Math Page 103 - 114 Hanadi .A

On approximation f by (α, β, γ) -Baskakov Operators

Hanadi A. AbdulSatter

University of Basra, College of Education for Pure Science, Dept. of Maths., Basra, Iraq. habd21465@gmail.com,

Recived: 29\8\2017 Revised: 14\9\2017 Accepted: 20\9\2017

Abstract:

In the present paper, we study some application properties of the approximation for the sequences $M_{n,\gamma}^{\alpha,\beta}(f;x)$ and $B_{n,\gamma}^{\alpha,\beta}(f;x)$. These sequences depend on the arbitrary (but fixed) parameters α,β and γ . Here, we study the effect of these parameters on tends speed of the two families of operators $M_{n,\gamma}^{\alpha,\beta}(f;x)$ and $B_{n,\gamma}^{\alpha,\beta}(f;x)$ and the CPU times which are occurring on the approximation by a choosing fixed n.

Key word: Korovkins' conditions, (α, β, γ) -Baskakov Operators, (α, β, γ) - Baskakov Kantorovich operators.

2010 Mathematics Subject Classification: 41A25, 41A35.

1- Introduction

The classical Baskakov operators (L_n) of bounded continuous functions f(x) on the interval $[0, \infty)$, which defined as: [3] Suppose that

$$p_{n,k}(x) = (-1)^k \frac{x^k}{k!} \varphi_n^{(k)}(x),$$

The *n*-th order of classical Baskakov is defined as:

$$(L_n f)(x) = \sum_{k=0}^{\infty} p_{n,k}(x) f(\frac{k}{n}),$$
 (1.1)

where $n \in N, x \in [0, b], b > 0$.

The article proved the Korovkins' conditions for the convergence of Baskakov operators. [4]

Berens and Suzuki were studied the classes for continuous functions with compact support and getting some results concerning bounded continuous functions. [8], [9]

Bernstein polynomials and Szasz-Mirakian operators are the especial cases of Baskakov operators considered by May. [7]

In recent years, some applications had been done for sequences of linear positive operators by use Maple programs.

Sharma was studied the rate of convergence of q-Durrmeyer operators and he used maple programming to describe the approximation for two sequences of operators. [5]

Mursaleen and Asif khan, they studied approximation properties of q-Bernstein–Shurer operators and they found the error estimate. In addition, they proved graphically the convergence for *f* by these operators. [6]

Gupta introduced and studied a generalization of the Baskakov –Durrmeyer operators. This generalization are defined as:

For
$$x \in [0, \infty)$$
, $\gamma = 1$,

$$B_{n,\gamma}(f;x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{0}^{\infty} b_{n,k,\gamma}(t) f(t) dt + P_{n,0,\gamma}(x) f(0)$$

where $P_{n,k,\gamma}(x)$ and $b_{n,k,\gamma}(t)$ as defined as:

$$P_{n,k,\gamma} (x) = \frac{\Gamma(\frac{n}{\gamma+k})}{\Gamma(k+1)\Gamma(\frac{n}{\gamma})} \cdot \frac{(\gamma x)^k}{(1+\gamma x)(\frac{n}{\gamma})+k}$$

$$b_{n,k,\gamma} (t) = \frac{\gamma \Gamma(\frac{n}{\gamma+k+1})}{\Gamma(k)\Gamma(\frac{n}{\gamma+k})} \cdot \frac{(\gamma t)^{k-1}}{(1+\gamma x)(\frac{n}{\gamma})+k+1}$$

$$(1.2)$$

Then, he introduced modification of Baskakov operators using weight functions of Bate base functions depend of parameter γ , and getting some results concerning Baskakov operators from them approximation theorem, rate of convergence, weighted approximation theorem. [1], [2]

We define (α, β, γ) - Baskakov operators $M_{n,\gamma}^{\alpha,\beta}(f;x)$ in this research, we prove the Korovkin

In this paper is an application study to the sequences $M_{n,\gamma}^{\alpha,\beta}(.;x)$, $B_{n,\gamma}^{\alpha,\beta}(.;x)$ and $L_n(f,x)$ on the two test function $f(x) = \frac{x^3}{3} - \frac{x^2}{2} + \frac{3}{16}x$, $f(t) = \sin(10t)\exp(-3t) + 0.3$ to show that the effect of the parameters (α,β,γ) in the sequences $M_{n,\gamma}^{\alpha,\beta}(.;x)$, $B_{n,\gamma}^{\alpha,\beta}(.;x)$ on the tends speed of approximation .The results which are done are describe by the graphs of the test function and the approximations of the sequences $M_{n,\gamma}^{\alpha,\beta}(.;x)$, $B_{n,\gamma}^{\alpha,\beta}(.;x)$ and $L_n(f,x)$. In addition, we give some tables of the CPU time which are occurring on the approximation of the test function by a choosing fixed n.

2- Construction of the Operators $\{M_{n,\gamma}^{\alpha,\beta}(f,x)\}$

In this part, we introduce the operators $M_{n,\gamma}^{\alpha,\beta}$ (f,x) and state some of their properties.

Definition 2-1

Let $f \in [0,1], x \in [0,\infty), k \in \mathbb{N}^0 = \{0,1,2,...\}$ for some $0 \le \alpha \le \beta$, and $n \in \mathbb{N} = \{1,2,...\}$. The (α,β,γ) - Baskakov Operators in special case i.e. $\gamma = 1, \alpha = \beta = 0$ is reduce to the operators (1,1).

The will-known (α, β, γ) - Baskakov operators $M_{n,\gamma}^{\alpha,\beta}$, (α, β, γ) - Baskakov Kantorovich operators $B_{n,\gamma}^{\alpha,\beta}$ with two parameters α and β with $0 \le \alpha \le \beta$ on two test function f(x) and investigated convergence and approximation properties of these operators, such as defined:

$$M_{n,\gamma}^{\alpha,\beta}(f(t),x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) f\left(\frac{k+\alpha}{n+\beta}\right)$$
 (2.1)

$$B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma} \int_{\underline{k}}^{\underline{k+1}} f(t) dt \qquad (2.2)$$

Where

$$P_{n,k,\gamma}(x) = \frac{\Gamma(\frac{n}{\gamma}+k)}{\Gamma(k+1)\Gamma(\frac{n}{\gamma})} \cdot \frac{(\gamma x)^k}{(1+\gamma x)^{(\frac{n}{\gamma})+k}},$$

$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + \frac{3}{16}x$$

$$f(t) = \sin(10t) \exp(-3t) + 0.3$$
(2.3)

conditions for the operators $M_{n,\gamma}^{\alpha,\beta}(f;x)$ and $B_{n,\gamma}^{\alpha,\beta}(f;x)$.

The following theorem help us to study the Korovkin conditions for convergence for two operators $M_{n,\gamma}^{\alpha,\beta}$, $B_{n,\gamma}^{\alpha,\beta}$.

Theorem (2-1) (Korovkin Theorem):

For $x \in [0, \infty)$, $f \in [0,1]$ and by applying Korovkin Theorem on the operator $M_{n,\gamma}^{\alpha,\beta}(f;x)$, we have:

1.
$$M_{n,y}^{\alpha,\beta}$$
 (1; x)=1

2.
$$M_{n,\gamma}^{\alpha,\beta}(t;x) = \frac{nx}{n+\beta} + \frac{\alpha}{n+\beta}$$

3.
$$M_{n,\gamma}^{\alpha,\beta}(t^2;x) = \frac{n^2x^2}{(n+\beta)^2} + \frac{1+2\alpha}{(n+\beta)^2} \{nx\} + \frac{\alpha^2}{(n+\beta)^2}$$

4.
$$M_{n,\gamma}^{\alpha,\beta}(t^m;x)$$

$$= \frac{n^m x^m x}{(n+\beta)^m} + \frac{m(m-1)+2\alpha m}{2(n+\beta)^m} \{n^{m-1} x^{m-1}\} + T.L.P.(x) + \frac{\alpha^m}{(n+\beta)^m}$$

Proof:

The operators $M_{n,\gamma}^{\alpha,\beta}$ are well define on the function $1, t, t^2, t^m$ we obtain.

1.
$$M_{n,\gamma}^{\alpha,\beta}$$
 (1; x)= $\sum_{k=0}^{\infty} P_{n,k,\gamma}(x) = 1$

2.
$$B_{n,\gamma}^{\alpha,\beta}\left(t;x\right) = \sum_{k=0}^{\infty} \mathsf{P}_{n,k,\gamma}^{(x)} \cdot \frac{k+\infty}{n+\beta}$$

$$= \frac{1}{n+\beta} \left\{ \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \cdot k + \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \cdot \alpha \right\}$$
$$= \frac{nx}{n+\beta} + \frac{\alpha}{n+\beta} \to x \quad \text{as } n \to \infty$$

3.
$$M_{n,\gamma}^{\alpha,\beta}(t^2;x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) f(\frac{k+\alpha}{n+\beta})^2$$

$$= \frac{1}{(n+\beta)^2} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \cdot (k^2 + 2\alpha k + \alpha^2)$$

$$= \frac{1}{(n+\beta)^2} \{ \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \mid k^2 + \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \mid (2 \alpha k) + \alpha^2 \}$$

$$= \frac{1}{(n+\beta)^2} \{ n^2 x^2 + \gamma x^2 + nx \} + \frac{2\alpha}{(n+\beta)^2} \{ nx \}$$

$$+ \frac{\alpha^2}{(n+\beta)^2}$$

$$= \frac{n^2 x^2}{(n+\beta)^2} + \frac{1+2\alpha}{(n+\beta)^2} \{ nx \} + \frac{\alpha^2}{(n+\beta)^2} \rightarrow x^2$$
as $n \to \infty$

4.
$$M_{n,\gamma}^{\alpha,\beta}(t^m; x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) f(\frac{k+\alpha}{n+\beta})^m$$

= $\frac{1}{(n+\beta)^m} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) (k+\alpha)^m$

$$= \frac{1}{(n+\beta)^{m}} \{ \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \quad k^{m} + \frac{\alpha m}{(n+\beta)^{m}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \quad k^{m-1} = \frac{2nx}{2n} + \frac{1}{2n} \rightarrow x \text{ as } n \rightarrow \infty$$

$$+ T. L. P(x) \} + \frac{\alpha^{m}}{(n+\beta)^{m}} \qquad 3. \quad B_{n,\gamma}^{\alpha,\beta} (t^{2}, x) = n \sum_{k=0}^{\infty} M_{n,\gamma}^{\alpha,\beta} (t^{m}; x) = \frac{n^{m} x^{m} x}{(n+\beta)^{m}} + \frac{m(m-1) + 2\alpha m}{2(n+\beta)^{m}} \qquad = \frac{n}{3n^{3}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \{(k+1)^{3} + (k+1)^{3} + (k+1)^{3}$$

Theorem (2-2)

$((\alpha, \beta, \gamma)$ -Baskakov Kantorovich operators)

The following equation hold:

$$B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt$$

1.
$$B_{n,\nu}^{\alpha,\beta}$$
 (1, x)=1

2.
$$B_{n,\gamma}^{\alpha,\beta}(t,x)=x+\frac{1}{2n}$$

3.
$$B_{n,\gamma}^{\alpha,\beta}(t^2,x)=x^2+\frac{2}{n^2}x+\frac{1}{3n^2}$$

4.
$$B_{n,\gamma}^{\alpha,\beta}$$

 $(t^m, x) = x^m + \frac{m^2}{2n}x^{m-1} + T.L.P(x) + \frac{1}{(m+1)n^m}$

Proof:

1.
$$B_{n,\gamma}^{\alpha,\beta}(1,x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} dt$$

$$= n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \{\frac{1}{n}\} = 1$$
2.
$$B_{n,\gamma}^{\alpha,\beta}(t,x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} t \cdot dt$$

$$= n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \{\frac{2k+1}{n^2}\}$$

$$= \frac{2}{2n} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \cdot k + \frac{1}{2n}$$

$$\begin{split} &= \frac{n}{3n^3} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ (\mathbf{k}+1)^3 - k^3 \right\} \\ &= \frac{-1}{3n^2} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ 3\mathbf{k}^2 + 3k + 1 \right\} \\ &= \frac{1}{n^2} \left\{ n^2 x^2 + y x^2 + nx \right\} + \frac{1}{n^2} \left\{ nx \right\} + \frac{1}{3n^2} \to x^2 \quad as \quad n \to \infty \\ &4. \quad B_{n,\gamma}^{\alpha,\beta} \left(t^m, x \right) = \mathbf{n} \sum_{k=0}^{\infty} \mathbf{P}_{n,k,\gamma}(x) \quad \int_{\frac{k}{n}}^{\frac{k+1}{n}} t^m \cdot dt \\ &= \frac{n}{n^{m+1}(m+1)} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ (k+1)^{m+1} - k^{m+1} \right\} \\ &= \frac{1}{n^m(m+1)} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ k^{m+1} + (m+1)k^m + \frac{m(m+1)}{2} k^{m-1} + \cdots + (m+1)k + 1 - k^{m+1} \right\} \\ &= \frac{1}{n^m} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) k^m + \frac{m}{2n^m} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) k^{m-1} + \cdots + \frac{1}{n^m} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) k + \frac{1}{n^m(m+1)} \\ &B_{n,\gamma}^{\alpha,\beta} \left(t^m, x \right) = x^m + \frac{m^2}{2n} x^{m-1} + T.L.P. \left(x \right) + \frac{1}{(m+1)n^m} \end{split}$$

3. $B_{n,\gamma}^{\alpha,\beta}(t^2,x) = n\sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\underline{k}}^{\frac{k+1}{n}} t^2 dt$

3- Numerical Example

Here, we give a numerical example for the approximation of operators $M_{n,y}^{\alpha,\beta}(f,x)$ for different values of the parameters α, β, γ by take the two test functions on [0, 1].

$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + \frac{3}{16}x. \tag{2.3}$$

$$f(t) = \sin(10t) \exp(-3t) + 0.3 \tag{2.4}$$

 $\mbox{Figure (3.1)}$ Approximation test function f(x) by $M_{n,\gamma}^{\alpha,\beta}(f,x)$ for n=50

Figure 3.1, explains the tends speed of the operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$ by first test function (2.3), when the values n=50, $\gamma=1$ fixed, such as if n increases tends speed of $M_{n,\gamma}^{\alpha,\beta}(f,x)$ will fail in application, and take variance values of the α,β , such that $0 \le \alpha \le \beta$ we get the best tends speed by $M_{n,\gamma}^{\alpha,\beta}(f,x)$ to approximating the test function when $\alpha=0.5$, $\beta=1$ and $\gamma=1$. In addition, the

 $M_{n,\gamma}^{\alpha,\beta}(f,x)$ operators is returns to the classical operators $L_n(f,x)$ when $\gamma=1,\alpha=0,\beta=0$.

3-1The CPU time

The following table is explain the CPU time for the operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$, $L_n(f,x)$ by test function (2.3), where n=50. We found the best CPU time introduced by $L_n(f,x)$ by using the same test function f.

Table (3.1) Explains the CPU time for n = 50

The sequence	γ	α	β	CPU time
$M_{n,\gamma}^{\alpha,\beta}(f,x)$	1	0.5	1	12.12s
$L_n(f,x)$	1	0	0	11.07s

Figure 3.2 explains the tends speed of (α, β, γ) - Baskakov operators $M_{n,\gamma}^{\alpha,\beta}$ with (α, β, γ) -Baskakov Kantorovich operators $B_{n,\gamma}^{\alpha,\beta}$ by first test function (2.3), when take the values $n=100, \gamma=1$ and take variance values of the α, β , such that $0 \le \alpha \le \beta$ we get the best case is $\alpha=1$ and $\beta=1$.

3-2 The CPU time

The following table is explain the CPU time for the operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$, $B_{n,\gamma}^{\alpha,\beta}(f,x)$ where n=100. We found the best CPU time introduced by $B_{n,\gamma}^{\alpha,\beta}(f,x)$ by using the same test function f.

Table (3.2) Explains the CPU time for n = 100

The sequence	γ	A	В	CPU time
$M_{n,\gamma}^{\alpha,\beta}(f,x)$	1	1	1	31.268
$B_{n,\gamma}^{\alpha,\beta}(f,x)$	1	1	1	28.48S

Hanadi .A

Now we will test the second function (2.4) on the same two sequence of operators with the same steps as above.

Figure (3.3) Approximation f(x) by $M_{n,\gamma}^{\alpha,\beta}(f,x)$ for n=50

3-3 The CPU time: The following table is explain the CPU time for the operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$, $L_n(f,x)$ by test function (2.4), where n=50.

Table (3.3) Explains the CPU time for n = 50

The sequence	γ	α	β	CPU time
$M_{n,\gamma}^{\alpha,\beta}(f,x)$	1	0.5	1	4.71s
$L_{n}(f,x)$	1	0	0	4.78s

Hanadi .A

Figure 3.4 Approximation test function f(x) by $M_{n,y}^{\alpha,\beta}(f,x)$ and $B_{n,y}^{\alpha,\beta}(f,x)$ for n=100

3-4 The CPU time

The following table is explain the CPU time for the operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$, $B_{n,\gamma}^{\alpha,\beta}(f,x)$ by test function(2.4),where n=100. We found the

best CPU time introduced by $M_{n,\gamma}^{\alpha,\beta}(f,x)$ by using the same test function f .

Table (3.4) Explains the CPU time for n = 100

The sequence	γ	α	В	CPU time
$M_{n,\gamma}^{\alpha,\beta}(f,x)$	1	1	1	4.45S
$B_{n,\gamma}^{\alpha,\beta}(f,x)$	1	1	1	19.01S

4- Comparing Between Test Functions

Test function	The operaters		
Test function (2.3)	$M_{n,\gamma}^{\alpha,\beta} (f(t),x) = \sum_{k=0}^{\infty} P_{n,k,\gamma} (x) f\left(\frac{k+\alpha}{n+\beta}\right)$		
Test function (2.4)	$M_{n,\gamma}^{\alpha,\beta}\left(f(t),x\right) = \sum_{k=0}^{900} P_{n,k,\gamma}\left(x\right) f\left(\frac{k+\alpha}{n+\beta}\right)$		
Test function (2.3)	$B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt$		
Test function (2.4)	$B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{900} P_{n,k,\gamma} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt$		
Test function (2.4)	The best tends speed of $M_{n,\gamma}^{\alpha,\beta}$ ($f(t),x$)		
Test function (2.4)	The best CUP time for $M_{n,\gamma}^{\alpha,\beta}$ ($f(t),x$), where $n=10$		

5- Conclusions

In this paper, we defined the sequence of a linear positive operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$ depends on the parameters α,β,γ and give some of its properties. In addition, we made an application of the sequences $M_{n,\gamma}^{\alpha,\beta}(f,x)$, $B_{n,\gamma}^{\alpha,\beta}(f,x)$ to show the effect of these parameters α,β,γ on tends speed occurs by these operators are betters than all tends speed of the sequence $L_n(f,x)$, where f is the test function. We also find a better effect of the parameters when $0 \le \alpha \le \beta$ betters than previous cases of parameters α,β,γ . Finally, by the applying the two operators $M_{n,\gamma}^{\alpha,\beta}(f,x)$, $B_{n,\gamma}^{\alpha,\beta}(f,x)$ we get the best CPU time introduced by $M_{n,\gamma}^{\alpha,\beta}(f,x)$ by using the second test function.

References

- [1] V. Gupta, "Approximation for modified Baskakov Durrmeyer type operators, Rocky Mountain J. Math. 39(3) (2009), 1-16.
- [2] P.Patel, V.Mishra,"Approxmation properties of certain summation integral type operators ", Demonstratio Mathematica, (2015).

- [3] P. N. Agrawal, H.S. Kasana, "On simultaneous approximation by Szasz-Mirakian operators" Bull. Inst. Math.Acad.Sinica, 22(1994) pp.181-188.
- [4] V.A.Baskakov,"An example of asquence of linear positive operators in the space of continuous functions" Dokl. Akad.Nauk SSSR, 113(1957) pp.249-251.
- [5] H. Sharma, "Note on approximation properties of generalized Durrmeyer operators", Mathematical sciences, (2012).
- [6] M. Mursaleen, Asif Khan, "Generalized q-Bernstein-Schurer Operators and some Approximation Theorems", Journal of function spaces and applications, Vol.2013, 7pages,30 July (2013).
- [7] C. P. May, "Saturation and inverse theorems for combinations of a class of exponential-type operators" Canad. J. Math. 28 (1976) pp.1224-1250.
- [8] H. Berens, "Pointwise saturation of positive operators" J.Approx. Th., 6(1972) pp.135-146.
- [9] Y. Suzuki, "Saturation of local approximation by linear positive operators of Bernstein type " TohokMath. J., " 19(1967), pp. 429-453.

$(lpha,oldsymbol{eta},oldsymbol{\gamma})$ - الاختبارية f للمؤثرات الخطية باسكوف

هنادي عبد الله عبد الستار قسم الرياضيات - كلية التربية للعلوم الصرفة - جامعة البصرة habd21465@gmail.com,

المستخلص

في بحثنا هذا درسنا بعض الخواص التطبيقية لتقريب المتتابعات ضمن المؤثرين $M_{n,\gamma}^{\alpha,\beta}(f;x)$, $M_{n,\gamma}^{\alpha,\beta}(f;x)$ تلك المتتابعات تعتمد على تأثير الباراميترات γ ، α ، β وعليه قمنا بدراسة تأثيرها من ناحية سرعة الوصول لكلا المؤثرين وحساب الوقت اللازم للتقريب بواسطة اختيار قيمه ثابتة ل n .