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Abstract 

      In this study, numerical analysis for incompressible Newtonian flows has been conducted by using 

an artificial compressible method ( AC -method) based on the Galerkin finite element approach. As 

well known, Naiver-Stoke partial differential equations are employed to describe activity of the fluid. 

This model, which consists of two differential equations; named the conservation of mass and time-

dependent conservation of momentum is presented in cylindrical coordinates system (Axisymmetric 

flow). The effects of many factors such as Reynolds number ( Re ) and artificial compressibility 

parameter ( ac ) are discussed in the present study. In particular, this study emphasized on the impact 

of these parameters on the level of convergence. To satisfy the analysis of the method, Poiseuille flow 

along a circular conduit under isothermal condition is utilized as a simple test problem. This test is 

conducted by taking a circular cross section of pipe. 
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1. Introduction 

    The artificial compressibility ( AC ) method 

represents the early methods introduced for 

solving the Navier-Stokes differential 

equations. As is well known, under the 

incompressibility condition at both inside and 

boundaries of domain, the pressure 

components can be computed by using Poisson 

equation when the velocity is given. To avoid 

the complicated which is coming from that 

pressure decoupling process, Chorin [1] 

improved this AC -method to solve the steady 

state incompressible Navier-Stokes differential 

equations. The basis of this scheme is adding 

an artificial time derivative to the continuity 

equation to transform the system of equations 

from elliptic incompressible system to a 

hyperbolic compressible system. AC -method 

is adopted by many authors to solve various 

problems of incompressible flow; see for 

example Steger and Kutler [2], Peyret and 

Taylor [3], Chang and Kwak [4], Choi and 

Merkle [5], Rizzi and Eriksson [6], Rogers et 

al. [7] and Temam [8]. 

Furthermore, this method extended 

successfully to solve unsteady problems. At 

the first Peyret [9] and Peyret and Taylor [3] 

are extended the AC -method to solve the 

Navier-Stokes equations in unsteady situation  

 

 

under incompressibility condition. In addition, 

the extension of this approach for unsteady 

problems has had extensive coverage in the 

literature ([10]-[18]). The method is also 

implemented to analysis other kinds of 

equations in steady state situation (see Madsen 

and Larsen [19]). Farmer et al [20] discussed 

the solution of the Euler equations by using the 

multi-grid method and AC -method in parallel 

for free surface situation. In addition, 

implementation of a geometric multi-grid 

method for the AC -method is investigated by 

Yuan [21] to solve viscous flow. Moreover, the 

exact Riemann flux is introduced for AC -

method by Bassi et al.[22], who also provided 

the discontinuous Galerkin approach to solve 

steady incompressible flow problems. 

In the present study, AC -method is 

implemented to solve the governing equations 

of incompressible Newtonian flow in 

cylindrical coordinates. The particular 

numerical scheme adopted based on a Galerkin 

finite element approach. Determining the 

critical levels of Reynolds number ( Re ) is the 

main feature of this study. Moreover, the 

convergence rate of solution under the 

variation of artificial compressibility parameter 

and Reynolds number also investigated.  
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2. Mathematical modeling  

    For isothermal flow of an incompressible 

fluid the balance conservation of mass is given 

by 0.=
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 And the momentum equations in the 

cylindrical components are presented as 
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 z -component     
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Such that ru , u  and zu  represent the 

velocity in r -direction,  -direction and z -

direction. Also, p  is the pressure,   is the 

density of the fluid and s  is the solvent 

viscosity. In contrast, the equation can be also 

defined by the non-dimensional groups of 

Reynolds number ( Re ), and viscosity (  ), 

which are defined by the scales of velocity 

(U ), length ( L ) and density ( ) as, 

s

Ul
Re


=  and s =  (for more details 

see [23],[24]).  

3  Numerical scheme   

3.1  Artificial compressibility method 

     To solve the system of governing 

differential equations, the artificial 

compressibility method (AC-method) is 

implemented within Galerkin finite element 

method. The main feature of this scheme is to 

change the elliptic continuity equation to a 

hyperbolic compressible equation by 

introducing a new term in continuity equation 

named an artificial time derivative. Here, the 

modified Tait equation [25] of state is applied, 

which shows in term of density and pressure 

by the following relationship  
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 Where, B  and m  are constants, and 0p  and 

0  are reference pressure and reference 

density. 

By using the differential, we have  
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where, ac  is the artificial compressibility 

parameter; 1<<
1

<0
ac

. By adding the 

artificial compressibility term (6) to continuity 

equation, we have the following equation  

0.=
111

z

uu

r
u

rr

u

t

p z
r

r

ac 



















        

(7)                                                                        

 Now by introducing the approximations for 

velocity and pressure fields based on 

respective shape functions i  and j  

( 1,2,...,6=i , total number of nodes including 

mid-side points and 1,2,3=j , number of 

vertex nodes only) we gather the following 

matrix formulations  
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 Such that,   

 1.  Mass Matrix,  
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3.  Diffusive Matrix,  
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 4.  Gradient Matrix,  
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The shape functions from the theory of area 

coordinates will be employed as the quadratic 

and linear triangular shape functions for 

velocities and pressure, respectively. In this 

context, the quadratic and linear shape 

functions in the natural triangular area 

coordinates are given as  

)(],][[= QuadraticRA                  (12)                                                                                       

 )(],[=]][[= LinearEEI            (13)                                                                                    
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 The natural triangular area coordinates 1L , 

2L  and 3L  of the cylindrical  coordinates are 

defined as  
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Where, areaA  is the area of the element’s 

triangular and ia , ib , and ic  are coefficients. 

Thus, under these assumptions the equations 

(8)-(11) can be rewritten in the matrix 

formulation as  
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such that, 
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Consequentially, by using the theory of area 

coordinates for triangular elements, the mass 

and artificial compressibility matrix can be 

expressed as  
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 Also the derivative form of shape function can 

be defined as  
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In the other hand, the final diffusion matrix 

formula can be written as  
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Moreover, the gradient matrix is defined as  
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 Finally, the convective matrix is given by  
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4  Problem specification 

    In the present study, Poiseuille flow along a 

D2  axisymmetric straight channel, under 

isothermal condition is investigated. For this 

purpose, a structured, uniform, quadrilateral-

based, triangular finite element mesh is 

utilized, for the 22  mesh as illustrated in 

Fig. 1, with mesh characteristics are introduced 

in Table 1.  

 

 

 

 

 

 

 

    

  

 

  

 

 

 

 

 

 

Boundary conditions (BCs): The setting of 

BCs of the present channel problem is laid as 

follows (see Fig.2):  

 (a)  Poiseuille(Ps) flow is specified at the inlet 

)(AD  with )(14= rruz  .  

 (b)  No-slip BCs  is applied on the channel 

walls )(AB  and )(CD .  

 (c)  Along the outflow boundary (BCs), zero 

radial velocity applies.  

 

 

 

 

 

 

 

 

 

5  Exact solutions of Naiver-Stokes 

equations for parallel flow 

     Finding exact solution of Naiver-Stokes 

equations, displays mathematical difficulties 

because of the nonlinear terms of equations. 

However, some time the analytical solutions 

can be found in specific cases. Firstly, to find 

the analytic solution, the system of differential 

equations for incompressible flow can be re-

expressed as. 

Fig.1: Structured  finite element mesh. 

 

Table  1: Mesh characteristic parameters 

 

 

Mesh  Total  

Element  

Total 

 Nodes  

 Boundary 

 Nodes  

 Pressure  

Nodes  

            

 

Fig. 2: Schema for flow problem, boundary conditions. 
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Continuity equation  
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In the case of the axisymmetric flow with 

vanish tangential and radial velocities 
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Thus, under these assumptions the continuity 

equation, we have  
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Considering a steady flow we get from the 

axial component of the Navier-Stokes 

equations  
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Where, under a constant pressure gradient 
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By integrating, we have the general solution as  

.)(ln
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= 21

2 crcr
M

p
uz   

By impossing the boundary conditions 0=zu  

for hr = , we have  

).(
4

= 22 rh
M

P
uz                                (36) 

 maxu  at the center of the channel, when 

0=r  into equation (36)  

.
4

=
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M
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umax                                             (37)                                                                                                                      (37) 

 Thus, the analytic solution is,  
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z
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The comparison in axial velocity between the 

analytic solution and numerical results is 

illustrated in Fig. (3) for 100=ac  and 

1,5=Re . Here, the velocity profile is plotted 

in the fully development region of the channel. 

From the comparative one can observe that, the 

numerical results, which are appeared are 

reasonable compared to the exact solution, 

which reflects the efficiency of the numerical 

method that used.  

 

 

 

 

 

 

 

 

 

   6  Simulation results 

   The fields of axial velocity zu , according to 

various Re  at fixed 100=ac  are displayed 

in Fig.(4). The results reveal that, the 

maximum level of velocity is appeared in the 

middle of the geometry. Here, one can observe 

clearly the effect of the Reynolds number on 

the level of Re , where the level of velocity is  

 

 

 

increased as Re  increases; rising from 1.4  

when 1=Re  to around 2  when 7=Re . 

Here, the critical level of Re  is 7 , where the 

results are become diverge for the value of 

Re  greater than 7  (see Fig.4e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                      

 

        

    

 

 

 

 

 

 

 

 

Fig. 3: Axial velocity profiles: compare between  

analytic and numerical solutions . 
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Fig. 4: Fields of axial velocity, -various, . 
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The rate of convergence for pressure and axial 

velocity components are illustrated in Fig. (5) 

for different values of the artificial 

compressibility parameter 

( 60,80,100=ac ) and fixed 1=Re . 

Generally, the level of convergence for 

velocity component is high compared to 

pressure because of the influence of non-

linearity behaviour. In addition and as 

anticipated the findings show that, the rate of 

convergence is increased as the values of ac  

are decreased due to the compressibility 

effects.  

 

 

 

 

 

  (a)                                                 (b) 

 

 

         Obviously, when the Reynolds number is 

increased, the velocity gradients will be 

developed which reflects the difficulties of 

convergence for large Re number. Thus, we 

have directed our interest in the discussing and 

studying the effects and levels of Reynolds 

number. Fig.(6) shows that the convergence of 

axial velocity for different levels of Re  and  

 

fixed 100=ac . From the Figure one can see 

that the level of time increments increases 

exponentially, whenever you get increased in 

Re . For example when 0.01=Re , the level 

of time steps is much less than that in 6=Re  

(see Fig. (6a) and (6e)), so the level of 

convergence of velocity is faster when Re  is 

small. We note also that for the critical value 

of 7=Re  as shown in the Fig.(6f) we found 

it is so difficult to reach the convergence 

(needed around 150000  time-step).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 5: Convergence of pressure and velocity components,  

-various,  

 

(e) 
  

Fig. 6: Velocity convergence, 
 

=100,  variation. 
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7  Summary 

     In this study, the method of artificial 

compressibility within the finite element 

method is presented as an effective way to 

solve the Navier-Stokes equations in 

cylindrical coordinates system. The analysis of 

finite element method for the equations under 

considerations has been conducted. 

Here, under special case the analytic solution 

of these equations is obtained to give as 

opportunity to compare the numerical result 

and have clear feature of the method. The 

convergence analysis of velocity and pressure 

was done to identify the effect of Re  and ac  

on the acceleration of convergence. From the 

results one can observe that, the rate of 

convergence is reduced as Re  reduced, while 

the rate of convergence is reduced as ac  

increased.  
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 (ACقت الانضغاط الاصطناعً )التحلٍل العذدي للتذفق النٍوتونً على أساس طرٌ

 

 علاء حسن عبذ الله      بشائر كاظن جاسن    

 جاهعت البصرة     ,كلٍت العلوم  ,قسن الرٌاضٍاث

 : الوستخلص

طشٌقت  باعتعًالتى تُاونّ   غٍش انقابم نلاَضغاط تحهٍم انعذدي نًعادنت انتذفق انٍُوتوًَانفً ْزِ انذساعت  

-يعادلاث َافٍٍّ . كًا ْو يعهووهعُاصش انًحذدةكانشكٍ ن طشٌقت لاعتًاد عهىبا( ACصطُاعً )َضغاط الأالأ

عاط يٍ يعادنتٍٍ تفاضهٍتٍٍ ًْا تكوٌ بالأوانزي ٌ انًُورجٌ ْزِ ا عتوكظ توظف دائًا نوصف حشكت انًوائع.

 تأثٍش .(Axisymmetric flowفً َظاو الإحذاثٍاث الاعطواٍَت ) يعادنت حفع انكتهت وحفع انضخى تى دساعتّ

قذ َوقش فً ْزِ انذساعت. بصوسة  (βac(ويعايم الاَضغاط الاصطُاعً   (Re)بعض انعوايم يثم عذد سٌُونذص

تى  ْزِ انعوايم عهى يعذل انتقاسب نهحهول انعذدٌت. نتأكٍذ تحهٍم انطشٌقت تأثٍشانذساعت سكضث عهى ِ اعاعٍت ْز

بغٍظ نهطشٌقت يٍ خلال أخز يقطع عشضً  كاختباسئشٌت داخم قُاة دا (Poiseuille flow)اعتخذاو  تذفق بواصول 

 .دائشي
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