 4.8 (1).
- (h)⇒(l) Clear.

(1) \Rightarrow (d) Let Ra be a simple left ideal of R. By hypothesis, lr(A) = A for any simple small left ideal A of R. Since lr(A) = A, for any simple left ideal A of R, lr(Ra) = Ra. Thus R is a right min-PF ring and it follows from [2, Theorem 3.14] that $S_r = S_{\ell}$.

(8) Let K be a right ideal of R such that $r(S_{\ell} \cap J) \cap K = 0$. Then $K r(S_{\ell} \cap J) = 0$ and we have $K \subseteq lr(S_{\ell} \cap J) = S_{\ell} \cap J = S_r \cap J$. Now, $r((S_{\ell} \cap J) + l(K)) = r(S_{\ell} \cap J) \cap K = 0$. Since R is left Kasch, then $(S_{\ell} \cap J) + l(K) = R$ by [9, Corollary 8.28 (5), p. 281]. Thus l(K) = R and hence K = 0, so $r(S_{\ell} \cap J) \subseteq e^{ss} R_R$.

N. Zeyada, S. Hussein and A. Amin [19] introduced the notion almost-injective, a right *R*-module *M* is called almost-injective if $M = E \bigoplus K$, where *E* is injective and *K* has zero radical. They proved that, every almost-injective right *R*-module is an injective if and only if every almost-injective is a quasi-continuous if and only if *R* is a semilocal ring (see [19, Theorem 2.12]). After reflect of [19, Theorem 2.12] we found it is not true always and the reason is due to the *R*homomorphism $h: (L + J)/J \rightarrow K$ in the proof of the part of the Theorem 2.12 in [19] is not well define, so most of the other results in [19] are not necessary to be correct, because they are based on [19, Theorem2.12]. The following examples show that the contradiction in [19, Theorem 2.12] is exist.

Example 4.11. In particular from the proof of the part (3) \Rightarrow (1) in [19, Theorem 2.12], we consider $R = \mathbb{Z}_8$ and $M = K = \langle \bar{4} \rangle$. Thus $M = E \bigoplus K$, where E = 0 is a trivial injective *R*-module and J(K) = 0. Let $f: L \rightarrow K$ is the identity map, where L = K. So, the map homomorphism $h: (L + J)/J \rightarrow K$ which is given by $h(\ell + J) = f(\ell)$ is not well define, because $J = \bar{4} + J$ but $h(J) = f(\bar{0}) = \bar{0} \neq \bar{4} = f(\bar{4}) = h(\bar{4} + J)$.

Example 4.12.

- (1) Let R be an artinian ring. Assume that R is not semisimple ring, then R is not right V-ring. Thus there is simple right R-module is not injective. Therefore, there is almost-injective right R-module is not injective. So it follows from [19, Theorem 2.12] that R is not semilocal. Hence, R is not right artinian and this a contradiction. Thus every right artinian ring is semisimple, but this is not true in general (see below example).
- (2) The ring Z₈ is semilocal. Since < 4̄ >= {0, 4̄} is almost-injective as Z₈-module, then < 4̄ > is injective Z₈-module by [19, Theorem 2.12]. Thus < 4̄ >⊆[⊕] Z₈ and this a contradiction.

Theorem 4.13. The following statements are equivalent for a ring R:

- (1) *R* is a semiprimitive and every almost-injective right *R*-module is quasi-continuous.
- (2) *R* is a right SS-injective and right minannihilator ring, *J* is a right artinian, and every almost-injective right *R*-module is quasi-continuous.
- (3) R is a semisimple ring.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (1) are clear.

(2) \Rightarrow (3) Let *M* be a right *R*-module with zero Jacobson radical and let K be a nonzero submodule of M. Thus $K \bigoplus M$ is a quasi-continuous. By [20, Corollary 2.14, p. 23], *K* is an *M*-injective. Thus $K \subseteq^{\oplus} M$ and hence *M* is semisimple. In particular, R/J is a semisimple Rmodule and hence R/J is artinian by [8, Theorem 9.2.2 (b), p. 219], so R is semilocal ring. Since J is a right artinian, then R is a right artinian. So, it follows from Corollary 4.10 (7) that R is right and left mininjective. Thus [2, Corollary 4.8] implies that R is QF ring. By hypothesis $R \oplus (R/J)$ is quasi-continuous (since R is self-injective), so again by [20, Corollary 2.14, p. 23] we have that R/J is an injective. Since R is QF ring, then R/J is a projective (see [8, Theorem 13.6.1]). Thus the canonical map $\pi: R \to R/J$ is a splits and hence $I \subseteq^{\oplus} R$, that is I = 0. Therefore, R is semisimple.

5. Strongly SS-Injective Rings

A ring R is called a right Ikeda-Nakayama ring if $l(A \cap B) = l(A) + l(B)$ for all right ideals A and B of R (see [5, p. 148]). In the next proposition, the strongly SS-injectivity gives a new version of Ikeda-Nakayama rings.

Proposition 5.1. Let *R* be a strongly right SS-injective ring, then $l(N \cap K) = l(N) + l(K)$ for all semisimple small right ideals *N* and all right ideals *K* of *R*.

Proof. Suppose that $x \in l(N \cap K)$ and define $a: N + K \to R_R$ by a(a + b) = xa for all $a \in N$ and $b \in K$. Clearly, α is well define, because if $a_1 + b_1 = a_2 + b_2$, then $a_1 - a_2 = b_2 - b_1$, that is $x(a_1 - a_2) = 0$, so $\alpha(a_1 + b_1) = \alpha(a_2 + b_2)$. Define the *R*-homomorphism $\tilde{\alpha}: (N + K)/K \to R_R$ by $\tilde{\alpha}(a + K) = xa$ for all $a \in N$ which induced by α . Since $(N + K)/K \subseteq \operatorname{soc}(R/K) \cap J(R/K)$ and *R* is a strongly right SS-injective, $\tilde{\alpha}$ can be extended to an *R*-homomorphism $\gamma: R/K \to R_R$. If $\gamma(1 + K) = y$, for some $y \in R$, then y(a + b) = xa, for all $a \in N$ and $b \in K$. In particular, ya = xa for all $a \in N$ and yb = 0 for all $b \in K$. Hence $x = (x - y) + y \in l(N) + l(K)$. Therefore, $l(N \cap K) \subseteq l(N) + l(K)$. Since the converse is always holds, thus the proof is complete.

Recall that a ring *R* is said to be right simple *J*-injective if for any small right ideal *I* and any *R*-homomorphism $\alpha: I \rightarrow R_R$ with simple image, $\alpha = c$. for some $c \in R$ (see [14]).

Corollary 5.2. Every strongly right SS-injective ring is a right simple *J*-injective.

Proof. By Proposition 3.1. ■

Remark 5.3. The converse of Corollary 5.2 is not true (see Example 5.6).

Proposition 5.4. Let *R* be a right Kasch and strongly right SS-injective. Then:

- (1) rl(K) = K, for every small right ideal K of R. Moreover, R is right minannihilator.
- (2) If *R* is left Kasch, then $r(J) \subseteq^{ess} R_R$.

Proof.(1) By Corollary 5.2 and [14, Lemma 2.4].

(2) Let *K* be a right ideal of *R* and $r(J) \cap K = 0$. Then Kr(J) = 0 and we obtain $K \subseteq lr(J) = J$, because *R* is left Kasch. By (1), we have $r(J + l(K)) = r(J) \cap K = 0$ and this means that J + l(K) = R (since *R* is left Kasch). Thus K = 0 and hence $r(J) \subseteq ^{ess} R_R$.

The following examples show that the three classes of rings: strongly SS-injective rings, soc-injective rings and small injective rings are different.

Example 5.5. Let $R = \mathbb{Z}_{(p)} = \{\frac{m}{n}: p \text{ does not } divide n\}$, the localization ring of \mathbb{Z} at the prime *p*. Then *R* is a commutative local ring and it has zero socle but not principally small injective (see [4, Example 4]). Since $S_r = 0$, thus *R* is strongly soc-injective ring and hence *R* is strongly SS-injective ring.

Example 5.6. Let $R = \left\{ \begin{pmatrix} n & x \\ 0 & n \end{pmatrix} : n \in \mathbb{Z}, x \in \mathbb{Z}_2 \right\}$. Thus *R* is a commutative ring, $J = S_r = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} : x \in \mathbb{Z}_2 \right\}$ and *R* is small injective (see [3, Example (i)]). Let A = J and $B = \left\{ \begin{pmatrix} 2n & 0 \\ 0 & 2n \end{pmatrix} : n \in \mathbb{Z} \right\}$, then $l(A) = \left\{ \begin{pmatrix} 2n & y \\ 0 & 2n \end{pmatrix} : n \in \mathbb{Z}, y \in \mathbb{Z}_2 \right\}$ and

 $l(B) = \left\{ \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} : y \in \mathbb{Z}_2 \right\}.$ Thus $l(A) + l(B) = \left\{ \begin{pmatrix} 2n & y \\ 0 & 2n \end{pmatrix} : n \in \mathbb{Z}, y \in \mathbb{Z}_2 \right\}.$ Since $A \cap B = 0$, then $l(A \cap B) = R$ and this implies that $l(A) + l(B) \neq l(A \cap B)$. Therefore *R* is not strongly SS-injective and not strongly soc-injective by Proposition 5.1.

Example 5.7. Let $F = \mathbb{Z}_2$ be the field of two elements, $F_i = F$ for i = 1, 2, ..., $Q = \prod_{i=1}^{\infty} F_i$, $S = \bigoplus_{i=1}^{\infty} F_i$. If *R* is the subring of *Q* generated by 1 and *S*, then *R* is a von Neumann regular ring (see [17, Example (1), p. 28]). Since *R* is commutative, thus every simple *R*- module is injective by [9, Corollary 3.73. Thus *R* is *V*-ring and hence and hence J(N) = 0 for every right *R*-module *N*. It follows from Corollary 3.9 that every *R*-module is a strongly SS-injective. In particular, *R* is a strongly SS-injective ring. But *R* is not soc-injective (see [17, Example (1)]).

Example 5.8. Let $R = \mathbb{Z}_2[x_1, x_2, ...]$ where \mathbb{Z}_2 is the field of two elements, $x_i^3 = 0$ for all i, $x_i x_j = 0$ for all $i \neq j$ and $x_i^2 = x_j^2 \neq 0$ for all i and j. If $m = x_i^2$, then R is a commutative, local, soc-injective ring with $J = \text{span}\{m, x_1, x_2, ...\}$, and R has simple essential socle $J^2 = \mathbb{Z}_2 m$ (see [1, Example 5.7]). It follows from [1, Example 5.7] that the R-homomorphism $\gamma: J \rightarrow R$ which is given by $\gamma(a) = a^2$ for all $a \in J$ with simple image can not extend to R, then R is not simple J-injective and not small injective, so it follows from Corollary 5.2 that R is not strongly SS-injective.

Recall that a ring R is called right minsymmetric if aR is simple, $a \in R$, implies that Ra is simple left ideal (see [2]). Every right mininjective ring is right minsymmetric by [2, Theorem 1.14].

Theorem 5.9. A ring *R* is *QF* if and only if *R* is a strongly right SS-injective and right noetherian ring with $S_r \subseteq^{ess} R_R$.

Proof. (\Rightarrow) This is clear.

(⇐) By Lemma 4.3 (1), *R* is a right minsymmetric. It follows from [3, Lemma 2.2] that *R* is right perfect. Thus, *R* is strongly right soc-injective, by Theorem 3.13. Since $S_r \subseteq^{ess} R_R$, so it follows from [1, Corollary 3.2] that *R* is a self-injective and hence *R* is *QF*.

Corollary 5.10. For a ring *R*, the following statements are true:

- (1) R is a semisimple if and only if $S_r \subseteq e^{ss} R_R$ and every semisimple right R-module is strongly soc-injective.
- (2) *R* is *QF* if and only if *R* is a strongly right SS-injective, semiperfect with essential right socle and R/S_r is noetherian as right *R*-module.

Proof. (1) Suppose that $S_r \subseteq^{ess} R_R$ and every semisimple right *R*-module is strongly soc-injective, then *R* is a right noetherian right *V*-ring by [1, Proposition 3.12], so it follows from Corollary 3.9 that *R* is a strongly right SS-injective. Thus *R* is *QF* by Theorem 5.9. But J = 0, so *R* is a semisimple. The converse is clear.

(2) By [2, Theorem 2.9], $J = Z_r$. Since R/Z_2^r is a homomorphic image of R/Z_r and R is a semilocal ring, thus R is a right *t*-semisimple. By Corollary 3.19, R is right noetherian, so it follows from Theorem 5.9 that R is QF. The converse is clear.

Theorem 5.11. A ring *R* is *QF* if and only if *R* is strongly right SS-injective, $l(J^2)$ is a countable generated left ideal, $S_r \subseteq {}^{ess} R_R$ and the chain $r(x_1) \subseteq r(x_2x_1) \subseteq \cdots \subseteq r(x_nx_{n-1} \dots x_2x_1) \subseteq \cdots$ terminates for every infinite sequence x_1, x_2, \dots in *R*.

Proof. (\Rightarrow) Clear.

(⇐) By [3, Lemma 2.2], *R* is right perfect. Since $S_r \subseteq^{ess} R_R$, thus *R* is right Kasch by [2, Theorem 3.7]. Since *R* is a strongly right SS-injective, *R* is a right simple *J*-injective, by Corollary 5.2. Now, by Proposition 5.4 (1) we have $rl(S_r \cap J) = S_r \cap J$, so Corollary 4.10 (7) leads to $S_r = S_\ell$. By [5, Lemma 3.36, p. 73], $S_2^r = l(J^2)$. The result now follows from [14, Theorem 2.18].

Remark 5.12. The condition $S_r \subseteq^{ess} R_R$ in Theorem 5.9 and Theorem 5.11 can be not be deleted, for example, \mathbb{Z} is a strongly SS-injective noetherian ring but not QF.

The following two results are extension of Proposition 5.8 in [1].

Corollary 5.13. A ring *R* is *QF* ring if and only if it is left perfect, strongly left and right SS-injective ring.

Proof. By Corollary 5.2 and [14, Corollary 2.12]. ■

Theorem 5.14. For a ring R, the following statements are equivalent:

- (1) R is a QF ring.
- (2) *R* is a strongly left and right SS-injective, right Kasch and *J* is left *t*-nilpotent.
- (3) *R* is a strongly left and right SS-injective, left Kasch and *J* is left *t*-nilpotent.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are clear.

 $(3)\Rightarrow(1)$ Suppose that xR is simple right ideal. Thus either $rl(x) = xR \subseteq^{\oplus} R_R$ or $x \in J$. If $x \in J$, then rl(x) = xR (since *R* is right minannihilator), so Theorem 3.4 implies that $rl(x) \subseteq^{ess} E \subseteq^{\oplus} R_R$. Therefore, rl(x) is an essential in a direct summand of R_R for every simple right ideal xR. Let *K* be a left maximal ideal of *R*. Since *R* is a left Kasch, thus $r(K) \neq 0$ by [9, Corollary 8.28, p. 281]. Choose $0 \neq y \in r(K)$, so $K \subseteq l(y)$ and we conclude that

K = l(y). Since $Ry \cong R/l(y)$, thus Ry is simple left ideal. But R is a left miniplective ring, so yR is a simple right ideal by [2, Theorem 1.14] and this implies that $r(K) \subseteq^{ess} eR$ for some $e^2 = e \in R$ (since r(K) =rl(y)). Thus R is semiperfect by [5, Lemma 4.1, p. 79] and hence R is a left perfect (since J is left t-nilpotent), so it follows from Corollary 5.13 that R is QF.

(2)⇒(1) is similar to proof of (3)⇒(1). ■

Theorem 5.15. The ring *R* is *QF* if and only if *R* is a strongly left and right SS-injective, left and right Kasch, and the chain $l(a_1) \subseteq l(a_1a_2) \subseteq \cdots \subseteq l(a_1a_2 \dots a_n) \subseteq \cdots$ terminates for every $a_1, a_2, \dots \in Z_{\ell}$.

Proof. (\Rightarrow) Clear.

(⇐) By Proposition 5.4, l(J) is essential in $_RR$. Thus $J \subseteq Z_\ell$. Let $a_1, a_2, ... \in J$, we have $l(a_1) \subseteq l(a_1a_2) \subseteq ... \subseteq l(a_1a_2 ... a_n) \subseteq ...$. Thus there exists $k \in \mathbb{N}$ such that $l(a_1 ... a_k) = l(a_1 ... a_k a_{k+1})$ (by hypothesis). Suppose that $a_1 ... a_k \neq 0$, so $R(a_1 ... a_k) \cap l(a_{k+1}) \neq 0$ (since $l(a_{k+1})$ is essential in $_RR$). Thus $ra_1 ... a_k \neq 0$ and $ra_1 ... a_k a_{k+1} = 0$ for some $r \in R$, a contradiction. So, $a_1 ... a_k = 0$ and hence J is left *t*-nilpotent, so it follows from Theorem 5.14 that R is QF.

References

[1] I. Amin, M. Yousif and N. Zeyada, Soc-injective rings and modules, Comm. Algebra 33 (2005), 4229-4250.

[2] W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra 187 (1997), 548-578.

[3] L.V. Thuyet and T. C. Quynh, On small injective rings and modules, J. Algebra and Its Applications 8 (2009), 379-387.

[4] Y. Xiang, Principally small injective rings, Kyungpook Math. J. 51 (2011), 177-185.

[5] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius rings, Cambridge Tracts in Math., 158, Cambridge University Press, Cambridge, 2003.

[6] C. Lomp, On semilocal modules and rings, Comm. Algebra 27 (1999), 1921-1935.

[7] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.

[8] F. Kasch, Modules and Rings, Academic Press, New York, 1982.

[9] T.Y. Lam, Lectures on Modules and Rings, GTM 189, Springer-Verlag, New York, 1999.

[10] D. S. Passman, A coruse in ring theory, AMS Chelsea Publishing, 2004.

[11] P. E. Bland, Rings and Their Modules, Walter de Gruyter & Co., Berlin, 2011.

[12] L. Bican, T. Kepka and P. Neme, Rings, Modules and Preradicals, Marcel Dekker, Inc, New York, 1982.

[13] Y. Hirano, Rings whose simple modules have some properties, pp.63-76 in J. L. Chen, N. Q. Ding and H. Marubayashi, Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference, World Scientific Publishing Co. Pte. Ltd., 2005.

[14] M. F. Yousif and Y. Q. Zhou, FP-injective, simpleinjective and quasi-Frobenius rings, Comm. Algebra 32 (2004), 2273-2285.

[15] B. Stenström, Rings of Quotients, Sepringer-Verlage, Berlin-Heidelberg-New York, 1975.

[16] Sh. Asgari, A. Haghany and Y. Tolooei, T-semisimple modules and T-semisimple rings, Comm. Algebra 41 (2013), 1882-1902.

[17] N. Zeyada, S-injective modules and rings, Advances in Pure Math. 4 (2014), 25-33.

[18] W. K. Nicholson, Semiregular modules and rings, Canadian J. Math. 28 (1976), 1105-1120.

[19] N. Zeyada, S. Hussein and A. Amin, Rad-injective and almost-injective modules and rings, Algebra Colloquium 18 (2011), 411-418.

[20] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.

Akeel .R / Adel .S

الموديولات والحلقات الاغمارية من النمط-SS

عادل سالم تایه

قسم الرياضيات كلية علوم الحاسوب وتكنلوجيا المعلومات جامعة القادسية Email: adel.tayh@qu.edu.iq **عقيل رمضان مهدي** قسم الرياضيات كلية التربية جامعة القادسية Email: akeel.mehdi@qu.edu.iq

المستخلص:

قدمنا وناقشنا الاغمارية من النمط-SS كتعميم الى كلاً من الاغمارية من النمط-soc والاغمارية الصغيرة. الموديول الايمن M على الحلقة R يقال انه اغماري من النمط-SS-N (حيث N هو موديول ايمن على الحلقة R) اذا كان كل تماثل موديولي على الحلقة R من موديول جزئي صغير شبه بسيط من N الى Mيمكن توسيعه الى N. الموديول M نسميه موديول اغماري من النمط-SS (اغماري قوي من النمط-SS) اذا كان M هو موديول اغماري من النمط-SS (موديول اغماري من النمط-SS كل موديول ايمن N على الحلقة R). بعض تشخيصات وخصائص الموديولات والحلقات الاغمارية من النمط-SS قد اعطيت. بعض النتائج على الاغمارية من النمط-SS قد تم توسيعها الى الاغمارية من النمط-SS قد اعطيت.