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semisimple small submodule of N into M extends to N. A module M is said to be SS-injective (resp. strongly SS-
injective), if M is SS-R-injective (resp. SS-N-injective for every right R-module N). Some characterizations and
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1. Introduction

Throughout this paper, R is an associative ring with
identity, and all modules are unitary right R-modules.
For a right R-module M, we write soc(M), J(M),
Z(M), Z,(M), E(M) and End(M) for the socle, the
Jacobson radical, the singular submodule, the second
singular submodule, the injective hull and the
endomorphism ring of M, respectively. Also, we use
Sy Sp.Z,,Zp, Z5 and J to indicate
the right socle, the left socle, the right singular ideal, the
left singular ideal, the right second singular ideal, and
the Jacobson radical of R, respectively. For a
submodule N of M, we write NS M, NKM,
Nc® M, and N €™* M to indicate that N is an
essential submodule, a small submodule, a direct
summand, and a maximal submodule of M,
respectively. If X is a subset of a right R-module M.
The right (resp. left) annihilator of X in R is denoted by
1R(X) (resp. lg(X)). If M = R, we write rz(X) = r(X)
and [ (X) = I(X).

Let M and N be right R-modules, M is called soc-N-
injective if every R-homomorphism from the soc(N)
into M extends to N. A right R-module M is called soc-
injective, if M is soc-R-injective. A right R-module M
is called strongly soc-injective, if M is soc-N-injective
for all right R-module N [1].

Recall that a right R-module M is called mininjective
[2] (resp. small injective [3], principally small injective
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[4]) if every R-homomorphism from any simple (resp.
small, principally small) right ideal to M extends to R.
A ring R is called right mininjective (resp. small
injective, principally small injective) ring, if it is right
mininjective (resp. small injective, principally small
injective) as right R-module. A ring R is called right
Kasch if every simple right R-module embeds in R (see
for example [5]). Recall that a ring R is called semilocal
if R/] is a semisimple [6]. Also, a ring R is said to be
right perfect if every right R-module has projective
cover. Recall that a ring R is said to be quasi-Frobenius
(or QF) ring if it is right (or left) artinian and right (or
left) self-injective; or equivalently, every injective right
R-module is projective.

In this paper, we introduce and investigate the
notions of SS-injective and strongly SS-injective
modules and rings. Examples are given to show that the
(strong) SS-injectivity is distinct from that of
mininjectivity, principally small injectivity, small
injectivity, simple J-injectivity, and (strong) soc-
injectivity. Some characterizations and properties of
(strongly) SS-injective modules and rings are given.

In Section 2, we give some basic properties of SS-
injective modules. For examples, we prove that a ring R
is right universally mininjective if and only if every
simple right ideal is SS-injective. We also prove that if
M is projective right R-module, then every quotient of
an SS-M-injective right R-module is SS-M-injective if
and only if soc(M) n J(M) is projective. We show that
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if every simple singular right R-module is SS-injective,
then S, is projective and r(a) €® R, foralla € S, nJ.

In Section 3, we show that a right R-module M is
strongly SS-injective if and only if every small
submodule A of a right R-module N, every R-
homomorphism a:A — M with a(4) semisimple
extends to N. In particular, R is semiprimitive if every
simple right R-module is strongly SS-injective, but not
conversely. We also prove that if R is a right perfect
ring, then a right R-module M is strongly soc-injective
if and only if M is strongly SS-injective. A results ([1,
Theorem 3.6 and Proposition 3.7]) are extended. We
prove that a ring R is right artinian if and only if every
direct sum of strongly SS-injective right R-modules is
injective, and R is QF ring if and only if every strongly
SS-injective right R-module is projective.

In Section 4, we extend the results ([1, Proposition
4.6 and Theorem 4.12]) from a soc-injective ring to an
SS-injective ring ( see Proposition 4.9 and Corollary
4.10).

In Section 5, we show that a ring R is QF if and only
if it is strongly SS-injective and right noetherian with
essential right socle if and only if it is strongly SS-
injective, [(J?) is countable generated left ideal,
S, €% Rg, and the chain r(x;) S r(x,x;) €+ C
r(XpXp_q --X1) S -+ terminates for every infinite
sequence xq, x,, ... in R (see Theorem 5.9 and Theorem
5.11). Finally, we prove that a ring R is QF if and only
if R is strongly left and right SS-injective, left Kasch,
and J is left t-nilpotent (see Theorem 5.14), extending a
result of 1. Amin, M. Yousif and N. Zeyada [1,
Propostion 5.8] on strongly soc-injective rings.

General background material can be found in [7], [8]
and [9].

2. SS-Injective Modules

Definition 2.1. Let N be a right R-module. A right
R-module M is said to be SS-N-injective, if for any
semisimple small submodule K of N, any right R-
homomorphism f: K — M extends to N. A module M
is said to be SS-quasi-injective if M is SS-M-injective.
M is said to be SS-injective if M is SS-R-injective. A
ring R is said to be right SS-injective if the right R-
module Ry is SS-injective.
Definition 2.2. A right R-module M is said to be
strongly SS-injective if M is SS-N-injective, for all
right R-module N. A ring R is said to be strongly right
SS-injective if the right R-module Ry is strongly SS-
injective.
Example 2.3.
(1) Every soc-injective module is SS-injective, but
not conversely (see Example 5.7).
(2) Every small injective module is SS-injective,
but not conversely (see Example 5.5).
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(3) Every Z-module is SS-injective. In fact, if M is
a Z-module, then M is small injective (by [3,
Theorem 2.8) and hence it is SS-injective.

The two classes of principally small injective
rings and SS-injective rings are different ( see
[5, Example 5.2], Example 4.4 and Example
5.5).

Every strongly soc-injective module is strongly
SS-injective, but not conversely (see Example
5.7).

Every strongly SS-injective module is SS-
injective, but not conversely (see Example
5.6).

(4)

Q)

(6)

Theorem 2.4. The following statements hold:
(1) Let N be aright R-module and let {M;:i € I} be a

family of right R-modules. Then the direct
product [];;M; is SS-N-injective if and only if
each M; is SS-N-injective, i € I.

Let M, N and K be right R-modules with K € N.
If M is SS-N-injective, then M is SS-K-injective.
Let M, N and K be right R-modules with M = N.
If M is SS-K-injective, then N is SS-K-injective.
Let M, N and K be right R-modules with K = N
and M is SS-K-injective. Then M is SS-N-
injective.

Let M, N and K be right R-modules with N is a
direct summand of M. If M is SS-K-injective,
then N is SS-K-injective.

Proof. Clear. [ |

@
®)
(4)

®)

Corollary 2.5.
(1) If N is a right R-module, then a finite direct sum

of SS-N-injective modules is again SS-N-
injective. Moreover, a finite direct sum of SS-
injective (resp. strongly SS-injective) modules is
again SS-injective (resp. strongly SS-injective).

(2) Adirect summand of an SS-quasi-injective (resp.,
SS-injective, strongly SS-injective) module is
again  SS-quasi-injective (resp., SS-injective,
strongly SS-injective).

Proof. (1) Take the index I to be a finite set and apply
Theorem 2.4 (1).

(2) This follows from Theorem 2.4 (5). [ |

Proposition 2.6. Every SS-injective right R-module
is a right mininjective.



Journal of AL-Qadisiyah for computer science and mathematics
ISSN (Print): 2074 — 0204

Vol.9 No.2 Year 2017
ISSN (Online): 2521 — 3504

Proof. Let I be a simple right ideal of R. By [10,
Lemma 3.8, p. 29] we have that either I is nilpotent or a
direct summand of R. If I is a nilpotent, then I < ] by
[11, Corollary 6.2.8, p. 181] and hence I is a simple
small right ideal of R. Thus every SS-injective right R-

module is right mininjective. |

It easy to prove the following proposition.

Proposition 2.7. Let N be a right R-module. If J(N)
is a small submodule of N, then a right R-module M is
SS-N-injective if and only if any R-homomorphism
fisoc(N)nJ(N) — M extendsto N.

Proposition 2.8. Let N be a right R-module and
{A;:i=1,2,..,n} be a family of finitely generated
right R-modules. Then N is SS-@7., A;-injective if and
only if N is SS-A;-injective, foralli = 1,2, ..., n.
Proof. (=) This follows from Theorem 2.4 ((2), (4)).
(<) By [12, Proposition (1.4.1) and Proposition (1.1.2),
p. 28 and 16] we have soc(Pi, 4;) NJ(BL, 4;) =
(soc N )DL, 4)) =B, (socN))(4;) =

", (soc(4) NnJ(A)). For j = 1,2, ...,n consider the
following diagram:

i
K; = soc(4;) nJ(4;) ———> 4

lKj LAj

., (soc(4) N J(A)) ——> @, 4,

/|

N
where i, i, are inclusion maps and i, La; are injection

maps. By hypothesis, there exists an R-homomorphism
hj:Aj — N such that hyi, = fix,, also there exists

exactly one  R-homomorphism h:@Pr, A, —» N
satisfying h; = hiA]. by [8, Theorem 4.1.6 (2), p. 83].
Thus fin = hji, = hL'Aji2 = hili,(j for al j=
1,2,..,n. Let (aq,ay..,a,) € L, (soc(Ai) n
J(A)), thus a; € soc(4;) nJ(4;), forall j = 1,2, ...,n,
and

(@, az @) = f (i, (@) + f (i, (a2)) + -+
f(iKn(an)) = (hiy)((ay, ay, ..., a)). Thus f = hi,

and the proof is complete. ]
Corollary 2.9.
(1) Letl=e; +e,+-+e, in R, where the e; are

orthogonal idempotents. Then M is SS-injective if
and only if M is SS-e;R-injective for every
i=12,..,n.

For idempotents e and f of R. If eR = fR and M is
SS-eR-injective, then M is SS-fR-injective.

O]
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Proof. (1) From [7, Corollary 7.3, p. 96], we have
R =@, e;R, thus it follows from Proposition 2.8 that
M is SS-injective if and only if M is SS-e;R-injective
forall1<i<n.

(2) This follows from Theorem 2.4 (4). ]
Corollary 2.10. A right R-module M is SS-injective
if and only if M is SS-P-injective, for every finitely
generated projective right R-module P.

Proof. By Proposition 2.8 and Theorem 2.4 ((2), (4)).
|

Proposition 2.11. The following statements are
equivalent for a right R-module M:

(1) Everyright R-module is SS-M-injective.
(2) Every simple submodule of M is SS-M-injective.
(3) soc(M)nj(M) = 0.

Proof. (1)=(2) and (3)=(1) are obvious.
(2)=>(3) Assume that soc(M)NJ(M) # 0, thus
soc(M) N J(M) =@ ,; x;R where x;R is a simple small
submodule of M, for each i € I. Therefore x;R is SS-M-
injective for each i € I by hypothesis. For any i € I, the
inclusion map from x;R to M is split, so we have that
x;R €® M. Since x;R is small submodule of M, it
follows that x;R = 0 and hence x; = 0 for all i € I and
this a contradiction. m

Aring R is called right universally mininjective ring
if it is satisfies the condition S, NnJ =0 (see for
example [2, Lemma 5.1]).
Corollary 2.12. The following statements are
equivalent for a ring R:

(1) R isright universally mininjective.
(2)  Every right R-module is SS-injective.
(3) Everysimple right ideal is SS-injective.

Proof. By Proposition 2.11. [

Theorem 2.13. (SS-Baer’s condition) The following
statement are equivalent for a ring R:

(1) M is an SS-injective right R-module.
2 If S,nj=A@®B, and a:A— M is an R-
homomorphism, then there exists m € M such that
a(a) = maforalla € Aand mB = 0.
Proof. Clear. [

Theorem 2.14. If M is a projective right R-module,
then the following statements are equivalent:

(1) Every quotient of an SS-M-injective right R-
module is SS-M-injective.

(2) Every quotient of a soc-M-injective right R-module
is SS-M-injective.

®)



Journal of AL-Qadisiyah for computer science and mathematics
ISSN (Print): 2074 — 0204

Vol.9 No.2 Year 2017
ISSN (Online): 2521 — 3504

(4) Every quotient of an injective right R-module is
SS-M-injective.

(5) Every sum of two SS-M-injective submodules of a
right R-module is SS-M-injective.

(6) Every sum of two soc-M-injective submodules of a
right R-module is SS-M-injective.

(7) Every sum of two injective submodules of a right
R-module is SS-M-injective.

(8) Every semisimple small submodule of M is
projective.

(9) Every simple small submodule of M is projective.

(10) soc(M) n J(M) is projective.

Proof. (1)=(2)=(3), (4)=(5)=(6) and (9)=(7)=(8)
are obvious.

(8)=(9) Since soc(M) n J(M) is a direct sum of simple
submodules of M and since every simple in J(M) is
small in M, thus soc(M) n J(M) is projective.

(3)=(7) Let D and N be right R-modules and consider

the diagram: B

D >N 0
fT
0 >SK—sM

where K is a semisimple small submodule of M, h is a
right R-epimorphism, f is a right R-homomorphism,
and i is the inclusion map. We can take D to be
injective R-module (by [13, Proposition 5.2.10, p.
148]). Since N is SS-M-injective, then we can extend f
to an R-homomorphism a: M — N. By projectivity of
M, thus a can be lifted to an R-homomorphism
@M — D such that hd@ = a. Let f:K — D be the
restriction of @ over K. Obviously, hf = f and this
implies that K is projective.

(7)=(1) Let h: N — L be an R-epimorphism, where N
and L are right R-modules, and N is SS-M-injective. Let
K be any semisimple small submodule of M, f:K — L
be any R-homomorphism, and i is the inclusion map.
By hypothesis, K is projective, thus f can be lifted to R-
homomorphism g: K — N such that hg = f. Since N
is SS-M-injective, then there exists R-homomorphism
g:M — N such that gi=g. Put 8 =hg:M — L.
Thus Bi=hgi=hg=f. Hence L is an SS-M-
injective right R-module.

(1)=(4) Let N; and N, be two SS-M-injective
submodules of a right R-module N. Then N; + N, is a
homomorphic image of the direct sum N; @ N,. Since
N, @ N, is SS-M-injective, thus N, + N, is SS-M-
injective by hypothesis.
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(6)=(3) Let E be an injective right R-module and
NoE Let Q=E®EK={(nn)] neEN},Q=
Q/K,H ={y+KeQ| yeE®O0} and H,=
{y+KeQ| ye 0DE}. Then Q = H, + H,. Since
(E®@O0ONK=0and (0B E)NK =0, thus E = H;,
i=1,2. Since HNnH,={y+Ke€eQ| yeN®
0}={y+KeQ| yeEO®N}, thus H NH,=N
under y — y + K forall y € N @ 0. By hypothesis, Q
is SS-M-injective. Since H; is injective, thus Q = H; @
A for some Ao Q, so A= (H +H,)/H =
H,/(H,NH,) = E/N. By Theorem 2.4 (5), E/N is
SS-M-injective. =

Corollary 2.15. The following statements are
equivalent for a ring R:

(1) Every quotient of an SS-injective right R-module is
SS-injective.

(2)  Every quotient of a soc-injective right R-module is
SS-injective.

(3) Every quotient of a small injective right R-module
is SS-injective.

(4) Every quotient of an injective right R-module is
SS-injective.

(5) Every sum of two SS-injective submodules of any
right R-module is SS-injective.

(6) Every sum of two soc-injective submodules of any
right R-module is SS-injective.

(7)  Every sum of two small injective submodules of
any right R-module is SS-injective.

(8) Every sum of two injective submodules of any
right R-module is SS-injective.

(9) Every semisimple small submodule of any
projective right R-module is projective.

(10) Every semisimple small submodule of any finitely
generated projective right R-module is projective.

(11) Every semisimple small submodule of Ry is
projective.

(12) Every simple small submodule of Ry is projective.

(13) S, nJ is projective.

(14) S, isprojective ( R isa right PS-ring).

Proof. The equivalence between (1), (2), (4), (5), (6),
(8), (11), (12) and (13) is from Theorem 2.14.
1)=3)=4), (B)=(7)=(8) and (9)=(10)=(13) are
clear.

(14)=(9) By [1, Corollary 2.9].

(13)=(14) Let S, = (S, NJ) D A, where A =@, S;
and S; is a right simple and direct summand of Ry, for
all i € 1. Thus A is projective, but S, nJ is projective,
so it follows that S, is projective. W
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Theorem 2.16. If every simple singular right R-
module is SS-injective, then r(a) €® Ry for every
a € S, nJjand S, is projective.

Proof. Let a € S, nJ and let A = RaR + r(a). Thus
there exists B & Ry such that A @ B < R,. Assert
that A@®B # Ry, then we find I €™* R, such that
A@® B < 1,and so I < Ry. By hypothesis, R/I is SS-
injective. Consider the map a:aR — R/I is given by
a(ar) = r + I which is well define R-homomaorphism.
Thus, there exists ¢ € R with 1 + I = ca + I and hence
1—ca€l. But ca € RaR S I which leadsto 1 €1, a
contradiction. Thus A@®B = R, and hence RaR +
(r(a) @ B) = R. Since RaR < Ry, then r(a) €% R;.
Put r(a) = (1—e)R, for some e?=e€R, so it
follows that ax = aex (because (1 —e)x € r(a), and
so a(l—e)x =0) for all x € R and this leads to
aR = aeR. Let y:eR — aeR be defined by y(er) =
aer for all r€R. Then y is a well defined R-
epimorphism.  Clearly, ker(y) = {er: aer =0} =
{fer: erer(@)}=eRnr(a) =0. Hence y is an
isomorphism and so aR is projective. Since S, NJ is a
direct sum of simple small right ideals, thus S, NnJ is
projective and it follows from Corollary 2.15 that S, is
projective. m

Corollary 2.17. A ring R is right mininjective and
every singular simple right R-module is SS-injective if
and only if R is a right universally mininjective.

Proof. By Theorem 2.16 and [2, Lemma 5.1]. =

Recall that a ring R is called zero insertive if
aRb =0 for all a,b € R with ab = 0 (see [3]). Note
that if R is zero insertive ring, then RaR +
r(a) S°° Ry for every a € R (see [3, Lemma 2.11]).
Proposition 2.18. Let R be a zero insertive ring. If
every simple singular right R-module is SS-injective,
then R is right universally mininjective.

Proof. Let a € S, nJ. We claim that RaR + r(a) =
R, thus r(a) = R (since RaR « R), so a = 0 and this
means that Sy N J = 0. Otherwise, if RaR + r(a) & R,
then there exists a maximal right ideal I of R such that
RaR +r(a) S 1. Since I €°° Ry by Lemma 2.1.22,
then R/I is SS-injective by hypothesis. Consider
a:aR — R/I is given by a(ar) =r+1 forall r €R
which is well defined R-homomorphism. Thus 1+ =
ca + I for some ¢ € R. Since ca € RaR € I, then1 € [
and this contradicts the maximality of I, so we must
have RaR + r(a) = R and this ends the proof. =
Theorem 2.19. If M is a finitely generated right R-
module, then the following statements are equivalent:

(1) soc(M) nJ(M) is a noetherian R-module.

(2) soc(M) n J(M) is finitely generated.

(3) Any direct sum of SS-M-injective right R-modules
is SS-M-injective.

(4) Any direct sum of soc-M-injective right R-modules

is SS-M-injective.
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(5) Any direct sum of injective right R-modules is SS-
M-injective.

(6) KO is SS-M-injective for every injective right R-
module K and for any index set S.

(7) KM is SS-M-injective for every injective right R-

module K.

Proof. (1)=(2) and (3)=(4)=(5)=(6)=(7) Clear.
(2)=(3) Let E =@, M; be a direct sum of SS-M-
injective right R-modules and f: N — E be a right R-
homomorphism where N is a semisimple small
submodule of M. Since soc(M)Nnj(M) is finitely
generated, thus N is finitely generated and hence
f(N) E@;er, M; , for a finite subset 1; of I. Since a
finite direct sums of SS-M-injective right R-modules is
SS-M-injective, thus ., M; is SS-M-injective and
hence f can be extended to an R-homomorphism
g:M — E.Thus E is SS-M-injective.

(7)=(1) Let N; € N, < --- be a chain of submodules of
soc(M) N J(M). Foreachi > 1, let E; = E(M/N;) and
E =@, E; . For every i > 1, we put M; = [[%,E; =

E, ® <H§11Ej), then M; is injective. By hypothesis,
Jj#i
2 M; = (D2, E)D <®(121 H}i1 EJ) is SS-M-
J#i

injective, so it follows from Theorem 2.4 (5) that E is
SS-M-injective.  Define f:U=URX,N; > E by
f(@m) = (m+ N;); . Itis clear that f is a well defined
R-homomorphism. Since M is finitely generated, thus
soc(M) N J(M) is a semisimple small submodule of M
and hence U2, N; is a semisimple small submodule of
M, so f can be extended to a right R-homomorphism
g:M — E. Since M is finitely generated, then we have
gM) €@, E(M/N;) for some n and hence f(U) <

L E(M/Np). Since mif(x) =m ((x+ Nj)]_ﬂ) =
x+N; for al xeU and i=>1, where
m;: >y E(M/N;) — E(M/N;) be the projection map.
Thus m;f(U) =U/N; for all i >1. Since f(U) <

*,E(M/N;). Thus U/N; =m;f(U) =0, for all
i=zn+1,s0U=N, forall i>n+1 and hence the
chain N, &N, c.. terminates at N,,;. Thus
soc(M) n J(M) is a noetherian R-module. m
Corollary 2.20. If N is a finitely generated right R-
module, then the following statements are equivalent:

(1) soc(N) nJ(N) is finitely generated.

(2) M is SS-N-injective for every soc-N-injective
right R-module M and for any index set S.

(3) M® is SS-N-injective for every SS-N-injective
right R-module M and for any index set S.

(4 MM is SS-N-injective for every soc-N-injective
right R-module M.

(5) MM s SS-N-injective for every SS-N-injective

right R-module M.
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Proof. By Theorem2.19. m

Corollary 2.21. The following statements are
equivalent :

(1) S, nJisfinitely generated.

(2)  Any direct sum of SS-injective right R-modules is
SS-injective.

(3) Any direct sum of soc-injective right R-modules is
SS-injective.

(4)  Any direct sum of small injective right R-modules
is SS-injective.

(5)  Any direct sum of injective right R-modules is ss-
injective.

(6) M® is SS-injective for every injective right R-
module M and for any index set S.

(7) M® jis SS-injective for every soc-injective right
R-module M and for any index set S.

(8) MW is SS-injective for every small injective right
R-module M and for any index set S.

(9) M® is SS-injective for every SS-injective right R-
module M and for any index set S.

(10) M® is SS-injective for every injective right R-
module M.

(11) M®M js SS-injective for every soc-injective right
R-module M.

(12) MM s SS-injective for every small injective right
R-module M.

(13) MW is SS-injective for every SS-injective right R-
module M.

Proof. By applying Theorem 2.19 and Corollary 2.20.
|

3. Strongly SS-Injective Modules

Proposition 3.1. A right R-module M is a strongly
SS-injective if and only if every R-homomorphism
a:A — M extends to N, for all right R-module N,
where A < N and a(A) is a semisimple submodule in
M.

Proof. (<) Clear.

(=) Let A be a small submodule of N, and a: A — M
be an R-homomorphism with a(A4) is a semisimple
submodule of M. If B = ker(a), then « induces an R-
homomorphism @:A/B — M defined by @&(a + B) =
a(a), for all a € A. Clearly, @ is well define because if
a,+B=a,+B we have a; —a, € B, s0 a(a;) =
a(a,), that is @(ay + B) = @(a, + B). Since M is
strongly SS-injective and A/B is semisimple and small
in N/B, thus @ extends to an R-homomorphism
y:N/B — M. If ;: N — N/B is the canonical map,
then the R-homomorphism B =ym:N — M is an
extension of a such that if a €A, then B(a) =

(ym)(a) =y(a+ B) = @(a + B) = a(a)as desired. &
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Corollary 3.2.
(1) Let M be a semisimple right R-module. If M is a

strongly SS-injective, then M is a small injective.
If every simple right R-module is strongly SS-
injective, then R is a semiprimitive ring.

Proof. (1) By Proposition 3.1.

(2) By (1) and applying [3, Theorem 2.8]. ]
Remark 3.3. The converse of Corollary 3.2 is not
true ( see Example 3.8).

Theorem 3.4. If M is a strongly SS-injective ( or just
SS-E (M)-injective) right R-module, then for every
semisimple small submodule A of M, there is an
injective R-module E, such that M = E, & T, where
T, & M with T, n A = 0. Moreover, if A # 0, then E,
can be taken A € E,.

Proof. Let 4 be a semisimple small submodule of M.
If A=0, we end the proof by taking E, =0 and
T, = M. Suppose that A # 0 and let i;,i, and i; be
inclusion maps and D, = E (A) is the injective hull of A
in E(M). Since M is strongly SS-injective, thus M is
SS-E(M)-injective. Since A is a semisimple small
submodule of M, so it follows from [8, Lemma 5.1.3
(a)] that A is a semisimple small submodule in E(M)
and hence there exists an R-homomorphism
a:E(M) - M such that ai,i; =i3. Put B =
ai,: Dy — M, thus B is an extension of i;. Since
A €% Dy, B is an R-monomorphism. Put E, = B(D,).
Since E, is an injective submodule of M, thus M =
E,®T, for some T, M. Since B(A)=A4, AC
B(D,) = E, and this means that T, N A = 0. Moreover,
define f = p:D, — E,, thus B is an isomorphism.
Since A c°*D,, thus B(A) € E,. But B(A) =
p(A) =A,s0AC*E,. 1

Corollary 3.5. If M is a right R-module has a
semisimple small submodule A such that A € M,
then the following statements are equivalent:

@

(1) M isinjective.
(2) M is strongly SS-injective.
(3) M is SS-E(M)-injective.

Proof. (1)=(2) and (2)=(3) are obvious.

(3)=(1) By Theorem 3.4, we can write M = E, P T,
where E, injective and T, N A = 0. Since A <°*° M,
thus T, =0 and hence M = E,. Therefore M is an
injective R-module. m

Example 3.6. 7z, as Z-module is not strongly SS-
injective. In particular, Z, is not SS-Z,«-injective.
Proof. Assume that Z, is strongly SS-injective Z-
module. Let A =< 2 >={0,2}. It is clear that A is a
semisimple small and essential submodule of Z, as Z-
module. By Corollary 3.5, Z, is injective Z-module and
this a contradiction. Thus Z, as Z-module is not
strongly SS-injective. Moreover, Since E(Z,z) = Z,
as Z-module, thus Z, is not SS-Z,«-injective, by
Corollary3.5. ®
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Corollary 3.7. Let M be a right R-module such that
soc(M)NJ(M) K M (in particular, if M is finitely
generated). If M is strongly SS-injective, then M =
E @ T, where E is injective and T n soc(M) nJ(M) =
0. Moreover, if soc(M) NnJ(M) # 0, then we can take
soc(M) N J(M) €*° E.
Proof. By taking A = soc(M) nJ(M) and applying
Theorem 3.4. m

The following example shows that the converse of
Theorem 3.4 and Corollary 3.7 is not true.
Example 3.8. Let M =7 as Z-module. Since
J(M) =0 and soc(M) = M, thus soc(M) nJ(M) = 0.
So, we can write M =0@ M with M n (soc(M) N
J(M)) = 0. Let N = Zg as Z-module. Since J(N) =<
2 > and soc(N) =< 4 >. Define y:soc(N) nJ(N) —
M by y(4) = 3, thus y is a Z-homomorphism. Assume
that M is strongly SS-injective, thus M is SS-N-
injective, so there exists Z-homomorphism g: N — M
such that g o i =y, where i is the inclusion map from
soc(N) nJ(N) to N. Since B(J(N)) €J(M), thus
3=y@ =p@H) eBJN)) cJM)=0 and this
contradiction, so M is not strongly SS-injective Z-
module.
Corollary 3.9. The following statements are
equivalent:

(1) soc(M)nj(M) = 0, for all right R-module M.
(2) Every right R-module is strongly SS-injective.
(3) Every simple right R-module is strongly SS-

injective.

Proof. By Proposition 2.11. m

Lemma 3.10. Let Mand C be right R-modules and
N o M with M/N is a semisimple. Then every R-
homomorphism from a submodule (resp. semisimple
submodule) A of M to C can be extended to an R-
homomorphism from M to C if and only if every R-
homomorphism from a submodule (resp. semisimple
submodule) B of N to C can be extended to an R-
homomorphism from M to C.

Proof. (=) is obtained directly.

(<) let f be an R-homomorphism from a submodule A
of M to C. Since M/N is a semisimple, there exists
Lo M suchthat A+ L =M and ANLCS N ( see [6,
Proposition 2.1]). Thus there exists an R-
homomorphism g: M — C such that g(x) = f(x) for
all xe AnL. Define h:M — C such that for any
x=a+?f a€A LEL h(x)=f(a)+g(#). Thus h
is a well define R-homomorphism, because if a; + ¢, =
a,+4,, a, €A, £;€L, i=12thena;, —a, =4, —
Y, €EANL, that is f(ay —ay) =g, —*¢,) which
leads to h(a, + #;) = h(a, + ¥,). Therefore h is a well
define R-homomorphism and extension of f. ®
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Corollary 3.11. For right R-modules M and N, the
following hold:

(1) If M is finitely generated and M/J(M) is
semisimple right R-module, then N is soc-M-
injective if and only if N is SS-M-injective.

(2) If M/soc(M) is semisimple right R-module, then
N is soc-M-injective if and only if N is M-injective.

(3) If R/S, is semisimple as right R-module, then N is
soc-injective if and only if N is injective.

(4) If R/S, is semisimple as right R-module, then N is

SS-injective if and only if N is small injective.

Proof. (1) (=) Clear.

(&) Since N is a right SS-M-injective, thus every R-
homomorphism from a semisimple small submodule of
M to N extends to M. Since M is finitely generated, thus
J(M) K M and hence every R-homomorphism from
any semisimple submodule of (M) to N extends to M.
Since M/J(M) is semisimple, thus every R-
homomorphism from any semisimple submodule of M
to N extends to M by Lemma 3.10. Therefore, N is soc-
M-injective right R-module.

(2) (=) Since N is soc-M-injective. Thus every R-
homomorphism from any submodule of soc(M) to N
extends to M. Since M/soc(M) is semisimple, thus
Lemma 3.10 implies that every R-homomorphism from
any submodule of M to N extends to M. Hence N is M-
injective.

(<) Clear.

(3) By (2).

(4) Since R/S, is semisimple as right R-module, thus
J(R/S,) = 0. By [8, Theorem 9.1.4(b)], we have J € S,
and hence ] =J n S,. Thus N is SS-injective if and only
is N is small injective. W

Corollary 3.12. Let R be a semilocal ring, then
S, nJ is finitely generated if and only if S, is finitely
generated.

Proof. Suppose that S, nJ is finitely generated. By
Corollary 2.21, every direct sum of soc-injective right
R-modules is SS-injective. Thus it follows from
Corollary 3.11 (1) and [1, Corollary 2.11] that S, is

finitely generated. M

Theorem 3.13. If R is a right perfect ring, then M is
a strongly soc-injective right R-module if and only if M
is a strongly SS-injective.

Proof. (=) Clear.

(<) Let R be a right perfect ring and M be a strongly
SS-injective right R-module. Since R is a semilocal
ring, thus it follows from [14, Theorem 3.5] that every
right R-module N is semilocal and hence N/J(N) is
semisimple right R-module. Since R is a right perfect
ring, the Jacobson radical of every right R-module is
small by [13, Theorem 4.3 and 4.4, p. 69]. Thus
N/J(N) is semisimple and J(N) < N, for any N €
Mod-R. Since M is strongly SS-injective it follows
Lemma 3.10 implies that M is strongly soc-injective. m
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Corollary 3.14. Aring R is QF if and only if every
strongly SS-injective right R-module is projective.
Proof. (=) If R is QF ring, then R is a right perfect
ring, so by Theorem 3.13 and [1, Proposition 3.7] we
have that every strongly SS-injective right R-module is
projective.
(<) By hypothesis we have that every injective right R-
module is projective and hence R is QF ring ( see for
instance [11, Proposition 12.5.13]). ®
Theorem 3.15. The following statements are
equivalent for aring R:

(1) Every direct sum of strongly SS-injective right R-

modules is injective.
(2) Every direct sum of strongly soc-injective right R-
modules is injective.

(3) Risright artinian.
Proof. (1)=(2) Clear.
(2)=(3) Since every direct sum of strongly soc-injective
right R-modules is injective. Thus R is right noetherian
and right semiartinian by [1, Theorem 3.3 and Theorem
3.6], so it follows from [15, Proposition VIII.5.2, p.
189] that R is right artinian.
(3)=>(1) By hypothesis, R is right perfect and right
noetherian. It follows from Theorem 3.13 and [1,
Theorem 3.3] that every direct sum of strongly SS-
injective right R-modules is strongly soc-injective.
Since R is right semiartinian, so [1, Theorem 3.6]
implies that every direct sum of strongly SS-injective
right R-modules is injective. W

Recall that a submodule K of a right R-module M is

called t-essential in M (written K < M) if for every
submodule L of M, KnL<Z,(M) implies that
L € Z,(M) (see [16]). A right R-module M is said to be
t-semisimple if every submodule A of M there exists a
direct summand B of M such that B <% A (see [16]). A
ring R is said to be right V-ring (GV-ring, SI-ring,
respectively) if every simple (simple singular, singular,
respectively) right R-module is injective. A right R-
module is called strongly s-injective if every R-
homomorphism from K to M extends to N for every
right R-module N, where K € Z(N) (see [17]). In the
next results, we will give the connection between
injectivity and strongly s-injectivity and we characterize
V-rings, GV-rings, SI-rings and semisimple rings by this
connection.
Theorem 3.16. If R is a right t-semisimple, then a
right R-module M is injective if and only if M is
strongly s-injective.
Proof. (=) Obvious.
(<) Let M be a strongly s-injective, Z,(M) is injective
by [17, Proposition 3, p. 27]. Thus every R-
homomorphism f: K — M, where K € Z} extends to R
by [17, Lemma 1, p. 26]. Since R is a right t-
semisimple, thus R /Z7} is a right semisimple by [16,
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Theorem 2.3]. So by applying Lemma 3.10, we
conclude that M is injective. W
Corollary 3.17. A ring R is right SI and right t-
semisimple if and only if it is semisimple.
Proof. (=) Since R is a right SI-ring, thus every right
R-module is strongly s-injective by [17, Theorem 1, p.
29]. By Theorem 3.16, we have that every right R-
module is injective and hence R is semisimple ring.
(&) Clear. m
Corollary 3.18. If R is a right t-semisimple ring.
Then R is right V-ring if and only if R isright GV-ring.
Proof. By [17, Proposition 5, p. 28] and Theorem
3.16. m
Corollary 3.19. If R is a right t-semisimple ring,
then R/S, is noetherian right R-module if and only if R
is right noetherian.
Proof. If R/S, is noetherian right R-module, then
every direct sum of injective right R-modules is
strongly s-injective by [17, Proposition 6]. Since R is
right t-semisimple, so it follows from Theorem 3.16
that every direct sum of injective right R-modules is
injective and hence R is right noetherian. The converse
is clear. H

4. SS-Injective Rings

We recall that the dual of a right R-module M is
M9 = Homgz(M, Rg) and clearly that M¢ is a left R-
module.

Proposition 4.1. The following statements are

equivalent for a ring R:
(1) Risaright SS-injective ring.
(2) If K is a semisimple right R-module, P and Q are
finitely generated projective right R-modules,
B:K — P is an R-monomorphism with f(K) < P
and f: K — Q is an R-homomorphism, then f can
be extended to an R-homomorphism h: P — Q.
If M be a right semisimple R-module and f is a
nonzero R-monomorphism from M to R, with
f(M) < Rg, then M® = Rf.
Proof. (2)=(1) Clear.
(1)=(2) Since Q finitely generated, there is an R-
epimorphism a: R™ — Q for some n € Z*. Since Q is
a projective, there is an R-homomorphism a,: Q — R"
such that a, ar, = I,,. Define f:K — B(K) by f(a) =
B(a) for all a € K. Since R is a right SS-injective ring
by hypothesis, it follows from Proposition 2.8 and
Corollary 2.5 (1) that R™ is a right SS-P-injective R-
module. So there exists an R-homomorphism h: P —
R™ such that hi = a,ff~*. Put g = a;h: P — Q. Thus
gi = (a;h)i = ay(arff*)=fBF* and  hence

@p)(@ =g (i(B@)) = (fB)(B@) = f(a) for
all a € K. Therefore, there is an R-homomorphism
g:P — Qsuchthat gg = f.

®)
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(1)=(3) Let g e M we have gf ':f(M)— Ry,
since f(M) is a semisimple small right ideal of R and R
is a right SS-injective ring ( by hypothesis), gf~! = a.
for some a € R. Therefore, g = af and hence M% =
Rf.

(3)=(1) Let f:K — R be a right R-homomorphism,
where K is a semisimple small right ideal of R and
i: K — R be the inclusion map, thus by (3) we have
K% = Ri and hence f = ci in K% for some ¢ € R. Thus
there is ¢ € R such that f(a) = ca for all a € K and

this implies that R is a right SS-injective ring. W
Example 4.2.

(1) Every universally mininjective ring is SS-injective,
but not conversely (see Example 5.6).
(2) The two classes of universally mininjective rings

and soc-injective rings are different ( see Example
5.6 and Example 5.7).

Lemma 4.3. Let R be a right SS-injective ring. Then:

(1) R isaright mininjective ring.

(2) Ir(a) =Raforalla€es,nj.

(3) r(a)cr),a€eS.nj, beRimplies Rb S Ra.

@ U(bRN7T(a)=1U(b)+Ra, for all a€S, nJ,
b €R.

(5) UK, NK,)=I1(K)+Ll(K,), for all semisimple

small right ideals K; and K, of R.

Proof. Clear. m

The following is an example of a right mininjective
ring which is not right SS-injective.
Example 4.4. (The Bjork Example [5, Example 2.5,
p. 38]). Let F be a field and let a+— a be an
isomorphism F — F € F, where the subfield F # F.
Let R denote the left vector space on basis {1, t}, and
make R into an F-algebra by defining t> =0 and
ta = at for all a € F. By [5, Example 2.5 and 5.2, p.
38 and 97] we have R is a right principally injective and
local ring. It is mentioned in [1, Example 4.15], that R
is not right soc-injective. Since R is local, thus by
Corollary 3.11 (1), R is not right SS-injective ring.
Proposition 4.5. Let R be a right SS-injective ring.
Then :

(1) If Ra is a simple left ideal of R, then soc(aR) N
J(aR) is zero or simple.
2) ri(S,nj)=S,.n]Jifandonlyif ri(N) = N forall
semisimple small right ideals N of R.
Proof. (1) Suppose that soc(aR)nj(aR) is a

nonzero. Let x;R and x,R be any simple small right
ideals of R with x; €aR, i =1,2. If x;RNx,R =0,
then by Lemma 4.3 (5), l(x;)+l(x,) =R. Since
X; € aR, thus x; = ar; for some r; € R, i = 1,2, that is
l(a) € l(ary) = l(x;), i =1,2. Since Ra is a simple,
then [(a) €™ R, that is [(x;) = l(x,) = l(a).
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Therefore, l(a) =R and hence a=0 and this
contradicts the minimality of Ra. Thus soc(aR) N
J(aR) is simple.
(2) Suppose that rI(S, nJ)=S,.nJ and let N be a
semisimple small right ideal of R, trivially we have
N S rl(N). If Nn xR = 0 for some x € rl(N), then by
Lemma 4.3 (5), I[(N nxR) = I(N) + l(xR) = R, since
xeriiN)crl(S,n])=S8.nJ. If yel(N), then
yx =0, that is y(xr) =0 for all r € R and hence
I(N) € I(xR). Thus I(xR) =R, so x =0 and this
means that N c®°r[(N). Since N c®°ri(N)c
rl(S,nJ) =S,nJ, it follows that N =rI(N). The
converse is trivial. m
Recall that a right ideal I of R is said to be lie over
summand of Ry, if there exists a direct decomposition
Rp=Ar @ BywithAcS Iand B NI <K Ry (see [18])
which leadsto I =A@ (BN I).
Lemma 4.6. Let K be an m-generated semisimple
right ideal lies over summand of Ry. If R is a right SS-
injective ring, then every R-homomorphism from K to
Ry can be extended to an endomorphism of Ry.
Proof. Let a: K — R be a right R-homomorphism. By
hypothesis, K = eR @ B, for some e? = e € R, where
B is an m-generated semisimple small right ideal of R.
Now, we need to prove that K =eR @ (1 — e)B.
Clearly, eR + (1 — e)B is a direct sum. Let x € K, then
x =a+ b, for some a € eR,b € B, sO we can write
x =a+eb+ (1 —e)b and this implies that x € eR P
(1 —e)B. Conversely, let x € eR @ (1 —e)B. Thus
x=a+ (1 —e)b, for some a € eR,b € B. We obtain
x=a+(1—e)b=(a—eb)+beeR®B. It is
obvious that (1 —e)B is an m-generated semisimple
small right ideal. Since R is a right SS-injective, then
there exists y € End(Rg) such that y|_¢)p = @|(1-¢)5-
Define B: R, — Ry by B(x) = a(ex) + y((l - e)x),
for all x € R which is well defined R-homomorphism.
If xeK, then x=a+b where a€eR and b€
(1 —-e)B, so B(x) =a(ex) + y((l — e)x) =a(a) +
y(b) = a(a) + a(b) = a(x) which yields g is an
extensionof a. m
Corollary 4.7. Let S, be a finitely generated and lies
over summand of R;. Then R is a right SS-injective
ring if and only if R is a right soc-injective .
Proof. By Lemma4.6. =m
Recall that a ring R is called right minannihilator if
rl(K) = K for every simple right ideal K of R (see [2])
(equivalently, for every simple small right ideal K of
R).
Corollary 4.8. For a right SS-injective ring R, the
following hold:
1 1 S n))=Snj,
minannihilator.
2 IfS, cS,,then:
(a) S{; = ST'
(b) R isa left minannihilator ring.

then R is right
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Proof. (1) By Proposition 4.5 (2).

(2) (a) By [2, Proposition 1.14 (4)].

(b) By Lemma 4.3 (2). m

Proposition 4.9. The following statements are
equivalent for a right SS-injective ring R:

1) S,c<S,.
(2) S{z = S.,-.
(3) R isaleft mininjective ring.

Proof. (1)=(2) By Corollary 4.8 (2) (a).
(2)=(3) By Corollary 4.8 (2) and [5, Corollary 2.34, p.
53], we must show that R is right minannihilator ring.
Let aR be a simple small right ideal, then Ra is a simple
small left ideal by [2, Theorem 1.14]. Let 0 # x €
rl(aR), then I(a) € l(x). Since [(a) €™** R, thus
[(a) = l(x) and hence Rx is simple left ideal, that is
x € S,. Now, if Rx = Re for some e? = e € R, then
e = rx for some 0 # r € R. Since (e — 1)e = 0, then
(e —1rx =0, that is (e — 1)ra = 0 and this implies
that ra € eR. Thus raR < eR, but eR is semisimple
right ideal, so raR <® R and hence ra = 0. Therefore,
rx = 0, that is e = 0, a contradiction. Thus x € J and
hence x € S, nJ. Therefore, aR S rl(aR) S S, N]J.
Now, let aRnyR =0 for some y € ri(aR), thus
[(aR) + L(yR) = l(aR nyR) = R. Since y € rl(aR),
thus [(aR) S I(yR) and hence [(yR) =R, that is y =
0. Therefore, aR < rl(aR), SO aR =rl(aR) as
desired.
(3)=(1) Follows from [5, Corollary 2.34, p. 53]. =
Recall that a ring R is said to be right minfull if it is
semiperfect, right mininjective and soc(eR) # 0 for
each local idempotent e € R (see [5]). Aring R is called
right min-PF, if it is a semiperfect, right mininjective,
S, €% Ry, Ir(K) =K for every simple left ideal
K < eR for some local idempotent e € R (see [5]).
Corollary 4.10. Let R be a right SS-injective ring,
semiperfect with S, €% Rg. Then R is a right minfull
ring and the following statements hold:

(1) Every simple right ideal of R is essential in a
summand.

(2) soc(eR) is simple and essential in eR for every
local idempotent e € R. Moreover, R is right
finitely cogenerated.

(3) For every semisimple right ideal I of R, there exists
e? = e € R such that I = rl(I) S eR.

4) S.cS,crl(S,).

(5) If I is a semisimple right ideal of R and aR is a
simple right ideal of R with I naR =0, then
rl(I @ aR) =rl(I) @ rl(aR).

6) rl(®L, a;R) =@, rl(a;R), where @, q;R isa
direct sum of simple right ideals.

(7) The following statements are equivalent:

(@ S, =rl(Sy).
(b) K =rl(K), for every semisimple right ideals K
of R.
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() kR =rl(kR), for every simple right ideals kR of

R.

(0 S, =S5,

(e) soc(Re) is a simple for all local idempotent
e ER.

() soc(Re) = S,e, for all local idempotent e € R.

(9) R isaleft mininjective.

(h) L =1r(L), for every semisimple left ideals L of
R.

(i) R isaleft minfull ring.

0 Snj=rlSn)).

(k) K =rl(K), for every semisimple small right
ideals K of R.
() L =1Ir(L), for every semisimple small left ideals
L of R.
(8) If R satisfies any condition of (7), then r(S, N
J) €°° Rp.

Proof. (1), (2), (3), (4), (5) and (6) are obtained by
Corollary 2.1.32 (1) and [1, Theorem 4.12].

(7) The equivalence of (a), (b), (c), (d), (), (), (9), (h)
and (i) follows from Corollary 3.11 and [1, Theorem
4.12].

(b)=(j) Clear.

(i) (k) By Proposition 4.5 (2).

(K)=(c) By Corollary 4.8 (1).

(h)=(1) Clear.

(D=(d) Let Ra be a simple left ideal of R. By
hypothesis, ir(A) = A for any simple small left ideal A
of R. Since lr(A4) = A, for any simple left ideal A of R,
Ir(Ra) = Ra. Thus R is a right min-PF ring and it
follows from [2, Theorem 3.14] that S, = S,.

(8) Let K be a right ideal of R such that (S, nJ) N
K=0. Then Kr(S,nJ)=0 and we have K C
r@S,nND=Snj=s5.nj. Now, r((S,n)+
I(K)) = r(S,nJ) N K = 0. Since R is left Kasch, then
S, nJ)+1(K) =R by [9, Corollary 8.28 (5), p. 281].
Thus I(K) = R and hence K = 0, so (S, N ]) S°° Ry.
]

N. Zeyada, S. Hussein and A. Amin [19] introduced
the notion almost-injective, a right R-module M is
called almost-injective if M =E @ K, where E is
injective and K has zero radical. They proved that,
every almost-injective right R-module is an injective if
and only if every almost-injective is a quasi-continuous
if and only if R is a semilocal ring ( see [19, Theorem
2.12]). After reflect of [19, Theorem 2.12] we found it
is not true always and the reason is due to the R-
homomorphism h: (L +J)/] — K in the proof of the
part of the Theorem 2.12 in [19] is not well define, so
most of the other results in [19] are not necessary to be
correct, because they are based on [19, Theorem2.12].
The following examples show that the contradiction in
[19, Theorem 2.12] is exist.
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Example 4.11. In particular from the proof of the
part (3)=(1) in [19, Theorem 2.12], we consider
R=Zgand M =K =<4 > Thus M = E @ K, where
E = 0 is a trivial injective R-module and J(K) = 0. Let
f:L — K is the identity map, where L = K. So, the
map homomorphism h: (L +J)/] — K which is given
by h(Z+)])=f#) is not well define, because
J=4+] but h(J))=f(0)=0+4=f4) =h(E+
D.
Example 4.12.
(1) Let R be an artinian ring. Assume that R is not

semisimple ring, then R is not right V-ring. Thus
there is simple right R-module is not injective.
Therefore, there is almost-injective right R-module
is not injective. So it follows from [19, Theorem
2.12] that R is not semilocal. Hence, R is not right
artinian and this a contradiction. Thus every right
artinian ring is semisimple, but this is not true in
general (see below example).

The ring Zg is semilocal. Since < 4 >= {0,4} is
almost-injective as Zg-module, then <4 > is
injective Zg-module by [19, Theorem 2.12]. Thus
< 4 >c® 7, and this a contradiction.

O]

Theorem 4.13. The following statements are
equivalent for a ring R:

(1) R is a semiprimitive and every almost-injective
right R-module is quasi-continuous.

(2) R is a right SS-injective and right minannihilator
ring, / is a right artinian, and every almost-injective
right R-module is quasi-continuous.

(3) R isasemisimple ring.

Proof. (1)=(2) and (3)=(1) are clear.

(2)=>(3) Let M be a right R-module with zero Jacobson
radical and let K be a nonzero submodule of M. Thus
K @ M is a quasi-continuous. By [20, Corollary 2.14, p.
23], K is an M-injective. Thus K <® M and hence M is
semisimple. In particular, R/J is a semisimple R-
module and hence R /] is artinian by [8, Theorem 9.2.2
(b), p.- 219], so R is semilocal ring. Since J is a right
artinian, then R is a right artinian. So, it follows from
Corollary 4.10 (7) that R is right and left mininjective.
Thus [2, Corollary 4.8] implies that R is QF ring. By
hypothesis R @ (R/]) is quasi-continuous ( since R is
self-injective), so again by [20, Corollary 2.14, p. 23]
we have that R/J is an injective. Since R is QF ring,
then R /] is a projective (see [8, Theorem 13.6.1]). Thus
the canonical map m:R — R/J is a splits and hence
J €® R, thatis /] = 0. Therefore, R is semisimple. m
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5. Strongly SS-Injective Rings

A ring R is called a right Ikeda-Nakayama ring if
(AN B) =1(A) + I(B) for all right ideals A and B of
R (see [5, p. 148]). In the next proposition, the strongly
SS-injectivity gives a new version of lkeda-Nakayama
rings.

Proposition 5.1. Let R be a strongly right SS-
injective ring, then (N N K) =1I(N) + I(K) for all
semisimple small right ideals N and all right ideals K of
R.

Proof. Suppose that x € (INNK) and define
a:N+K — Rg by a(a+ b) =xa for all a e N and
b € K. Clearly, a is well define, because if a;, + b; =
a, + by, then a; —a, = b, — by, that is x(a; —a,) =
0, so a(ay +b;)=a(a, +b,). Define the R-
homomorphism &: (N + K)/K — Ry by d(a+K) =
xa for all a €N which induced by a. Since
(N +K)/K S soc(R/K)NnJ(R/K) and R is a strongly
right SS-injective, & can be extended to an R-
homomorphism y:R/K — Rg. If y(1+K) =y, for
some y € R, then y(a+ b) = xa, for all a € N and
b € K. In particular, ya = xa foralla € N and yb = 0
for all b € K. Hence x = (x —y) +y € [(N) + I(K).
Therefore, I[(N N K) € I(N) + L(K). Since the converse
is always holds, thus the proof is complete. =

Recall that a ring R is said to be right simple J-
injective if for any small right ideal I and any R-
homomorphism a:I — Ry with simple image, a = c.
for some ¢ € R (see [14]).

Corollary 5.2. Every strongly right SS-injective ring
is a right simple J-injective.
Proof. By Proposition 3.1. m

Remark 5.3. The converse of Corollary 5.2 is not
true (see Example 5.6).

Proposition 5.4. Let R be a right Kasch and strongly
right SS-injective. Then:

(1) rl(K) =K, for every small right ideal K of R.
Moreover, R is right minannihilator.
(2) If R is left Kasch, then r(J) S R.

Proof.(1) By Corollary 5.2 and [14, Lemma 2.4].
(2) Let K be aright ideal of R and r(J) N K = 0. Then
Kr(J) = 0 and we obtain K < Ir(J) =], because R is
left Kasch. By (1), we have r(J + I(K)) =r()) nK =
0 and this means that J + [(K) = R ( since R is left
Kasch). Thus K = 0 and hence r(J) S°° Rz. m

The following examples show that the three classes
of rings: strongly SS-injective rings, soc-injective rings
and small injective rings are different.



Journal of AL-Qadisiyah for computer science and mathematics
ISSN (Print): 2074 — 0204

Vol.9 No.2 Year 2017
ISSN (Online): 2521 — 3504

Example 5.5. Let R=1Zy ={=: p does not

divide n}, the localization ring of Z at the prime p. Then
R is a commutative local ring and it has zero socle but
not principally small injective (see [4, Example 4]).
Since S, = 0, thus R is strongly soc-injective ring and
hence R is strongly SS-injective ring.

Example 5.6. Let R={(; »): nezxe1,}
Thus R is a commutative ring, ] = S, = {(g g) X €

Zz} and R is small injective ( see [3, Example (i)]). Let

A=) and B={(" )): nez} then 1(4)=
{(ZOn 23;): nezye ZZ} and
I(B) ={(g M) yem) Ths LA +IB) =

{(2(;1 23;): n€Lyen,}. Since AnB=0, then

I[(AnB) =R and this implies that I(4) +[(B) #
[(A n B). Therefore R is not strongly SS-injective and
not strongly soc-injective by Proposition 5.1.
Example 5.7. Let F =17, be the field of two
elements, F;, =F for i=1,2,.. , Q =[[2,F, S=

22, F;. If R is the subring of Q generated by 1 and S,

then R is a von Neumann regular ring ( see [17,
Example (1), p. 28]). Since R is commutative, thus
every simple R- module is injective by [9, Corollary
3.73. Thus R is V-ring and hence and hence J(N) =0
for every right R-module N. It follows from Corollary
3.9 that every R-module is a strongly SS-injective. In
particular, R is a strongly SS-injective ring. But R is not
soc-injective (see [17, Example (1)]).
Example 5.8. Let R = 7Z,[x,, x5, ... ] Where Z, is the
field of two elements, x? = 0 for all i, x;x; = 0 for all
i #jand x? = x7 # 0 forall i and j. If m = x7, then R
is a commutative, local, soc-injective ring with J =
span{m, x;,x,, ...}, and R has simple essential socle
J? = Z,m ( see [1, Example 5.7]). It follows from [1,
Example 5.7] that the R-homomorphism y:J] — R
which is given by y(a) = a? for all a € J with simple
image can not extend to R, then R is not simple J-
injective and not small injective, so it follows from
Corollary 5.2 that R is not strongly SS-injective.

Recall that a ring R is called right minsymmetric if
aR is simple, a € R, implies that Ra is simple left ideal
(see [2]). Every right mininjective ring is right
minsymmetric by [2, Theorem 1.14].

Theorem 5.9. Aring R is QF if and only if R is a
strongly right SS-injective and right noetherian ring
with S, € Rp.

Proof. (=) This is clear.

() By Lemma 4.3 (1), R is a right minsymmetric. It
follows from [3, Lemma 2.2] that R is right perfect.
Thus, R is strongly right soc-injective, by Theorem
3.13. Since S, €% Ry, so it follows from [1, Corollary
3.2] that R is a self-injective and hence R is QF. m

68

Akeel .R/ Adel .S

Corollary 5.10. For a ring R, the following
statements are true:

(1) R is a semisimple if and only if S, €°° Ry and
every semisimple right R-module is strongly soc-
injective.

(2) R is QF if and only if R is a strongly right SS-

injective, semiperfect with essential right socle and

R /S, is noetherian as right R-module.

Proof. (1) Suppose that S, = R and every
semisimple right R-module is strongly soc-injective,
then R is a right noetherian right V-ring by [1,
Proposition 3.12], so it follows from Corollary 3.9 that
R is a strongly right SS-injective. Thus R is QF by
Theorem 5.9. But / =0, so R is a semisimple. The
converse is clear.

(2) By [2, Theorem 2.9], /] =Z,. Since R/Z} is a
homomorphic image of R/Z, and R is a semilocal ring,
thus R is a right t-semisimple. By Corollary 3.19, R is
right noetherian, so it follows from Theorem 5.9 that R
iS QF . The converse is clear. m

Theorem 5.11. A ring R is QF if and only if R is
strongly right SS-injective, [(J?) is a countable
generated left ideal, S, < Ry and the chain r(x;) €
(X%1) € -+ © r(XyXp_q .. X3X;,) € -++ terminates for
every infinite sequence x,, x5, ... in R.

Proof. (=) Clear.

() By [3, Lemma 2.2], R is right perfect. Since
Sy ©°° Rp, thus R is right Kasch by [2, Theorem 3.7].
Since R is a strongly right SS-injective, R is a right
simple J-injective, by Corollary 5.2. Now, by
Proposition 5.4 (1) we have ri(S,nJ)=S5,.NnJ, so
Corollary 4.10 (7) leads to S, =S, . By [5, Lemma
3.36, p. 73], Sy = 1(J?). The result now follows from
[14, Theorem 2.18]. m

Remark 5.12. The condition S, €°° Ry in Theorem
5.9 and Theorem 5.11 can be not be deleted, for
example, Z is a strongly SS-injective noetherian ring
but not QF.

The following two
Proposition 5.8 in [1].
Corollary 5.13. Aring R is QF ring if and only if it
is left perfect, strongly left and right SS-injective ring.
Proof. By Corollary 5.2 and [14, Corollary 2.12]. =

Theorem 5.14. For a ring R, the following
statements are equivalent:

(1) R isa QF ring.
(2) R is a strongly left and right SS-injective, right
Kasch and ] is left t-nilpotent.

(3) R is a strongly left and right SS-injective, left
Kasch and J is left t-nilpotent.

results are extension of
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Proof. (1)=(2) and (1)=(3) are clear.

(3)=(1) Suppose that xR is simple right ideal. Thus
either rl(x) =xR<® R or x€J. If x €], then
rl(x) = xR ( since R is right minannihilator), so
Theorem 3.4 implies that rI(x) €*° E <® Ry,
Therefore, rl(x) is an essential in a direct summand of
Ry for every simple right ideal xR. Let K be a left
maximal ideal of R. Since R is a left Kasch, thus
r(K)#0 by [9, Corollary 8.28, p. 281]. Choose
0+ y€er(K),soK < I(y) and we conclude that

K = l(y). Since Ry = R/l(y), thus Ry is simple left
ideal. But R is a left mininjective ring, so yR is a simple
right ideal by [2, Theorem 1.14] and this implies that
r(K) c° eR for some e?=e€R ( since r(K) =
rl(y)). Thus R is semiperfect by [5, Lemma 4.1, p. 79]
and hence R is a left perfect ( since J is left t-nilpotent),
so it follows from Corollary 5.13 that R is QF.

(2)=(1) is similar to proof of (3)=(1). =

Theorem 5.15. The ring R is QF if and only if R is a
strongly left and right SS-injective, left and right Kasch,
and the chain l(a;) € l(a;a;) € - € l(aqa; ...a,) S
--- terminates for every a,, a,, ... € Z,.

Proof. (=) Clear.

(<) By Proposition 5.4, I(J) is essential in gR. Thus
J € Z, Let aj,a,,..€], we have l(a;) € l(a,a,) S
- S l(a;a, ...a,) S -+ . Thus there exists k € N such
that Il(ay ...a;) =l(a; ...axags,) (by hypothesis).
Suppose that a; ...a; # 0, S0 R(a; ... ai) N1(ax4q1) #
0 (since l(ay,q) is essential in gR). Thus ra, ...a, # 0
and ra, ...aza;.; = 0 for some r € R, a contradiction.
So, a; ...a; =0 and hence J is left t-nilpotent, so it
follows from Theorem 5.14 that R is QF. m
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