Journal of AL-Qadisiyah for computer science and mathematics Vol.9 No.2 Year 2017 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 71 - 80

Mehdi .S / Saad.A / Emad.A

(Quasi-)Injective Extending Gamma Modules

Mehdi S. AbbasSaad Abdulkadhim Al-SaadiEmad Allawi ShallalDepartment of Mathematics, College of Science, Al-Mustansiriyah Universitym.abass@uomustansiriyah.edu.iqs.alsaadi@uomustansiriyah.edu.iqemad_a_shallal@yahoo.com

Recived : 14\8\2017 Revised : // Accepted : 7\9\2017

Abstract

In this paper we introduce and study the concept of injective (Quasi-injective) extending gamma modules as a generalization of injective (Quasi-injective) gamma modules. An R_{Γ} -module *E* is called injective (Quasi-injective) extending gamma modules if each proper R_{Γ} -submodule in *E* is essential in injective (Quasi-injective) R_{Γ} -submodule of *E*. The concept of injective extending gamma modules lie between injective gamma modules and quasi-injective gamma modules.

Keywords: Gamma module, injective gamma module, quasi-injective gamma module, extending gamma module, essential gamma submodule, closed gamma submodule.

Mathematics subject classification:16D10,16D40,16D50,16D60,16D90.

1. Preliminaries:

Let *R* and Γ be two additive abelian groups, *R* is called a Γ -ring (in the sense of Barnes), if there exists a mapping $\cdot : R \times \Gamma \times R \longrightarrow R$, written $\cdot (r, \gamma, s) \mapsto r\gamma s$ such that $(a + b)\alpha c =$ $a\alpha c + b\alpha c$, $a(\alpha + \beta)c = a\alpha c + a\beta c$, $a\alpha(b + c) = a\alpha b + b\alpha c$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$ [4]. A subset *A* of Γ -ring *R* is said to be a right (left) ideal of *R* if *A* is an additive subgroup of *R* and $A\Gamma R \subseteq$ $A(R\Gamma A \subseteq A)$, where $A\Gamma R = \{a\alpha r : a \in A, \alpha \in$ $\Gamma, r \in R\}$. If *A* is both right and left ideal, we say that *A* is an ideal of . An element 1 in Γ ring *R* is unity if there exists element $\gamma_o \in \Gamma$ such that $r = 1\gamma_o r = r\gamma_o 1$ for every $r \in R$, in this paper we denote $\gamma_o \in \Gamma$ to the element such

that $1\gamma_{\circ}$ is the unity, unities in Γ -rings differ from unities in rings, it is possible for a Γ -ring have more than one unity [9]. A Γ -ring *R* is called commutative, if $r\gamma s = s\gamma r$ for any $r, s \in R$ and $\gamma \in \Gamma$.

Let *R* be a Γ -ring and *M* be an additive abelian group. Then *M* together with a mapping $: R \times \Gamma \times M \to M$, written $(r, \gamma, m) \mapsto r\gamma m$ such that $r\alpha(m_1 + m_2) =$ $r\alpha m_1 + r\alpha m_2$, $(r_1 + r_2)\alpha m = r_1\alpha m + r_2\alpha m$, $r(\alpha + \beta)m = r\alpha m + r\beta m$, $(r_1\alpha r_2)\beta m =$ $r_1\alpha(r_2\beta m)$ for each $r, r_1, r_2 \in R$, $\alpha, \beta \in \Gamma$ and $m, m_1, m_2 \in M$, is called a left R_{Γ} -module, similarly one can defined right R_{Γ} -module [4]. A left R_{Γ} -module *M* is unitary if there exist elements, say 1 in R and $\gamma_{\circ} \in \Gamma$ such that $1\gamma_{\circ}m = m$ for every $m \in M$.

Let *M* be an R_{Γ} -module. A nonempty subset N of M is said to be an R_{Γ} –submodule of M (denoted by $N \leq M$) if N is a subgroup of *M* and $R\Gamma N \subseteq N$, where $R\Gamma N = \{r\alpha n : r \in R,$ $\alpha \in \Gamma$, $n \in N$ [4]. An R_{Γ} -module *M* is called simple if $R\Gamma M \neq 0$ and the only R_{Γ} -submodules of M are M and 0 [6], A Γ -ring R is called simple if $R\Gamma R \neq 0$ and the only ideals of R are R and 0. If X is a nonempty subset of M, then the R_{Γ} -submodule of Mgenerated by X denoted by $\langle X \rangle$ and $\langle X \rangle = \cap$ $\{N \leq M : X \subseteq N\}$, X is called the generator of $\langle X \rangle$ and $\langle X \rangle$ is finitely generated if $|X| < \infty$. In particular, if $X = \{x\}$, then $\langle X \rangle$ is called the cyclic R_{Γ} –submodule of M generated by x. $\langle X \rangle = \{ \sum_{i=1}^{m} n_i x_i + \sum_{i=1}^{k} r_i \gamma_i x_i : k, m \in \}$ $\mathbb{N}, n_i \in \mathbb{Z}, \gamma_i \in \Gamma, r_i \in R, x_i, x_i \in X$. If *M* is unitary, then $\langle X \rangle = \{\sum_{i=1}^{n} r_i \gamma_i x_i : n \in \mathbb{N}, \gamma_i \in \mathbb{N}\}$ $\Gamma, r_i \in R, x_i \in X$ [4]. An R_{Γ} –submodule N of R_{Γ} -module M is called essential (denote by $N \leq_e M$) if every nonzero R_{Γ} –submodule of Mhas nonzero intersection with N, in this case we say that M is an essential extension of N, equivalent to, for each nonzero element m in Mthere is $r_1, r_2, ..., r_n \in R$ and $\gamma_1, \gamma_2, ..., \gamma_n \in \Gamma$ such that $\sum_{i=1}^{n} r_i \gamma_i m (\neq 0) \in N$ [1]. An R_{Γ} –submodule N of R_{Γ} –module M is called direct summand of M if there exists an R_{Γ} –submodule K of M such that M = N + Kand $N \cap K = 0$, in this case M is written as $M = N \oplus K$ [2]. An R_{Γ} -module M is called semisimple if every R_{Γ} –submodule is a direct summand of M [3]. An R_{Γ} -submodule N of R_{Γ} -module *M* is called closed in *M* if it has no proper essential extension in M, equivalent to saying that the only solution of the relation

Mehdi .S / Saad.A / Emad.A

 $N \leq_e K \leq M$ is N = K [2]. Let *M* and *N* be two R_{Γ} -modules. A mapping $f: M \to N$ is called homomorphism of R_{Γ} -modules (simply R_{Γ} -homomorphism) if f(x + y) = f(x) + f(y) and $f(r\gamma x) = r\gamma f(x)$ for each $x, y \in M, r \in R$ and $\gamma \in \Gamma$. An R_{Γ} -homomorphism is R_{Γ} -monomorphism if it is one-to-one and R_{Γ} –epimorphism if it is onto, the set of all R_{Γ} -homomorphisms from M into N denote by $Hom_{Rr}(M, N)$ in particular if M = N, $Hom_{R_{\Gamma}}(M, N)$ denote by $End_{R_{\Gamma}}(M)$. If M is R_{Γ} -module, then $End_{R_{\Gamma}}(M)$ is a Γ -ring with the mapping $\therefore End_{R_{\Gamma}}(M) \times \Gamma \times$ $End_{R_{\Gamma}}(M) \to End_{R_{\Gamma}}(M)$ denoted by $(f, \gamma, g) \mapsto f\gamma g$ where $f\gamma g(x) = g(f(1\gamma x))$, for $f, g \in End_{R_{\Gamma}}(M)$, $\gamma \in \Gamma$ and $x \in M$. All modules in this paper are unitary left R_{Γ} -modules, in this case M is a right $End_{Rr}(M)$ -module with the mapping $: M \times$ $\Gamma \times End_{R_{\Gamma}}(M) \to End_{R_{\Gamma}}(M)$ by $(x, \gamma, f) \mapsto$ $x\gamma f$ where $x\gamma f = f(1\gamma x)$, for $f \in End_{R_{r}}(M)$, $\gamma \in \Gamma$ and $x \in M$ [4].

The notions of injective gamma modules and quasi-injective gamma modules have been introduced by M. S. Abbas, S. A. Al-saadi and E. A. Shallal in [1] and [2]. If M and N are two R_{Γ} -modules, then M is called N -injective R_{Γ} -module if for any R_{Γ} -submodule A of Nand for any R_{Γ} -homomorphism $f: A \rightarrow M$ there exists an R_{Γ} -homomorphism $g: N \rightarrow M$ such that gi = f where i is the inclusion mapping [1]. An R_{Γ} -module M is injective if it is N -injective for any R_{Γ} -module N. It is proved in [1], that every gamma module can be embedded in injective gamma module called injective hull and denote by E(M) which is unique up to isomorphism.

2. Injective Extending Gamma Modules

We extended the concept of injective extending gamma modules from category of modules [8] to the category of gamma modules which is lie between injective gamma modules [1] and quasi-injective gamma modules [2].

An R -module M is called extending if every submodule of M is essential in a direct summand of M [8].

Definition 2.1. An R_{Γ} -module M is called Γ -Extending if every R_{Γ} -submodule of M is essential in a direct summand of M.

Proposition 2.2. An R_{Γ} -module *M* is Γ -Extending if and only if each closed R_{Γ} -submodule of *M* is a direct summand of *M*.

Proof: Let *N* be closed R_{Γ} –submodule of Γ –Extending R_{Γ} –module *M*, then there is an R_{Γ} –submodule *K* of *M* such that $N \leq_{e} K \leq_{\bigoplus} M$, so N = K. Conversely, Let *N* be a R_{Γ} –submodule *M*, then by using Zorn's lemma *N* has a maximal essential extension *K* in *M* which is closed, so by hypothesis *K* is direct summand of *M*, thus *M* is Γ –Extending.

The following proposition follows from Corollary(3.11) in [2].

Proposition 2.3. Every quasi-injective R_{Γ} -module is Γ -Extending.

The converse of Proposition(2.3) is not true in general as in Example(2.4)(2).

Examples 2.4.

1- Every semisimple (simple) R_{Γ} -module is Γ -Extending. Since every R_{Γ} -submodule of *M* is a direct summand, then *M* is Mehdi .S / Saad.A / Emad.A

 Γ –Extending. In particular, Z_2 as Z_Z –module is Γ –Extending.

2- Let $R = \{(n \ n), n \in Z\}$ and $\Gamma =$ $\left\{ \begin{pmatrix} \gamma \\ 0 \end{pmatrix}, \gamma \in Z \right\}$. Then *R* is Γ -ring by $:: R \times \Gamma \times R \to R$ with $(n \ n) \begin{pmatrix} \gamma \\ 0 \end{pmatrix} (m \ m) =$ $(n\gamma m \quad n\gamma m)$. Let $I \neq 0$ be an ideal of R, any another ideal P of R with $P \cap I = 0$, take $0 \neq (n \ n) \in I$, $0 \neq \begin{pmatrix} \gamma \\ 0 \end{pmatrix} \in \Gamma$ and (m m) any element in P, then $(n\gamma m \quad n\gamma m) = (n \ n) \begin{pmatrix} \gamma \\ 0 \end{pmatrix} (m \ m) \in R\Gamma P$ $\subseteq P$, $(n\gamma m \quad n\gamma m) =$ also $(m \ m) \binom{\gamma}{0} (n \ n) \in R\Gamma I \subseteq I$, so $n\gamma m = 0$, hence m = 0, thus P = 0, so every ideal in R is essential, therefore R is Γ –Extending. Note that R is not quasi-injective, take the ideal $I = \{ (2n \quad 2n) : n \in Z \}$ and R_{Γ} –homomorphism $\lambda: I \to R$ by $\lambda(2n \ 2n) = (n \ n)$ for each $(2n \ 2n) \in$ I, if R quasi-injective, then there is $g: R \rightarrow$ *R* which extends λ , so $(1 \ 1) = \lambda(2 \ 2) =$ $g(2 \ 2) = g((2 \ 2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} (1 \ 1)) =$ $(2 \ 2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} g(1 \ 1),$ hence $g(1 \ 1) =$ $\left(\frac{1}{2}, \frac{1}{2}\right)$ contradiction.

Definition 2.5. An R_{Γ} -module M is called injective extending ($I\Gamma$ -Extending) if each proper R_{Γ} -submodule of M is essential in injective R_{Γ} -submodule of M, that is, for each proper R_{Γ} -submodule $N \leq M$, there exists an injective R_{Γ} -submodule K of M such that $N \leq_{e} K$.

Proposition 2.6. If *M* is $I\Gamma$ –Extending R_{Γ} –module, then each proper closed R_{Γ} –submodule of *M* is injective.

Proof: Assume $N \le M$ is proper closed R_{Γ} -submodule, then there is an injective R_{Γ} -submodule K of with $N \le_e K \le M$, so N = K, thus N is injective.

The converse of Proposition(2.3) is not true in general, for example Z as Z_Z -module, the only proper closed Z_Z - submodule of Z which is injective is 0 but Z is not $I\Gamma$ -Extending.

The following proposition gives the converse of Proposition(2.6) under certain conditions. First we note that a semisimple R_{Γ} -module different from $I\Gamma$ -Extending. The Z_Z -module $Z_2 \bigoplus Z_2$ is semisimple but not $I\Gamma$ -Extending, if not, then Z_2 is injective by Proposition(2.6) contradiction. The Z_Z -module Q is injective, so $I\Gamma$ -Extending but not semisimple.

Proposition 2.7. Let *M* semisimple R_{Γ} -module. Then *M* is a $I\Gamma$ -Extending if and only if each proper closed R_{Γ} -submodule in *M* is injective.

Proof: For each proper R_{Γ} –submodule *N* of *M*, *N* has a maximal essential extension *K* by Zorn's lemma. It is clear that *K* is closed and proper, so by hypothesis, *K* is injective, thus *M* is $I\Gamma$ –Extending.

Proposition 2.8. Let *M* be R_{Γ} -module, if *M* has a proper nonessential R_{Γ} -submodule, than *M* is $I\Gamma$ - Extending if and only if each proper closed R_{Γ} -submodule is injective.

Proof: Assume *N* is a proper nonessential R_{Γ} –submodule of an R_{Γ} –module *M*, then by Zorn's lemma there is maximal R_{Γ} –submodule *K* of *M* such that $N \leq_e K$, clear *K* is closed and proper, so by hypothesis *K* is injective. By Proposition(1.9) in [3], there is nonzero R_{Γ} –submodule *L* of *M* such that $M = K \oplus L$, again by hypothesis *L* is injective, hence *M* is injective[1]. The obverse by Proposition(2.6).

Mehdi .S / Saad.A / Emad.A **Proposition 2.9.** If M is $I\Gamma$ –Extending R_{Γ} –module, then every proper closed R_{Γ} –submodule of M is a direct summand of M. In particular, every $I\Gamma$ –Extending R_{Γ} –module is Γ –Extending.

Proof: Let *N* is a proper closed R_{Γ} –submodule of $I\Gamma$ –Extending R_{Γ} –module *M*, then *N* is injective R_{Γ} –submodule of *M* by Proposition(2.6), by Proposition(1.9) in [1] *N* is a direct summand of *M*.

Proposition 2.10. Every injective R_{Γ} -module is $I\Gamma$ -Extending.

Proof: Let *N* be a proper R_{Γ} –submodule of an injective R_{Γ} –module *M*. Then by Zorn's lemma *N* has a maximal essential extension *K* in *M*, clearly that *K* is closed, by Corollary(3.11) in [2] *K* is a direct summand in *M*, so *K* is injective by Examples and Remarks(1.10) (3) in [1], thus *M* is $I\Gamma$ –Extending.

Proposition(2.10) shows that there are a lot of $I\Gamma$ -Extending R_{Γ} -modules , for any R_{Γ} -module M it's injective hull is $I\Gamma$ -Extending . In fact every R_{Γ} -module can be embedded in $I\Gamma$ -Extending R_{Γ} -module see [1].

Proposition 2.11. Let *M* be $I\Gamma$ –Extending R_{Γ} –module. If *M* has a nontrivial closed R_{Γ} –submodule, then *M* is injective.

Proof: Let *N* be a nontrivial closed R_{Γ} –submodule of $I\Gamma$ –Extending R_{Γ} –module *M*. Then by Proposition(2.6) *N* is injective R_{Γ} –submodule and by Proposition(1.9) in [1] *N* is a direct summand of *M*, so $M = N \oplus K$ for some R_{Γ} –submodule *K* of *M*, since *N* is a nontrivial, then *K* is proper closed and again by

Proposition(2.6) K is injective and so M is injective [1].

Examples 2.12.

- 1- Every simple R_{Γ} -module is $I\Gamma$ -Extending, since the only proper closed R_{Γ} -submodule is 0 .In particular, the Z_Z -module $M = Z_2$ is $I\Gamma$ -Extending. Note that M is not injective [1], so the converse of Proposition(2.10) is not true in general.
- 2- Let R = Z, $\Gamma = Z$ and M = Z, then M is not $I\Gamma$ -Extending, since the R_{Γ} -submodule $\langle 2 \rangle$ is not essential in any injective R_{Γ} -submodule. Note that M is a Γ -Extending since the only closed R_{Γ} -submodule of M is 0 which is direct summand, hence the converse of Proposition(2.9) is not true in general.
- 3- Let $M = Z_6$ as $Z_Z \text{module}$, the only ideals of Z_6 are 0, Z_6 , $\langle 2 \rangle$ and $\langle 3 \rangle$, then Z_6 is semisimple Z_Z -module but not $I\Gamma$ -Extending.
- 4- If *R* is semisimple R_{Γ} -module, then every R_{Γ} -module is injective [3], so $I\Gamma$ -Extending.

Direct sum of two $I\Gamma$ -Extending R_{Γ} -modules may not be $I\Gamma$ -Extending, for example The Z_Z -module Z_2 is $I\Gamma$ -Extending but not injective Examples(2.12)(1), the Z_Z -module $Z_2 \bigoplus Z_2$ is not $I\Gamma$ -Extending, if not, then Z_2 is injective by Proposition(2.6) which is a contradiction.

Proposition 2.13. If direct sum of every two $I\Gamma$ –Extending R_{Γ} –modules is $I\Gamma$ –Extending, then *M* is injective if and only if *M* is $I\Gamma$ –Extending.

Proof: Let M be $I\Gamma$ -Extending, since E = E(M) is injective, so E is $I\Gamma$ -Extending by Proposition(2.10), hence by hypothesis $M \oplus E$ is $I\Gamma$ - Extending, by Proposition(2.6) M is injective.

Mehdi .S / Saad.A / Emad.A

The following proposition gives the converse of Proposition(2.6) under another condition.

Proposition 2.14. Let *M* be R_{Γ} –module contains a nontrivial nonessential R_{Γ} –submodule. Then the following statements are equivalent:

- 1- *M* is injective.
- 2- M is $I\Gamma$ –Extending.
- 3- Every proper closed R_{Γ} -submodule of *M* is injective.

Proof: (1) \Rightarrow (2) By Proposition(2.10). $(2) \Rightarrow (3)$ By Proposition(2.6). $(3) \Rightarrow (1)$ Assume N is a nontrivial R_{Γ} –submodule which is not essential in M, then by Zorn's lemma Nhas a maximal essential extension R_{Γ} –submodule K in M which is closed in M, if K = M then N is essential in M contradiction, so K is a proper by hypothesis K is injective and a direct summand of M by Proposition(1.9) in [1], so $M = K \oplus L$ for some R_{Γ} –submodule L of M, if L = 0 a contradiction, hence L is a proper again by hypothesis L is injective, therefore *M* is injective [1].

Proposition 2.15. An R_{Γ} -module *M* is $I\Gamma$ -Extending if and only if *M* contains injective hulls of each of its proper R_{Γ} -submodule.

Proof: For each proper R_{Γ} –submodule N of $I\Gamma$ –Extending R_{Γ} –module M, there exists injective R_{Γ} –submodule K of M such that $N \leq_e K \leq M$ but $N \leq E(N)$ which is minimal

injective extension of N, so $N \le E(N) \le K \le$ M, hence $E(N) \le M$.

Corollary 2.16. If *M* is $I\Gamma$ –Extending, then *M* is injective hull of each proper essential R_{Γ} –submodule of *M*.

Proof: For each proper essential R_{Γ} -submodule *N* of *M*, by Proposition(2.15) $E(N) \leq M$ but E(N) is injective, therefore by Proposition(1.9) in [1] E(N) is a direct summand of *M*, so $M = E(N) \oplus L$ for some R_{Γ} -submodule *L* of *M*. But $N \leq_{e} M$, then L = 0, thus M = E(N).

In following proposition the we a characterization of $I\Gamma$ –Extending R_{Γ} -modules in which every proper R_{Γ} –submodule lies under injective direct summand.

Proposition 2.17. An R_{Γ} -module M is $I\Gamma$ -Extending if and only if for every proper R_{Γ} -submodule N of M, there exists a decomposition $M = M_1 \oplus M_2$ such that M_1 is injective, $N \leq_e M_1$ and $N \oplus M_2 \leq_e M$.

Proof: Assume that *N* is a proper R_{Γ} -submodule of *M*, then there exists injective R_{Γ} -submodule M_1 such that $N \leq_e M_1 \leq M$, so by Proposition(1.9) in [1] M_1 is a direct summand of *M*, hence $M = M_1 \oplus M_2$ for some R_{Γ} -submodule M_2 of *M*, since $M_2 \leq_e M_2$ by Lemma(3.3) in [1] $N \oplus M_2 \leq_e M_1 \oplus M_2 = M$.

Proposition 2.18. Let *M* be R_{Γ} -module. Then *M* is $I\Gamma$ -Extending if and only if either *M* is simple or *M* is injective.

Proof: Assume *M* is not simple, then there exists a nonzero R_{Γ} –submodule *N* of *M* with $M \neq N$, Also there exists injective R_{Γ} –submodule *K* such that $N \leq_e K \leq M$ but *K*

is a direct summand of *M* by Proposition(1.9) in [1], then $M = K \bigoplus L$ for some R_{Γ} –submodule *L* of *M*, if L = M, then *M* is injective, if $L \neq M$, then *L* is proper closed, so by Proposition(2.6) *L* is injective, hence *M* is injective [1]. The other direction follows from Proposition(2.10).

Corollary 2.19. Every $I\Gamma$ –Extending R_{Γ} –module is quasi-injective.

Corollary 2.20. Let *M* be a not simple R_{Γ} -module. Then *M* is injective if and only if *M* is $I\Gamma$ -Extending.

3. Quasi-Injective Extending Gamma Modules

In this section we introduce the concept of quasi-injective extending gamma modules as a generalization of quasi-injective gamma modules. An R_{Γ} -module M is quasi-injective if it is M -injective, that is for any R_{Γ} -submodule N of M and R_{Γ} -homomorphism $f: N \rightarrow M$, there exists an R_{Γ} -endomorphism g of M such that gi = f where i is the inclusion mapping of N into M [2].

Definition 3.1. An R_{Γ} -module M is called quasi-injective extending gamma (simply $QI\Gamma$ -Extending) if every proper R_{Γ} -submodule of M is essential in a quasiinjective R_{Γ} -submodule of M, that is, for each proper R_{Γ} -submodule N of M, there exists an quasi-injective R_{Γ} -submodule K of M such that $N \leq_e K$.

Proposition 3.2. If *M* is $QI\Gamma$ –Extending R_{Γ} –module, then each proper closed R_{Γ} –submodule of *M* is quasi-injective.

Proof: Assume N is proper closed R_{Γ} -submodule of M, then there exists an quasi-injective R_{Γ} -submodule K of such that $N \leq_e K \leq M$, since N is closed then N = K.

The converse of Proposition(3.2) is not true in general, for example M = Z as Z_Z -module.

Proposition 3.3. If *M* is $QI\Gamma$ –Extending R_{Γ} –module, then $N \cap M$ is quasi-injective for each proper direct summand *N* of E(M).

Proof: Let N be a proper direct summand of E(M),then $E(M) = N \oplus B$ for some R_{Γ} -submodule B of E(M), we claim that $N \cap M$ is closed in M, assume that $N \cap M \leq_e K$ where K is an R_{Γ} -submodule of M with $N \cap M \neq K$, let $k \in K$, then k = n + b where $n \in N$ and $b \in B$. Now consider $k \notin N$, then $b \neq 0$. But $M \leq_e E(M)$ and $0 \neq b \in B \leq$ E(M), therefore there is $r_1, r_2, \ldots, r_n \in R$ and $\gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$ such that $\sum_{i=1}^n r_i \gamma_i b \ (\neq 0) \in$ M, so $\sum_{i=1}^{n} r_i \gamma_i k = \sum_{i=1}^{n} r_i \gamma_i n + \sum_{i=1}^{n} r_i \gamma_i b$, and $\sum_{i=1}^{n} r_i \gamma_i n = \sum_{i=1}^{n} r_i \gamma_i k - \sum_{i=1}^{n} r_i \gamma_i b \in N \cap M \le$ K, thus $\sum_{i=1}^{n} r_i \gamma_i b = \sum_{i=1}^{n} r_i \gamma_i k - \sum_{i=1}^{n} r_i \gamma_i n \in$ $B \cap K$, since $(N \cap M) \cap B = 0,$ then $(N \cap M) \cap (B \cap K) = 0$, but $N \cap M \leq_e K$, so $B \cap K = 0$, hence $\sum_{i=1}^{n} r_i \gamma_i b = 0$ which is a contradiction, thus $N \cap M$ is closed in M, if $N \cap M = M$, then $M \le N$, so $M \cap B = 0$ but $M \leq_e E(M)$, then B = 0 which is a contradiction, thus $N \cap M$ is a proper closed R_{Γ} –submodule of *M*, so by Proposition(3.2) $N \cap M$ is a quasi-injective.

Proposition 3.4. Every quasi-injective R_{Γ} -module is *QIT* -Extending.

Proof: Assume *M* is quasi-injective and *N* is a proper R_{Γ} –submodule of *M*, then by Zorn's lemma *N* is essential in a maximal closed R_{Γ} –submodule *K* of *M*, by Corollary(3.11) in

Mehdi .S / Saad.A / Emad.A [2] K is a quasi-injective, hence M is $QI\Gamma$ –Extending.

The converse of Proposition(3.4) is not true in general, see Example(3.8)(5).

Corollary 3.5. Every semisimple R_{Γ} -module is $QI\Gamma$ -Extending.

The converse of Corollary(3.5) is not true in general, for Example M = Q as Z_Z -module is injective, so $QI\Gamma$ -Extending but not semisimple.

An R_{Γ} -module M is called regular if for each $m \in M$, there exists $f \in Hom_{R_{\Gamma}}(M, R)$ and $\gamma \in \Gamma$ such that $m = f(m)\gamma m$ [3]. Every cyclic R_{Γ} -submodule of regular R_{Γ} -module is a direct summand [3].

Corollary 3.6. Every regular cyclic R_{Γ} -module is *QII* -Extending.

The converse of Corollary(3.6) is not true in general, for example M = Q as Z_Z -module is $QI\Gamma$ -Extending but not regular.

It is proved in [2], that every gamma module has quasi-injective extension say quasi-injective hull (denote by Q(M)) which is unique up to isomorphism.

Corollary 3.7. Every R_{Γ} -module can be embedded in *QIT* -Extending.

Examples 3.8.

1- If *M* is $QI\Gamma$ –Extending , then *M* contains quasi-injective hull of each it's proper R_{Γ} –submodules, the proof is essentially as in Proposition(2.15).

Journal of AL-Qadisiyah for computer science and mathematics Vol.9 No.2 Year 2017 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

- 2- An R_Γ -module M = Z₆ as Z_Z -module is a semisimple [3], so M is QIΓ -Extending by Corollary(3.5). Note that M is not IΓ -Extending
- 3- Every $I\Gamma$ –Extending is $QI\Gamma$ –Extending. The converse is not true for example see Example(2).
- 4- The Z_Z -module $M = Z \oplus Z_2$ is not $QI\Gamma$ -Extending, if not the R_{Γ} -submodule $N = Z \oplus (0)$ is proper closed in M which is not quasi-injective [2], which is a contradiction by Proposition(3.2).
- 5- Let $M = Z_2 \oplus Z_4$ as Z_Z module. The only R_{Γ} –submodules of M are (0), $N_1 =$ (0) $\oplus Z_4$, $N_2 = Z_2 \oplus (0)$, $N_3 = Z_2 \oplus \langle 2 \rangle =$ {(0,0), (1,2), (1,0), (0,2)}, $N_4 = \langle (1,1) \rangle =$ {(0,0), (1,1), (0,2), (1,3)}, $N_5 = \langle (0,2) \rangle =$ {(0,0), (0,2)}, $N_6 = \langle (1,2) \rangle =$ {(0,0), (1,2)} and M. Note that N_2, N_5 and N_6 are simple , N_3 semisimple , $N_4 \cong N_1$, so every proper R_{Γ} –submodule of M is quasi-injective, hence M is $QI\Gamma$ –Extending but M is not

Mehdi .S / Saad.A / Emad.A quasi-injective since the R_{Γ} –submodule $N_5 \cong N_2$ but N_2 is a direct summand while

- N_5 is not direct summand which is a contradiction see Corollary(3.9) in [2].
- 6- The Z_Z -module M = Z₆⊕Z₄ is not QIΓ -Extending, since M = N⊕B where N = ⟨3⟩⊕Z₄ and B = ⟨2⟩⊕(0), so N is a proper closed of M but N is not quasi-injective since the R_Γ -submodule K = (0)⊕⟨2⟩ ≅ Z₃⊕(0) of N is not direct summand of N which is contradiction see Corollary(3.9) in [2].

The concept quasi-injective extending gamma modules is a proper generalization of quasiinjective gamma modules, see Examples(3.8)(5).

We conclude from Proposition(2.10), Corollary(2.19) and Proposition(3.4) the following chart of implications for R_{Γ} -modules

\mathcal{P} QIF – Extending

^{\[b]} Γ – Extending

Injective \Rightarrow I Γ – Extending \Rightarrow Quasi – Injective

An R_{Γ} –submodule of $QI\Gamma$ –Extending **Pr**

need not be $QI\Gamma$ –Extending, for example The Z_Z –module Q is injective [1] hence $QI\Gamma$ –Extending but the R_{Γ} –submodule Z is not $QI\Gamma$ –Extending by Examples(3.8)(1).

An R_{Γ} -submodule N of R_{Γ} -module M is called R_{Γ} -idempotent if $N = (N:_{R_{\Gamma}} M)\Gamma N$ and M is called fully R_{Γ} -idempotent if every R_{Γ} -submodule of M is R_{Γ} -idempotent [3]. **Proposition 3.9.** If *M* is $QI\Gamma$ –Extending. Then every proper R_{Γ} –idempotent R_{Γ} –submodule of *M* is quasi-injective ($QI\Gamma$ –Extending).

Proof: Let N be a proper R_{Γ} –idempotent R_{Γ} –submodule of $QI\Gamma$ –Extending M. Then M contains quasi-injective hull Q(N) of N by Examples(3.8). Since N is R_{Γ} –idempotent, $N=(N\!:_{R_{\Gamma}}Q(N))\Gamma N.$ then For each R_{Γ} –submodule Χ of Ν and R_{Γ} -homomorphism $f: X \to N$, there exists $g: Q(N) \to Q(N)$ which extends f, for each $n \in N$, $n = r\gamma m$ where $r \in (N_{:R_{\Gamma}}Q(N))$, $\gamma \in \Gamma$ and $m \in N$, so $g(n) = g(r\gamma m) = r\gamma g(m) \in N$, thus N is quasi-injective [3].

Corollary 3.10. Let *M* be fully R_{Γ} –idempotent. Then *M* is $QI\Gamma$ –Extending if and only if every R_{Γ} –submodule of *M* is $QI\Gamma$ –Extending.

An R_{Γ} -module M is called duo if $f(N) \subseteq N$ for each R_{Γ} -submodule N of M and $f \in End_{R_{\Gamma}}(M)$ [3].

Corollary 3.11. If *M* is duo $I\Gamma$ –Extending R_{Γ} –module, then every R_{Γ} –submodule of *M* is quasi-injective.

Proof: By Corollary(2.19) *M* is quasi-injective. For any proper R_{Γ} –submodule *N* of *M*, let *X* be an R_{Γ} –submodule of *N* and $f: X \to N$ be an R_{Γ} –homomorphism, then there exists $\alpha: E(M) \to E(M)$ which extends to *f*, since *M* is quasi-injective, then $\alpha(M) \subseteq M$ [2], hence $\theta = \alpha_{|_M}: M \to M$ is extends to *f* but *M* is duo therefore $\beta = \theta_{|_N}: N \to N$ extends to *f*, thus *N* is quasi-injective [2].

It is proved in [3], that every fully R_{Γ} –idempotent R_{Γ} –module is duo.

Corollary 3.12. If *M* is fully R_{Γ} –idempotent $I\Gamma$ –Extending R_{Γ} –module, then every R_{Γ} –submodule of *M* is quasi-injective.

We need the following lemma to prove Proposition(3.14).

Lemma 3.13. Let *M* be an R_{Γ} –module. If *A* essential R_{Γ} –submodule of *M* and *B* is a closed R_{Γ} –submodule of *M*, then $A \cap B$ is closed in *A*.

Mehdi .S / Saad.A / Emad.A

Proof: Let *B* be a closed R_{Γ} –submodule of *M* and A essential R_{Γ} –submodule of M. By Lemma(3.5) in [2] B must be a complement of some R_{Γ} –submodule *T* of *M*, $(B \cap A) \cap (T \cap A)$ $= (B \cap T) \cap A = 0$. Assume there is an R_{Γ} -submodule N of A contains $B \cap A$ properly, then $(B + N) \cap T \neq 0$, so there exists $0 \neq t = b + n$ where $t \in T$, $b \in B$ and $n \in N$, since A essential in M, then there exists $r_1, r_2, \dots, r_n \in R$ and $\gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$ such that $0 \neq \sum_{i=1}^{n} r_i \gamma_i t = \sum_{i=1}^{n} r_i \gamma_i b + \sum_{i=1}^{n} r_i \gamma_i n \in$ $T \cap A$, so $\sum_{i=1}^{n} r_i \gamma_i b = \sum_{i=1}^{n} r_i \gamma_i t - \sum_{i=1}^{n} r_i \gamma_i n$ $\in B \cap A \subseteq N$, $0 \neq \sum_{i=1}^{n} r_i \gamma_i t \in$ hence $(T \cap A) \cap N$, maximal so $B \cap A$ is R_{Γ} –submodule of Α with respect to $(B \cap A) \cap (T \cap A) = 0$, hence $B \cap A$ is а complement of $T \cap A$ in A.

Proposition 3.14. Let *M* be a *QI* Γ –Extending R_{Γ} –module and *N* be a nontrivial closed R_{Γ} –submodule of *M*. Then *N* and *N^c* are quasi-injective R_{Γ} –submodule of *M*.

Proof: Let N be a nontrivial closed R_{Γ} –submodule of an $QI\Gamma$ –Extending R_{Γ} -module M. Then N is a quasi-injective by Proposition(3.2). In case $M = N \bigoplus N^c$, then N^{c} is a proper closed in M and hence N^{c} is a quasi-injective by Proposition(3.2), in case $M \neq N \bigoplus N^c$, then there is a quasi-injective R_{Γ} –submodule Q of M such that $N \oplus$ $N^c \leq_e Q \leq M$ since $N \oplus N^c \leq_e M$ by Lemma(3.4) in [2], then $Q \leq_e M$ but N is closed in M, so $N = N \cap Q$ is closed in Q by Lemma(3.13), hence N is a quasi-injective by Corollary(3.11) in [2].

Direct sum of two $QI\Gamma$ –Extending need not be $QI\Gamma$ –Extending, for example see Examples(3.8)(6).

Mehdi .S / Saad.A / Emad.A

Proposition 3.15. If the direct sum of every two $QI\Gamma$ –Extending is $QI\Gamma$ –Extending, then *M* is quasi-injective if and only if *M* is $QI\Gamma$ –Extending.

Proof: Let *M* be $QI\Gamma$ –Extending, since Q(M) is quasi-injective, so Q(M) is $QI\Gamma$ –Extending, hence $M \oplus Q(M)$ is $QI\Gamma$ –Extending, by Proposition(3.2) *M* is quasi-injective.

References

- M. S. Abbas, S. A. Al-Saadi, E. A. Shallal, (2016), Injective Gamma Modules, Annals of Pure and Applied Mathematics, 12(1), 85-94.
- M. S. Abbas, S. A. Al-Saadi, E. A. Shallal, (2016), Quasi-Injective Gamma Modules, Int. J. of Advanced Research, 4(10), 327-333.

- M. S. Abbas, S. A. Al-Saadi, E. A. Shallal, (2017), Some Generalizations of Semisimple Gamma Rings, Journal of Science, 2017, 58(3C), 1720-1728.
- R. Ameri and R.Sadeghi, (2010), Gamma Modules, Ratio Mathematica, 20, 127-147.
- W. E. Barnes,(1966), On The Γ –Ring of Nobusawa, Pacific Journal of Mathematics, 18(3), 411-422.
- 6. S. Kyuno,(1975), On the radicals of Γ –Rings, Osaka J. Math. , 12, 639-645.
- N. Nobusawa , (1964), On a Generalization of the ring theory, Osaka Journal Math., 1, 81-89.
- S. Mohammed, B. J. Muller, (1990), Continuous and discrete modules, Cambridge Univ. Prees., New York.
- S. Uddin, S. Islam, (2012), Semi-Prime Ideals of Gamma Rings, Annals of Pure and Applied Mathematics, 1(2), 186-191.

مقاسات التوسع (شبه -) الاغمارية من نمط كاما

مهدي صادق عباس سعد عبدالكاظم الساعدي عماد علاوي شلال قسم الرياضيات ، كلية العلوم ، الجامعة المستنصرية

المستخلص:

في هذا البحث نطرح مفهوم المقاسات الاغمارية (شبه الاغمارية) الموسعة من نمط كاما كتعميم الى مفهوم المقاسات الاغمارية (شبه الاغمارية) من نمط كاما . المقاس M يسمى مقاس اغماري (شبه اغماري) موسع من نمط كاما اذا كان كل مقاس جزئي فعلي في M يكون جو هريا" في مقاس جزئي اغماري (شبه اغماري) في M . مفهوم المقاسات الاغمارية الموسعة من نمط كاما تقع بين المقاسات الاغمارية من نمط كاما والمقاسات شبه الاغمارية من نمط كاما .