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Abstract

In this study, numerical analysis for incompressible Newtonian flows has been conducted by using
an artificial compressible method ( AC -method) based on the Galerkin finite element approach. As
well known, Naiver-Stoke partial differential equations are employed to describe activity of the fluid.
This model, which consists of two differential equations; named the conservation of mass and time-

dependent conservation of momentum is presented in cylindrical coordinates system (Axisymmetric

flow). The effects of many factors such as Reynolds number (Re) and artificial compressibility
parameter ( ﬂac) are discussed in the present study. In particular, this study emphasized on the impact

of these parameters on the level of convergence. To satisfy the analysis of the method, Poiseuille flow
along a circular conduit under isothermal condition is utilized as a simple test problem. This test is

conducted by taking a circular cross section of pipe.
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1. Introduction

The artificial compressibility ( AC ) method
represents the early methods introduced for
the differential

solving Navier-Stokes

equations. As is well known, under the
incompressibility condition at both inside and
boundaries of domain, the pressure
components can be computed by using Poisson
equation when the velocity is given. To avoid
the complicated which is coming from that

pressure decoupling process, Chorin

[1]
improved this AC -method to solve the steady
state incompressible Navier-Stokes differential
equations. The basis of this scheme is adding
an artificial time derivative to the continuity
equation to transform the system of equations

from elliptic incompressible system to a

hyperbolic compressible system. AC -method
is adopted by many authors to solve various
problems of incompressible flow; see for
example Steger and Kutler [2], Peyret and
Taylor [3], Chang and Kwak [4], Choi and
Merkle [5], Rizzi and Eriksson [6], Rogers et
al. [7] and Temam [8].

Furthermore, this method extended

successfully to solve unsteady problems. At

the first Peyret [9] and Peyret and Taylor [3]
are extended the AC -method to solve the

Navier-Stokes equations in unsteady situation

116

under incompressibility condition. In addition,
the extension of this approach for unsteady
problems has had extensive coverage in the
literature ([10]-[18]). The method is also
implemented to analysis other kinds of
equations in steady state situation (see Madsen

and Larsen [19]). Farmer et al [20] discussed

the solution of the Euler equations by using the

multi-grid method and AC -method in parallel

for free surface situation. In addition,

implementation of a geometric multi-grid
method for the AC -method is investigated by
Yuan [21] to solve viscous flow. Moreover, the
exact Riemann flux is introduced for AC -
method by Bassi et al.[22], who also provided
the discontinuous Galerkin approach to solve

steady incompressible flow problems.

In the present study, AC -method is

implemented to solve the governing equations
Newtonian flow in

of  incompressible

cylindrical ~ coordinates. The  particular
numerical scheme adopted based on a Galerkin

finite element approach. Determining the
critical levels of Reynolds number ( Re) is the
main feature of this study. Moreover, the
convergence rate of solution under the
variation of artificial compressibility parameter

and Reynolds number also investigated.
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2. Mathematical modeling
For isothermal flow of an incompressible

fluid the balance conservation of mass is given

10ru, 10u, ou,
by — L+ = + =
ror rof o0z

And the momentum equations in the

cylindrical components are presented as

I -component

ou, ou, u,ou ul ou,
+U, —+-2—L -4y,

ot o r o0 r 0z

10op LA (1 0 au u
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Such that U, U, and U, represent the

velocity in r -direction, @ -direction and z-

direction. Also, P is the pressure, p is the

(MBensity of the fluid and M is the solvent

viscosity. In contrast, the equation can be also

defined by the non-dimensional groups of
Reynolds number ( Re), and viscosity (A),
which are defined by the scales of velocity

(U), length (L) and density (p) as,

Re ZpU—I and B =, (for more details

Hs

see [23],[24]).

3 Numerical scheme

3.1 Artificial compressibility method
To solve the system of governing
artificial

differential equations, the

compressibility method (AC-method) is
implemented within Galerkin finite element
method. The main feature of this scheme is to
change the elliptic continuity equation to a
hyperbolic ~ compressible  equation by
introducing a new term in continuity equation
named an artificial time derivative. Here, the
modified Tait equation [25] of state is applied,

which shows in term of density and pressure

by the following relationship

€]
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m B
L: ﬁ - (5)
p,+B Po p,+B

Where, B and m are constants, and [P, and

Py are reference pressure and reference

density.

By using the differential, we have

op_1p

—_= 6
ot B, ot ©

where, [, is the artificial compressibility

1
parameter; 0 < — <<1. By adding the

ac
artificial compressibility term (6) to continuity

equation, we have the following equation

1 @Jrau, 1u +1%+8u _

— =

B ot or r ' roo e

(7
Now by introducing the approximations for

velocity and pressure fields based on

respective shape functions ; and ¢j

(1=1,2,...,6, total number of nodes including
mid-side points and j =1,2,3, number of

vertex nodes only) we gather the following

matrix formulations

[M10p1+[Qy 1u, T+ [allu, J+[Q; ]lu, 1+ [Qs][u, 1 = 0,

®)
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[MI, 1+ [Cu, Uy u, )], 1+ [¢, 0u, ]
—Rie[Qll[P]+[Kn][ur]+[k][ur]+

[KZZ][ur] + [K33][ur] + [Klz][ug] = 0
» (9)

[MI1U,]+ [C (U, Upr U1, ]+ [c, 10, ]
—%[QZJ[P]+[Kn][u9]+[k1[u6]+

[KaoIMu, ]+ [Kyl[u, ] - [K;,][u, 1= 0
'(10)

[MI[,1+[C(U, ,,u,)]lu, ] -
QP+ K[+ Kl
+[K3,][u,]1=0.

(11)

Such that,

1. Mass Matrix,

[M]= IQe‘//‘//TdQ,

1 r
[M,]= ﬁ—fge¢¢ do.

ac

2. Convective Matrix,

_ i
[CQu, Uy U= [y, ——+
1 oy’ oy’
“wy'u +wy'u dQ,
VYU, — vy, az)

1 T T
[c,]=- e VY UV dQ,
[c.]= L pdo
I A

3. Diffusive Matrix,

(6)
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P Oyady’ 1 oy’
= dQ,
(Kul= Jﬂe(ar o 1 )

1 oy oy’
L
Re’2" r° 060 00

ﬁy/<3¢/

o b

g 1 .
%J.Qe Fl//l/l dQ.

[K,]=[Ky]= al// —dQ,

[k]=

4. Gradient Matrix,

[Q1= Jge #°dQ,
16
[Q.]= [, 5 4°d0

Q1= [, Lo

[a]= [+ vde

The shape functions from the theory of area
coordinates will be employed as the quadratic
and linear triangular shape functions for
velocities and pressure, respectively. In this
context, linear

the quadratic and shape

functions in the natural triangular area

coordinates are given as
y =[Al[RI,

¢=[I[E]=[E],

(Quadratic) (12)

(Linear) (13)
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where
100 -1 0 -1 L2
010 -1-10 5 L
oo0o1 0 -1 -1 2
=0 06 4 o olR=[" ,[E]{Lz}
LL,
000 0 4 0 LL, L
000 0 0 4 L,L,
(14)

The natural triangular area coordinates L,

L, and L, of the cylindrical coordinates are

defined as

L. (&, +br+c,z), (1=1,273)

rea

Where, Aarea is the area of the element’s

triangular and @,, b, and C; are coefficients.

Thus, under these assumptions the equations

(8)-(11) can be rewritten in the matrix
formulation as
-1

M 0 0 O0]fu SrcﬁoR—teuro
0M0000+cr8000uﬂ_0
0 0 M 0 ||qg, OOSZ_—lQSUZO
0 0 0 M,|[p . Re p] [0

Q' +q 0 Qg 0
(15)
such that,

[5:1=[C, (u)]+[C, (u )]+ [Ky ]+ K]+ [Kys],

(16)

[S51= [C (U1 +[C, (u)] + [Ky ]+ K]+ [Kss],
17

[S.1=[C, (u)I+IC, (u )]+ Ky ]+ [Kgg].
(18)
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Consequentially, by using the theory of area In the other hand, the final diffusion matrix
coordinates for triangular elements, the mass formula can be written as
and artificial compressibility matrix can be

[Kn]:zfzrmAareaR%[A][B]@[E_’][Bf]mf]—

expressed as

IB T T T

[M1= 2z, A, [AIIRIRITA]. 27Aye o LAIRIETIBTIA')

(22)
(19)

_ p A AT

[K33] - 2ﬂ.rm rea_[A][C][E][E ][C ][A ]1

M ]=2, A, ﬁiE[E_] A Re —
ac (23)

(20)
wher [K]= 278, £ _[ARIRTAT
rm:rl-i-g+r3,zm:Zl+2:;-|-23. (24)

Moreover, the gradient matrix is defined as
(21)

[Q.]= 21, A [AI[BI[E]E"],

Also the derivative form of shape function can

be defined as (25)
d [Q;]= 271, A [AI[CI[E]E"],
- =[AIB[E] 3 —
r
(26)
2b, 0 0]
0 2b, 0 [a] = 27A, . [EIIR"I[A'].
1oL 0 0 2b,
where, [B]= 2A,..|b, b 0 [ (27)
0 b, b
b, 0 b | Finally, the convective matrix is given by
[2c, 0 O
0 2, 0 [C, (u)]= 271, A, [AIRIRTTA 11U, ]
0 0 2c R
C= e o ol [ETJB°IA]
0 ¢ ¢
¢, 0 ¢ | (28)
[C, (u,)]=2mr, A, [AIRTR"JTA ][, ]
[E"ICTIA"],
(29)
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[Co]= —27A, [AIIRIR"JIA"1[U, IIRJ[A'],
(30)

[¢.]= 27A, [AI[RIIR"JIA"][u, JIR“JLA"].

(1)

4 Problem specification

In the present study, Poiseuille flow along a
2D axisymmetric straight channel, under
isothermal condition is investigated. For this
purpose, a structured, uniform, quadrilateral-
based, triangular finite element mesh is
utilized, for the 2x 2 mesh as illustrated in

Fig. 1, with mesh characteristics are introduced

in Table 1.
—4
o ’ ®
L @ g
o .-._.v.'-

Fig.1: Structured 2 =2 finite element mesh.

Mesh | Total |[Total |Boundary Pressure

Element|Nodes| Nodes  Nodes

- 4

2x2 1 8 | 25| 16 9

Table 1: Mesh characteristic parameters

Bashaeer .K / Alaa .H

Boundary conditions (BCs): The setting of
BCs of the present channel problem is laid as
follows (see Fig.2):

(a) Poiseuille(Ps) flow is specified at the inlet
(AD) with u, =4r(1-r),

(b) No-slip BCs is applied on the channel
walls (AB) and (CD).

(c) Along the outflow boundary (BCs), zero

radial velocity applies.

u=u_=0
(Top wall)
(S S
u, = 01— u =1
u_= l’.ﬁ_> =0
Flow [ (Outlet)
—
(Inlet)
S S S S
u =u,=0

(Bottom wall)

Fig. 2: Schema for flow problem, boundary conditions.

5 Exact solutions of Naiver-Stokes
equations for parallel flow

Finding exact solution of Naiver-Stokes
equations, displays mathematical difficulties
because of the nonlinear terms of equations.
However, some time the analytical solutions
can be found in specific cases. Firstly, to find
the analytic solution, the system of differential
equations for incompressible flow can be re-

expressed as.
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Continuity equation
V.u=0. (32)

Momentum equation

Y, @vyu, =—L Py K2y
ot por p
(33)
Ny L @ vy, = -2 Py,
Yo,
(34)
L@V, == P vy

(3%)

In the case of the axisymmetric flow with

vanish tangential and radial velocities
0 0
(U =u,=0yand P=0R=0
00

Thus, under these assumptions the continuity

equation, we have

auZ —_
0z

0.

Considering a steady flow we get from the

axial component of the Navier-Stokes
equations
_ ou
TV, =u, —=.
ou 1
u, Sr=—=pi vy
o  p p
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Where, under a constant pressure gradient

P=- @ . Thus,
0z

au,
or

10 P 1
Viu. ==—(r = (M =—
Sl U VL )

Hs

By integrating, we have the general solution as

u =P p +¢.In(r) +c,.

’ 4iM
By impossing the boundary conditions U, =0

for r = +h , we have

P
u =——(h?=r?. 36
. 4|v|( ) (36)

u at the center of the channel, when

max

r = 0 into equation (36)

_ Ph?
Upax = m (37)
Thus, the analytic solution is,
u
uexact = :
umax
_ Iy
Ugyact = 1- (H) . (38)
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The comparison in axial velocity between the

analytic solution and numerical results is

illustrated in Fig. (3) for f,. =100 and

Re =1,5. Here, the velocity profile is plotted
in the fully development region of the channel.
From the comparative one can observe that, the
numerical results, which are appeared are
reasonable compared to the exact solution,
which reflects the efficiency of the numerical

method that used.

Exact_Sol i
AC-Method_Re=1
AC-Method_Re=57]

0.8

0.6
0.4

0.2

Fig. 3: Axial velocity profiles: compare between

analytic and numerical solutions .

6 Simulation results

The fields of axial velocity U, , according to

various Re at fixed S,. =100 are displayed

in Fig.(4). The results reveal that, the
maximum level of velocity is appeared in the
middle of the geometry. Here, one can observe

clearly the effect of the Reynolds number on

the level of Re, where the level of velocity is

Bashaeer .K / Alaa .H

increased as Re€ increases; rising from 1.4
when Re=1 to around 2 when Re=7.

Here, the critical level of Re is 7, where the

results are become diverge for the value of

(e)

Fig. 4: Fields of axial velocity, Re -various, £, =100.
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The rate of convergence for pressure and axial
velocity components are illustrated in Fig. (5)
for different values of the artificial
compressibility parameter
(B, =60,80,100) and fixed Re=1.
Generally, the level of convergence for
velocity component is high compared to
pressure because of the influence of non-
linearity behaviour. In addition and as

anticipated the findings show that, the rate of
convergence is increased as the values of /3,

are decreased due to the compressibility

500

effects.
10°f
]
10°
B,=60 $=60
$,=80

1000 1500 2000 2500 e
Time-step 10 500 1000 1500 2000 2500
Time-step

(@) (b)

3

00

Fig. 5: Convergence of pressure and velocity components,

S -various, Re = 1

Obviously, when the Reynolds number is
increased, the velocity gradients will be
developed which reflects the difficulties of
convergence for large Re number. Thus, we
have directed our interest in the discussing and
studying the effects and levels of Reynolds

number. Fig.(6) shows that the convergence of

axial velocity for different levels of R€ and
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fixed S,. =100. From the Figure one can see
that the level of time increments increases
exponentially, whenever you get increased in
Re . For example when Re =0.01, the level
of time steps is much less than that in Re = 6
(see Fig. (6a) and (6e)), so the level of
convergence of velocity is faster when Re€ is
small. We note also that for the critical value
of Re =7 as shown in the Fig.(6f) we found
it is so difficult to reach the convergence

(needed around 150000 time-step).

ol [P=100, Re=0.01] | ol [F.=100, Re=1]

- 4 oL
107 g > 107F
T 1T \
10°F q 10°F

IECu,)II
[IECu)Il

500 1000 1500 2000 2500 500 1000 1500 2000 2500
Time-step Time-step
(a) (b)
10 10*
o B.=100, Re=3 " B,=100, Re=5
10°F g 10°F 1
3:10.2 i 3: 102}
w w
104 1 106\
10°F 10°
10* - L 1 10°
1000 2000 3000 4000 S35 T0000 15000 23000 2500030000
Time-step
(¢ (d)
"
10 1
wl P=100, Re=6 i wl B,=100, Re=7
10° 100k

[IECu,)II
[ECu,)Il

10° ' 107 i
10k 104k i

10°F

107 fmm L

10° | | L1 L
10000 20000 30000 40000 50000 6000 30000 60000 90000 120000 150000
Time-step Time-step

(e) ()
Fig. 6: Velocity convergence, [, =100, Re variation.
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7 Summary

In this study, the method of artificial
compressibility within the finite element
method is presented as an effective way to
solve the Navier-Stokes equations in
cylindrical coordinates system. The analysis of
finite element method for the equations under
considerations has been conducted.
Here, under special case the analytic solution
of these equations is obtained to give as
opportunity to compare the numerical result
and have clear feature of the method. The

convergence analysis of velocity and pressure
was done to identify the effect of Re and £,

on the acceleration of convergence. From the

results one can observe that, the rate of

convergence is reducr "€ reduced, while
the rate of convergence is reduced as f,.

increased.
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(AC) (= Likua) blaai) &8y b (bl (o (355 5l) (GR3EM (gaand) Juba

A) 38 G s by pBLS L
padl daala | aglal) 48 bl ) add

: el
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8 sy Al pall 028 3 (55 38 (By) o liaa¥) Ll Jalxa s (Re) Jalsiy 2ae Jie Jal sall ans
a3 Ay phll Jalat oSl Danall Jlall Gyl Jaee o ol sadl o2 Ll e @3S Al Hall oda gl
a e phie 33T IMA (e 48y Hhall laguy HLEAIS 4 5313 3L Jals (Poiseuille flow) Js)l s 85 alasiiu
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