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Abstract

In this paper we introduce and study the concept of injective (Quasi-injective) extending gamma
modules as a generalization of injective (Quasi-injective) gamma modules. An R —module E is called
injective (Quasi-injective) extending gamma modules if each proper R —submodule in E is essential in
injective (Quasi-injective) R —submodule of E. The concept of injective extending gamma modules lie

between injective gamma modules and quasi-injective gamma modules.
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1. Preliminaries:

Let R and I' be two additive abelian groups, that 1y, is the unity, unities in I" —rings differ
R is called a I' —ring (in the sense of Barnes), if from unities in rings, it is possible for a I —ring
there exists a mapping - : R XI'XR — R, have more than one unity [9]. A I' —ring R is
written - (r,y,s) +— rys such that (a + b)ac = called commutative, if rys =syr for any
aac + bac, a(a + B)c = aac + afc, aa(b + r,s€Randy €T.
¢) = aab + bac and (aab)fc = aa(bBc) for Let R be a I' —ring and M be an additive
all a,b,c €R and &, €I [4]. A subset 4 of abelian group. Then M together with a
I' —ring R is said to be a right (left) ideal of R if mapping = RXI' XM — M, written

A is an additive subgroup of R and AI'R <
A(RIr'A c A), where ATR ={aar :a € A, a €

(r,y,m) — rym such that ra(m, +m,) =

ram; +ram,, (r +r,)am=nram+r,am,

I', r € R}. If Ais both right and left ideal, we r(a + B)m =ram +rfm (r,ary)fm =
say that A is an ideal of . Anelement 1in I — r,a(r,fm) for each 1,7, €R, a,f € ' and
ring R is unity if there exists element y, € I' m,my,m, €M, is called a left R, —module
such that r = 1y,r =ry.1 for every r € R, in similarly one can defined right R —module [4].
this paper we denote y, € I to the element such A left R —module M is unitary if there exist
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elements, say 1 in R and y, € I' such that
ly,m = m for every m € M.

Let M be an R —module. A nonempty
subset N of M is said to be an R —submodule
of M (denoted by N < M) if N is a subgroup of
M and RI'N € N, where RI'N = {ran: r €R,
a €T, n € N }[4]. An R —module M is called
simple if RIM#0 the
R —submodules of M are M and 0 [6], A
I' —ring R is called simple if RI'R # 0 and the

and only

only ideals of R are R and 0. If X is a nonempty
subset of M, then the R, —submodule of M
generated by X denoted by (X) and (X) =n
{N<M:X S N}, X is called the generator of
(X) and (X) is finitely generated if |X| < o. In
particular , if X = {x}, then(X) is called the
cyclic R —submodule of M generated by x.
Xy = {XRnx; + Xioimyx tkom €

N, n; €Zy; €I,y ER x;,x; €EX} . If M is
unitary, then (X)={3"~,nyix;:ne€N,y; €
I,r; € R, x; € X} [4]. An R —submodule N of
R —module M is called essential (denote by
N <, M) if every nonzero R —submodule of M
has nonzero intersection with N, in this case we
say that M is an essential extension of N,
equivalent to, for each nonzero element m in M
there is 1,7y, ...,7, €ER and yq,v2 ., Vo €T
such that Y- ,nnyym(=0)eN [1]. An
R —submodule N of R —module M is called
direct summand of M if there exists an
R —submodule K of M such that M = N + K
and NNnK =0, in this case M is written as
M = N®K [2]. An R —module M is called
semisimple if every R, —submodule is a direct
summand of M [3]. An R, —submodule N of
R —module M is called closed in M if it has no
proper essential extension in M, equivalent to

saying that the only solution of the relation
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N<,K<MisN =K][2]

Let M and N be two R —modules. A
mapping f: M — N is called homomorphism of
R —modules (simply R —homomorphism) if
fGx+y) =)+ f(y)and f(ryx) = ryf(x)
for each x,yeM,reR and y€erl. An
R —homomorphism is R —monomorphism if
it is one-to-one and R, —epimorphism if it is
onto, the set of all R —homomorphisms from
M into N denote by Homg,.(M, N) in particular
if M = N, Homg (M, N) denote by Endg.(M).
If M is Ry —module, then Endg.(M) is a
I' —ring with the mapping -: Endg.(M) X I' X
Endg. (M) - Endg.(M)
(f,v.9) = frg where fyg(x) = g(f(1yx)),
for f,g € Endg.(M) ,y €T and x € M. All
left
is a right

denoted by

modules in this paper are unitary

R —modules, in this case M
Endg,.(M) -module with the mapping M X
I X Endg,.(M) - Endg. (M) by - (x,v,f) ~
xyf where xyf = f(1lyx), for f € Endg (M),
y€erlrandx € M [4].

The notions of injective gamma modules and
quasi-injective gamma modules have been
introduced by M. S. Abbas, S. A. Al-saadi and
E. A. Shallal in [1] and [2]. If M and N are two
R —modules, then M is called N —injective
R —module if for any R —submodule A of N
and for any R —homomorphism f:4 - M
there exists an R, —homomorphism g:N - M
such that gi = f where i is the inclusion
mapping [1]. An R —module M is injective if it
is N —injective for any R —module N. It is
proved in [1], that every gamma module can be
embedded in injective gamma module called
injective hull and denote by E(M) which is

unique up to isomorphism.
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2. Injective Extending Gamma Modules

We extended the concept of injective
extending gamma modules from category of
modules [8] to the category of gamma modules
which is lie between injective gamma modules

[1] and quasi-injective gamma modules [2].

An R —module M is called extending if
every submodule of M is essential in a
direct summand of M [8].

Definition 2.1. An R —module M is called
I' —Extending if every R —submodule of M is
essential in a direct summand of M.
Proposition 2.2. An Ry —module M is
I' —Extending if and only if each closed
R —submodule of M is a direct summand of
M.

Proof: Let N be closed R, —submodule of
I' —Extending R —module M, then there is an
Ry —submodule K of M that

N <,K <g M,so N=K. Conversely , Let N

such

be a R —submodule M, then by using Zorn’s
lemma N has a maximal essential extension K
in M which is closed, so by hypothesis K is
direct summand of M, thus M is I' —Extending.
The following proposition follows from
Corollary(3.11) in [2].
Proposition 2.3. Every  quasi-injective
Ry —module is I' —Extending.
The converse of Proposition(2.3) is not true

in general as in Example(2.4)(2).

Examples 2.4.
1- Every semisimple (simple) R —module is
I' —Extending. Since every R —submodule

of M is a direct summand, then M is
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I' —Extending. In particular, Z, as
Z, —module is I' —Extending.
2-let R={nn),nez}

and r=

{(g) ,y €Z}. Then R is I —ring by

“RXT xR - R with (n n) (}) (m m) =

(nym nym). Let I # 0 be an ideal of R,
any another ideal P of R with PNI =0 ,

14
0

element in P,

take 0=+ (n n)€l, Oi()EF and

(m m) any then
(nym nym) = (n n) (g) (m m) € RTP

cP, also (nym nym) =

(m m) (](;) (nn) eRrI <1, so nym =0,
hence m = 0, thus P = 0, so every ideal in
R is essential, therefore R is I' —Extending.
Note that R is not quasi-injective, take the
I={2n 2n):neZ}
R —homomorphism A:l >R by
A2n 2n) =(n n) for each (2n 2n) €

ideal and

I , if R quasi-injective, then there is g:R —
R whichextends A,s0(1 1)=A(2 2)=

9@ n=g(@ 2()a )=

@ 2)((1))g(1 1), hence g(1 1)=

(21 %) contradiction.

Definition 2.5. An R —module M is called
injective extending (II' —Extending) if each
proper Ry —submodule of M is essential in
injective R —submodule of M, that is, for each
proper R —submodule N < M, there exists an

injective R, —submodule K of M such that

N<,K.
Proposition 2.6. If M is II' —Extending
Ry —module, then each proper closed

R, —submodule of M is injective.
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Proof: Assume N <M is proper closed

R —submodule, then there is an
R —submodule K of with N<,K <M, so

injective

N = K, thus N is injective.

The converse of Proposition(2.3) is not true
in general, for example Z as Z, —module , the
only proper closed Z, — submodule of Z which

is injective is 0 but Z is not II" —Extending.

The following proposition gives the converse

of Proposition(2.6) under certain conditions.
First we note that a semisimple R —module
different from II" —Extending. The Z, —module
Z, @ Z, is semisimple but not II" —Extending,
if not, then Z, is injective by Proposition(2.6)
contradiction. The Z, —module Q is injective,
so II" —Extending but not semisimple.
Proposition 2.7. Let M  semisimple
R —module. Then M is a II' —Extending if and
only if each proper closed R, —submodule in M
is injective.
Proof: For each proper R, —submodule N of
M, N has a maximal essential extension K by
Zorn’s lemma. It is clear that K is closed and
proper, so by hypothesis, K is injective, thus M
is II' —Extending.

Proposition 2.8. Let M be R —module, if M
has a proper nonessential R —submodule, than
M is IT" — Extending if and only if each proper
closed R, —submodule is injective.

Proof: Assume N is a proper nonessential
R —submodule of an R —module M, then by
Zorn's lemma there is maximal R —submodule
K of M suchthat N <, K, clear K is closed and

proper, so by hypothesis K is injective. By
in [3],
R —submodule L of M such that M = K@L,

Proposition(1.9) there is nonzero
again by hypothesis L is injective, hence M is

injective[1]. The obverse by Proposition(2.6).
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Proposition 2.9. If M is II' —Extending

R —module, then every proper closed
R —submodule of M is a direct summand of M.
In particular, every II" —Extending R —module
is I' —Extending.

Proof: Let N is a proper closed R —submodule
of II' —Extending R —module M, then N is
injective
Proposition(2.6), by Proposition(1.9) in [1] N is

R, —submodule of M by

a direct summand of M.

Proposition 2.10. Every injective R —module
is II' —Extending.

Proof: Let N be a proper R —submodule of an
injective R —module M. Then by Zorn’s
lemma N has a maximal essential extension K
in M, that K is
Corollary(3.11) in [2] K is a direct summand in
M, so K is
Remarks(1.10)
II' —Extending.

clearly closed, by
injective by Examples and
(3 in [1], thus M is

Proposition(2.10) shows that there are a lot
of II' —Extending R, —modules |,
R —module M

II' —Extending . In fact every R —module can

for any

it’s  injective  hull is
be embedded in II' —Extending R —module
see [1].

Proposition 2.11. Let M be II' —Extending
R —module. If M has a nontrivial closed
R —submodule, then M is injective.

Proof: Let N be a nontrivial closed
R —submodule of II' —Extending R —module
M. Then by Proposition(2.6) N is injective
R —submodule and by Proposition(1.9) in [1]
N is a direct summand of M, so M = N®K for
some R, —submodule K of M, since N is a

nontrivial, then K is proper closed and again by
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Proposition(2.6) K is injective and so M is

injective [1].

Examples 2.12.

1- Every simple R —module is
I —Extending, since the only proper closed
R —submodule is 0

Z, —module M = Z,

.In particular, the

is II' —Extending.
Note that M is not injective [1], so the
converse of Proposition(2.10) is not true in
general.

2- LetR=Z,I'=Zand M = Z , then M is not

II' —Extending, since the R, —submodule

(2) is not essential in any injective
Ry —submodule. Note that M is a
I' —Extending since the only closed

R —submodule of M is 0 which is direct
the
Proposition(2.9) is not true in general.
3- Let M =27, as Z, — module
ideals of Z4 are 0, Z¢ , (2) and (3) , then Z,
but

summand,  hence converse  of

, the only

is  semisimple not

IT" —Extending.

Z, —module

4- If R is semisimple R —module, then every
Ry —module s [3], so

IT" —Extending.

injective

Direct sum of two II' —Extending
R —modules may not be II' —Extending, for
example The Z, —module Z, is II" —Extending
but injective Examples(2.12)(1), the

Zz; —module Z, @ Z, is not II" —Extending, if

not

not, then Z, is injective by Proposition(2.6)

which is a contradiction .

Proposition 2.13. If direct sum of every two
II' —Extending R —modules is II" —Extending,
then M is injective if and only if M is

I —Extending.
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Let M  be II' —Extending,
E = E(M) is injective, so E is II' —Extending
by Proposition(2.10),
M@E is IT" — Extending, by Proposition(2.6) M

is injective.

Proof: since

hence by hypothesis

The following proposition gives the converse

of Proposition(2.6) under another condition.

Proposition 2.14. Let M be R, —module

contains a nontrivial nonessential
R —submodule. Then the following statements
are equivalent:

1- M isinjective.

2- M s II' —Extending.

3- Every proper closed R- —submodule of

M is injective.

Proof: (1) = (2) By Proposition(2.10).
(2) > (3) By Proposition(2.6). (3) = (1)
Assume N is a nontrivial R —submodule which
is not essential in M, then by Zorn's lemma N
has a  maximal  essential  extension
R —submodule K in M which is closed in M, if
K = M then N is essential in M contradiction,
S0 K is a proper by hypothesis K is injective and
a direct summand of M by Proposition(1.9) in
[1], so M = K®L for some R, —submodule L
of M, if L =0 a contradiction, hence L is a
proper again by hypothesis L is injective,

therefore M is injective [1].

Proposition 2.15. An Ry —module M is
Il —Extending if and only if M contains
hulls of

R —submodule.

injective each of its proper
Proof: For each proper R —submodule N of
II' —Extending R, —module M, there exists
injective R —submodule K of M such that

N <, K <M but N < E(N) which is minimal
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injective extension of N, so N < E(N) <K <
M, hence E(N) < M.

Corollary 2.16. If M is II' —Extending, then M
is injective hull of each proper essential
R —submodule of M.

Proof: For each proper essential
R —submodule N of M, by Proposition(2.15)
E(N) < M but E(N) is injective, therefore by
Proposition(1.9) in [1] E(N)
summand of M, so M = E(N)®L for some
R —submodule L of M. But N <, M, then

L=0,thus M = E(N).

is a direct

In the following proposition we a
characterization of IT" —Extending
Ry —modules in  which every proper
R —submodule lies under injective direct

summand.

Proposition 2.17. An Rp—module M is
I —Extending if and only if for every proper
Rr —submodule N of M,
decomposition M = M;@®M, such that M; is
injective, N <, M, and N@M, <, M.
that N is a

there exists a

Proof: Assume proper
R —submodule of M, then there exists injective
R —submodule M; suchthat N <, M; < M, so
by Proposition(1.9) in [1] M,

summand of M, hence M = M, ®M, for some

is a direct

R —submodule M, of M, since M, <, M, by
Lemma(3.3) in [1] N®&M, <, M;®M, = M.

Proposition 2.18. Let M be R —module. Then
M is II' —Extending if and only if either M is
simple or M is injective.

Proof: Assume M is not simple, then there
exists a nonzero R —submodule N of M with
M=+N, Also
R —submodule K suchthat N <, K < M but K

there  exists  injective
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is a direct summand of M by Proposition(1.9) in
[1], then M = K@®L for some R —submodule L
of M, if L = M, then M is injective, if L # M,
then L is proper closed, so by Propaosition(2.6) L
is injective, hence M is injective [1]. The other

direction follows from Proposition(2.10).

Corollary 2.19.

R —module is quasi-injective.

Every II' —Extending

Corollary 2.20.
R —module. Then M is injective if and only if
M is IT" —Extending.

Let M be a not simple

3. Quasi-Injective Gamma

Modules

Extending

In this section we introduce the concept of
quasi-injective extending gamma modules as a
generalization of  quasi-injective ~ gamma
modules. An R, —module M is quasi-injective
if it is that is
R —submodule N of M

R —homomorphism f: N — M , there exists an

M —injective, for any

and

R —endomorphism g of M such that gi = f

where i is the inclusion mapping of N into M

[2].

Definition 3.1. An R —module M is called

(simply
proper

quasi-injective
QIT —Extending) if

extending gamma
every
R —submodule of M is essential in a quasi-
injective R —submodule of M, that is, for each
proper R —submodule N of M , there exists an
quasi-injective R —submodule K of M such
that N <, K.

If M
then

Proposition 3.2. is QITI' —Extending

R —module, each  proper closed

R —submodule of M is quasi-injective.
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Proof: Assume N is proper closed
R —submodule of M, then there exists an
quasi-injective R —submodule K of such that

N <., K < M, since N is closed then N = K.

The converse of Proposition(3.2) is not true
in general, for example M = Z as Z, —maodule.
Proposition 3.3. If M is QI —Extending
R —module, then NNM is quasi-injective for
each proper direct summand N of E(M).

Proof: Let N be a proper direct summand of
E(M), E(M)=N®B
R —submodule B of E(M),

NNM is closed in M, assume that NNM <, K

then for some

we claim that

where K is an R, —submodule of M with
NNM = K, let k€ K, then k =n+ b where
n €N and b € B. Now consider k & N, then
b#0. But M<,E(M) and 0#b€EB<
E(M), therefore there is ry,1,,..,1, €ER and
Y1, V2, -, ¥Yn € T such that Y™, r;y;b (#0) €
M, so XL ryyik = Xis rivin + Xi, yvib, and
Y nyin = X rivik — Xz rivib € NOM <
K, thus YL nyb = X ryyik — i miyin €
BNK, (NOAM)NB =0,
(NNM)N(BNK) =0, but NNM <, K, so
BNK =0, hence Y ,r;y;b =0 which is a
contradiction, thus NNM is closed in M, if
NNM =M, then M <N, so MNB =0 but
M <, E(M), B=0
contradiction, thus NNM

since then

then which is a
is a proper closed
R —submodule of M, so by Proposition(3.2)
NNM is a quasi-injective.

Proposition  3.4.  Every  quasi-injective
R —module is QII" —Extending.

Proof: Assume M is quasi-injective and N is a
proper Rr —submodule of M, then by Zorn's
lemma N is essential in a maximal closed

R —submodule K of M, by Corollary(3.11) in
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2] K hence M is
[

QIT' —Extending.

is a quasi-injective,

The converse of Proposition(3.4) is not true

in general, see Example(3.8)(5).

Corollary 3.5. Every semisimple R- —module
is QII" —Extending.

The converse of Corollary(3.5) is not true in
general, for Example M = Q as Z, —module is
QIT" —Extending  but

injective,  so not

semisimple.

An R —module M is called regular if for
each m € M, there exists f € Homg.(M,R)
and y € I' such that m = f(m)ym [3]. Every
cyclic Ry —submodule of regular R —module

is a direct summand [3].

3.6.
R —module is QI —Extending.

Corollary Every  regular  cyclic

The converse of Corollary(3.6) is not true in
general, for example M = Q as Z, —module is

QII' —Extending but not regular.

It is proved in [2], that every gamma module
has quasi-injective extension say quasi-injective
hull (denote by Q(M)) which is unique up to

isomorphism.

Corollary 3.7. Every R —module can be
embedded in QII" —Extending.

Examples 3.8.

1- If M is QII' —Extending , then M contains
quasi-injective hull of each it's proper

R —submodules, the proof is essentially as

in Proposition(2.15).
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2- An R —module M = Z, as Z, —module is a
semisimple [3], so M is QII' —Extending by
Corollary(3.5). Note that M is
I —Extending

3- Every II' —Extending is QII' —Extending.

not

The converse is not true for example see
Example(2).

4- The Z; —module M =Z®Z, is
QII' —Extending, if not the R —submodule
N = Z®(0) is proper closed in M which is
not [2],
contradiction by Proposition(3.2).

5- Let M = Z,®Z, as Z, — module. The only
R —submodules of M are (0), N; =

not

quasi-injective which is a

(0)®Z,, N, =Z,8(0), N3 =2,0(2)=
{(0'0)' (1!2)' (1'0)' (0'2)}1 N4 = ((1'1)) =
{(0’0)’ (1’1)’ (0’2)! (1!3)}1 NS = <(0'2)) =

{(0,0), (0,2)}, Ns = ((1,2)) = {(0,0), (1,2)}
and M. Note that N,, N5 and Ny are simple ,
N5 semisimple , N, = N; , S0 every proper

Ry —submodule of M
hence M is QII' —Extending but M is not

is quasi-injective,

Mehdi .S/ Saad.A / Emad.A
quasi-injective since the R —submodule

Ns = N, but N, is a direct summand while
N5 is not direct summand which is a
contradiction see Corollary(3.9) in [2].
6- The M=7Z,®Z, is
QIT —Extending, since M = N@®B where
N =(3)®Z, and B =(2)®(0) , so N is a

proper closed of M but N is not quasi-

Z, —module not

injective since the R, —submodule K =
0)®B(2) =Z;®(0) of N
summand of N which is contradiction see
Corollary(3.9) in [2].

is not direct

The concept quasi-injective extending gamma
modules is a proper generalization of quasi-
injective modules,
Examples(3.8)(5).

gamma see

We conclude from  Proposition(2.10),
Corollary(2.19) and Proposition(3.4) the
following  chart of  implications  for
R —modules

2 QIT — Extending

Injective = II' — Extending = Quasi— Injective

An R, —submodule of QII' —Extending
need not be QII' —Extending, for example The
Zz—module Q is hence
QI —Extending but the R, —submodule Z is

not QII"' —Extending by Examples(3.8)(1).

injective  [1]

An Ry —submodule N of R, —module M is
called R —idempotent if N = (N:;,. M)I'N and
M is called fully R, —idempotent if every
R —submodule of M is R —idempotent [3].
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b I — Extending

Proposition 3.9. If M is QII" —Extending. Then
every proper R, —idempotent R, —submodule
of M is quasi-injective (QII" —Extending).

Proof: Let N be a proper R —idempotent
R —submodule of QII' —Extending M. Then M
contains quasi-injective hull Q(N) of N by
Examples(3.8). Since N is R —idempotent,
N = (N:g. Q(N)I'N. each

then For

R —submodule X of N and
R —homomorphism f:X — N, there exists
g:Q(N) - Q(N) which extends f, for each

n€N, n=rym where 7€ (N:,.Q(N)),



Journal of AL-Qadisiyah for computer science and mathematics
ISSN (Online): 2521 — 3504

ISSN (Print): 2074 — 0204

Vol.9 No.2 Year 2017

yel and meN, so gn) =g(ym)=

ryg(m) € N, thus N is quasi-injective [3].
Corollary  3.10. Let M be fully
R —idempotent. Then M is QII' —Extending if
and only if every R, —submodule of M is
QII' —Extending.

An R —module M is called duo if f(N) <
N for each R, —submodule N of M and
f € Endg.(M) [3].

Corollary 3.11.

R —module, then every R, —submodule of M

If M is duo II' —Extending

is quasi-injective.

Proof: By Corollary(2.19) M is quasi-injective.
For any proper R, —submodule N of M, let X
be an R —submodule of N and f:X — N be an
then  there
a: E(M) - E(M) which extends to f, since M
is quasi-injective, then a(M) € M [2], hence
6= aj M->M is extends to f but M is duo

R —homomorphism, exists

therefore g = 6|, NN extends to f, thus N
is quasi-injective [2].
in [3],

R —idempotent R —module is duo.

It is proved that every fully

Corollary 3.12.
II" —Extending

If M is fully R —idempotent

Ry —module, then every

R —submodule of M is quasi-injective.

We need the following lemma to prove
Proposition(3.14).

Lemma 3.13. Let M be an R —module. If A
essential R —submodule of M and B is a closed

R —submodule of M, then ANB is closed in A.

Mehdi .S/ Saad.A / Emad.A
Proof: Let B be a closed R —submodule of M

and A essential R —submodule of M. By
Lemma(3.5) in [2] B must be a complement of
some R, —submodule T of M, (BNA)N(TNA)
=(BNT)NA =0. there is an
Ry —submodule N of A BNA
properly , then (B + N)NT # 0, so there exists

Assume

contains

O#ft=b+nwhereteT,beB and n €N,
since A essential in M, then there exists
T, 1y, Ty € R ANd ¥4, 75, ..
0 # Xis niyit = Xim nivib + X niyin €

TNA, so XYi;nyb =¥ nyit — it riyin

,Yn € ' such that

€ BNACN, hence 0=+#Yr nyt €
(TNA)NN, o) BNA is maximal
R —submodule of A with respect to
(BNAN(TNA) =0, hence BNA is a

complement of TNA in A.

Proposition 3.14. Let M be a QII' —Extending
Ry —module and N be a nontrivial closed
R —submodule of M. Then N and N€ are
quasi-injective R —submodule of M.

Let N be a

nontrivial closed

QIT —Extending

Proof:
R —submodule of an
R —module M. Then N is a quasi-injective by
Proposition(3.2). In case M = N @ N¢, then
N¢ is a proper closed in M and hence N€ is a
quasi-injective by Proposition(3.2), in case
M # N @ N°¢, then there is a quasi-injective
R —submodule @ of M such that N@

N¢<, Q<M since N@GN°<,M by
Lemma(3.4) in [2], then Q <, M but N is closed
in M, so N=NNQ is closed in Q by

Lemma(3.13), hence N is a quasi-injective by
Corollary(3.11) in [2].

Direct sum of two QIT' —Extending need not

be

QIl' —Extending, for example see

Examples(3.8)(6).
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Proposition 3.15. If the direct sum of everytwo 3. M. S. Abbas, S. A. Al-Saadi, E. A. Shallal,

QII' —Extending is QII' —Extending, then M is (2017), Some Generalizations of
quasi-injective if and only if M s Semisimple Gamma Rings, Journal of
QIT —Extending. Science, 2017, 58(3C), 1720-1728.

Proof: Let M be QII" —Extending, since Q(M) 4. R. Ameri and R.Sadeghi, (2010), Gamma
is quasi-injective, so Q(M) is QII' —Extending, Modules, Ratio Mathematica, 20, 127-147.
hence M@Q(M) is QI —Extending, by 5. W. E. Barnes,(1966), On The I' —Ring of
Proposition(3.2) M is quasi-injective. Nobusawa, Pacific Journal of Mathematics,

18(3), 411-422.

6. S. Kyuno,(1975), On the radicals of
I' —Rings, Osaka J. Math. , 12, 639-645.

7. N. Nobusawa , (1964), On a Generalization
of the ring theory, Osaka Journal Math., 1,
81-89.

8. S. Mohammed, B. J. Muller, (1990),

Continuous  and discrete modules,
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