Math Page 129 - 133 Farhan .D

T-semimaximal submodules

Farhan Dakhil Shyaa Department of Mathematics, University of Al-Qadsiyah, Al-Qadsiyah, Iraq farhan.shyaa@qu.edu.iq farhan_math1@yahoo.co.uk

Recived: 14/9/2017 Revised: 8/10/2017 Accepted: 16/10/2017

Abstract

In this paper, we define and study the notions of t-semimaximal submodule as a generalization of semimaximal submodule. We provided many properties and characterizations of this concept are provided.

Key words: maximal submodule, semimaximal submodule, t-semimaximal submodule and t-semisimple modules.

Mathematics Subject Classification 2010:16 D10, 16D60, 16 D80.

1. Introduction

Throughout this paper R is a ring with unity and M unitary a right R-module. The second singular (or Goldi torsion) of M is denoted by $Z_2(M)$ and defined as $Z(M/Z(M)) = \frac{Z(M)}{Z_2(M)}$ where Z(M) is

the singular submodule of M[5]. A module M is called Z_2 -torsion if $Z_2(M) = M$. A submodule A of an R-module M is said to be essential in M (denoted by $A \leq_{ess} M$), if $A \cap W \neq (0)$ for every non-zero submodule W of M[7].

The concept of t-essential submodules is introduced as a generalizations of essential submodules [2]. A submodule N of M is said to be t-essential in M (denoted by $(N \leq_{\text{tes}} M)$ if for every submodule B of M, $N \cap B \leq Z_2(M)$ implies that $B \leq Z_2(M)$. A submodule N of a module M is called small in M and denoted by $N \ll M$ if for every $K \leq M$ the equality M = N + K implies M = K. A module M is called hollow if every proper submodule of M is small in M "[10].

Asgari and Haghany in [3] introduced the concept of t-semisimple modules and t-semisimple rings; A module M is called t-semisimple if every submodule N of M contains a direct summand K of M such that K is t-essential in N. A submodule N of a module M is called semimaximal if M/N is a semisimple module [9].

In this paper, we introduce a generalization of semimaximal submodule, namely t-semimaxmal. A submodule N of a module M is called t-semimaxmal if M/N is t-semisimple module. This paper consists of two sections, in section two of this paper, we define and study the concept of t- maximal submodules and give some properties and charerizations of it.

Proposition (1.1)[2]:" The following statements are equivalent for a submodule A of an R-module M:

- (1) A is t-essential in M.
- (2) $(A + Z_2(M))/Z_2(M)$ is essential in $M/Z_2(M)$;
- (3) $A+Z_2$ (M) is essential in M;
- (4) M/A is Z_2 -torsion [3]".

Corollary (1.2) [3]:" Let M be a t-semisimple module. Then:

- (1) Every submodule of M is t-semisimple.
- (2) Every homomorphic image of M is t-semisimple".

Corollary (1.3) [3]: "A module M is t-semisimple if and only if M has no proper t-essential submodule which contains $Z_2(M)$ ".

Corollary (1.4) [3]: Every direct sum of t-semisimple modules is t-semisimple.

2. t-semimaxmal submodules

in this section, we will introduce and study the concept of t-semimaximal submodule

Definition (2.1): A submodule N of module M is called t-semimaximal if M/N is a t-semisimple module.

Proposition (2.2): Let M be an R-module. $Z_2(M)$ is semimaximal submodule of M if and only if $Z_2(M)$ is t-semimaximal submodule of M.

Proof: \Rightarrow It is clear.

 \Leftarrow Since $Z_2(M)$ is t-semimaximal submodule of M, then $M/Z_2(M)$ is a t-semisimple

module . Hence
$$M/Z_2(M)$$
 is a t-semisimple $M/Z_2(M)$ is a t-semisimple $M/Z_2(M)$ is

semisimple by [3, Theorem 2.3], but $Z_2\left(\frac{M}{Z_2(M)}\right) = (0)$. Hence $\frac{M}{Z_2(M)}$ is semisimple module . Thus $Z_2(M)$ is semimaximal submodule of M.

Remarks and Examples (2.3):

- (1) It is clear that every semimaxmal submodule of a right R-module is t-semimaxmal submodule but not conversely, for example: 4Z is a t-semimaximal submodule of Z as Z-module (because $Z/_{4Z}$ is t-semisimple Z-module [3])
- (2) Every t-essential (or essential) submodule N of M is t-semimaxmal (by [3, Example 2.2(i)])
- (3) Let $N \le M$ and W be the complement of N, then $N \oplus W$ is t-semimaxmal of M.
- (4) Let $N \le W \le M$ and N be a t-semimaxmal submodule, then W is a t-semimaxmal submodule of M.

Proof: Let $f: {}^M/_N \mapsto {}^M/_W$ defined by f(m+N) = m+W, for all $m \in M$. It is clear that f is a well-defined and epimorphism. Since ${}^M/_N$ is t-semisimple it follows from Hence $\frac{M}{W}$ is t-semisimple by Corollary 1.2(2) that ${}^M/_W$ is t-semisimple and hence W is a t-semimaxmal submodule of M.

(5) If N is t-semimaximal of M and $N \le K \le M$, then N is t-semimaximal of K.

Proof: Since N is t-semimaxmal of M it follows that M/N is t-semisimple. But $K/N \leq M/N$, hence by Corollary 1.2(1) K/N is t-semisimple. Thus N is t-semimaxmal of K.

(6) Let $\{M_i, i \in I\}$ be a family of Rmodules and let $= \bigoplus_{i \in I} M_i$. If A_i is tsemimaximal of M_i , then $\bigoplus_{i \in I} A_i$ is tsemimaxmal of $\bigoplus_{i \in I} M_i$.

Proof: Since A_i is t-semimaxmal of M_i , it follows that M_i/A_i is t-semisimple and hence $\bigoplus_i M_i/A_i$ is t-semisimple by Corollary 1.4. Thus $\bigoplus_{i \in I} A_i$ t-semimaxmal of $\bigoplus_{i \in I} M_i$.

(7) Let $\leq K \leq M$. Then K a t-semimaximal submodule if and only if of M, K/B is a t-semimaxmal submodule of M/B.

Proof: \Rightarrow Since K is a t-semimaxmal submodule of M, it follows that M/K t-semisimple. But $\frac{M/B}{K/B} \cong M/K$, it follows that $\frac{M/B}{K/B}$ is a t-semisimple module and hence K/B is a t-semimaximal submodule of M/B. \iff By similarly way of first direction.

- (8) Rad(M) is t-semimaxmal submodule of M if and only if $M = M_1 \oplus M_2$ such that M_1 is semisimple and $Rad(M) \leq_{tes} M_2$ [3, Proposition 2.10].
- (9) If (0) is a t-semimaxmal submodule of a module M then N is t-semimaxiaml, for each non-zero submodule N of M.

Proof: suppose that (0) is t-semimaxmal submodule of a module M, thus $M/(0) \simeq M$ is t-semisimple. Hence M/N is t-semisimple by [3, Corollary 2.4(2)]. Thus N is t-semimaxmal.

- (10) If N is a nonzero t-semimaxmal submodule (0) need not be t-semimaxmal, for example: 6Z in Z-module is t-semimaxmal. But (0) is not t-semimaxmal since $Z/(0) \simeq Z$ is not t-semisimple
- (11) M is t-semisimple R-module if and only if M is t-semisimple R/ann(M)(0)-module.

Proof: Since every submodule of M R-module if and only if every submodule of M R/ann(M) module [10].

Proposition (2.4): Every submodule of t-semisimple *R*-module is t-semimaxmal submodule.

Proof: Let $U \le M$ and $\pi: M \mapsto {}^{M}/{}_{U}$ be the natural epiomorphism. Hence ${}^{M}/{}_{U}$ is t-semisimple by Corollary 1.2(2). Thus U is t-semimaxmal.

Proposition (2.5): The intersection of any two t-semimaximal submodules of an *R*-module is t-semimaximal submodule.

Proof: Let U_1, U_2 be two t-semimaximal submodules of M. Thus ${}^M/U_1$ and ${}^M/U_2$ are t-semisimple modules and hence ${}^M/U_1 \oplus {}^M/U_2$ is t-semisimple by Corollary 1.4. Since ${}^M/U_1 \cap U_2$ is an isomorphism to a submodule of ${}^M/U_1 \oplus {}^M/U_2$ it follows that ${}^M/U_1 \cap U_2$ is t-semisimple. Thus $U_1 \cap U_2$ is a t-semimaxmal submodule of M.

Proposition (2.6): Let U_1 be a t-semimaximal submodule of an R-module M_1 and U_2 be a t-semimaxmal submodule of an R-module M_2 . Then $U_1 \oplus U_2$ is a t-semimaximal submodule of $M_1 \oplus M_2$.

Proof: By hypothesis, ${}^M/_{U_1}$ and ${}^M/_{U_2}$ are t-semisimple R-module and hence from Corollary 1.4 we have that ${}^M/_{U_1} \oplus {}^M/_{U_2}$ is t-semisimple Since ${}^{M_1 \oplus M_2}/_{U_1 \oplus U_2} \cong {}^M/_{U_1} \oplus {}^M/_{U_2}$. It follows that ${}^{M_1 \oplus M_2}/_{U_1 \oplus U_2}$ is t-semisimple and hence $U_1 \oplus U_2$ is t-semimaximal in $M_1 \oplus M_2$.

Proposition (2.7): Let M be an R-module and $N \le M$. Then N is a t-semimaxmal if and only if M/W is semisimple, for each t-closed submodule W of M and $M \supseteq N$.

Proof: \Rightarrow Let W be a t-closed submodule of M with $W \supseteq N$. Hence M/W is a t-closed in M/N by [4, Lemma 2.5]. But N is a t-semimaxmal by hypothesis, so M/N is t-semisimple. Then by [3, Corollary 2.17], M/N/W/N is semisimple and hence M/N is

semisimple.

 \Leftarrow To prove N is a t-semimaximal submodule of M. Let $^{C}/_{N}$ be a t-closed in $^{M}/_{N}$, hence C is a t-closed of M, and $C \supseteq N$. So that $^{M}/_{C}$ is semisimple by hypothesis, but $^{M}/_{C} \simeq ^{M}/_{N}/_{C/_{N}}$ so that $^{M}/_{N}/_{C/_{N}}$ is semisimple for

each t-closed submodule ${}^{C}/_{N}$ of ${}^{M}/_{N}$, which implies ${}^{M}/_{N}$ is t-semisimple by [3, Corollary 2.17]. Thus N is t-semimaxmal submodule of M.

Proposition (2.8): If Rad(M) is a t-semimaxmal and M is hollow then M/Rad(M) is Z_2 -torsion.

Proof: Since Rad(M) is t-semimaxmal, M/Rad(M) is t-semisimple. By [3, Proposition 2.10] we have that $M=M_1 \oplus M_2$ where M_1 is semisimple and $Rad(M) \leq_{tes} M_2$. Let $A \ll M$, then $A \leq Rad(M) \leq_{tes} M_2$, so if M is hollow, every submodule of M contain in M_2 . Hence $M=M_2$ and thus M/Rad(M) is Z_2 -torsion.

Proposition (2.9): Let $N \le M$. If $(N:_R M)$ is t-semimaxmal ideal in R, then N is t-semimaximal.

Proof: Since $(N:_R M)$ is t-semimaxmal ideal in R, R/(N:M) is a t-semisimple R-module. Since M/N is an R-module, $\frac{M}{N}$ is an \overline{R} -module where $(\overline{R} = R/ann(M/N))$ that is M/N is an

 $R/(N:_R M)$ -module. Hence M/N is a t-semisimple \bar{R} -module. Hence M/N is a t-semisimple R-module (by Remarks and Examples 2.3(13)). Thus N is t-semimaxaml.

Remark (2.10): If *R* is t-semisimple ring and *M* is an *R*-module, then every submodule of *M* is t-semimaxaml.

Proof: Since R is a t-semisimple, every R-module M is t-semisimple [3, Theorem 3.2]. Hence by Proposition 2.3 every submodule of M is t-semimaxiaml.

Proposition (2.11): Let $N \le M$. Then N is a t-semimaxiamal submodule in M if and only if for each submodule A of M with $A \supseteq N$, there exist K, $K' \le N$ such that A = K + K' and M = K + L for some $L \le M$ and $N \le_{tes} K'$, $K \cap L = N$, $K \cap K' = N$.

Proof: \Rightarrow Let N be a t-semimaxmal submodule in M, then $M/_N$ is t-semisimple. For each $A \supseteq N$, $\frac{A}{N} \le \frac{M}{N}$. Hence by [3, Proposition 2.13(3)] $A/_N = K/_N \oplus K'/_N$ for each $K, K' \le M$ with $K/_N \le M /_N$ and $K'/_N$ is Z_2 -torsion. Hence $N \le_{tes} K'$ by Proposition 1.1. $K/_N \le M /_N$, then $K/_N \oplus L/_N = M/_N$ for some $L \le M$ with $N \le L$, then K + L = M with $K \cap L = N$. $K \cap K' = N$, then $K/_N \oplus K'/_N \oplus K'/_N \oplus M/_N$. As $K \cap K' = N$, then $K/_N \oplus K'/_N \oplus K'/_N \oplus M/_N \oplus M$

Proposition (2.12): An *R*-module *M* is t-semisimple if and only if $\forall N \leq M, N + Z_2(M)$ is semimaxmal.

submodule in *M*.

Proof: Suppose that M is t-semisimple, then $N + Z_2(M)$ is closed in M, $\forall N \leq M$ by [3,Corollary 2.8]. But $N + Z_2(M)$ contains $Z_2(M)$, so $N + Z_2(M)$ is t-closed [2,Proposition 2.6(4)]. Hence by [3, Corollary 2.17], $M / N + Z_2(M)$ is semisimple.

 \Leftarrow Since \forall $N \leq M$, $N + Z_2(M)$ is semimaxmal, so that $M/N + Z_2(M)$ is semisimple. Hence $M/N + Z_2(M)$ is semisimple (if N = 0). This implies M is t-semisimple [3, Theorem 2.3].

References

- [1] Anderson, F. W. and Fuller K. R. (1992). Rings and Categories of Modules, Second Edition, Graduate Texts in Math., Vol.13, Springer-Verlag, Berlin-Heidelberg-New York.
- [2] Asgari, Sh., Haghany, A. (2010). Densely co-Hopfian modules. Journal of Algebra and Its Aplications 9(6):989-1000.
- [3] Asgari, Sh., Haghany, A. and Tolooei Y. (2013). T-semisimple modules and T-semisimple rings comm. Algebra ,41(5):1882-1902.
- [4] Asgari, Sh., Haghany, A. (2011). t-Extending modules and t-Baer modules, Comm.Algebra, 39(5):1605-1623.
- [5] Chatters, A. W. and Khuri, S. M. (1980). Endomorphism rings of modules over nonsingular CS rings, *J. London Math. Soc.* 21:434-444.
- [6] Chen, J., Ding, N. and Yousif, M. F. (2004). On Noetherian rings with essential socle, *J. Aust. Math. Soc.*, 76:39-49.
- [7] Clark, J., Lomp, C., Vanaja N., Wisbauer, R. (2006). Lifting Modules. Frontiers in Mathematics, Birkh□auser Verlag, Basel.
- [8] Dung, N. V., Huynh, D. V., Smith, P. F, Wisbauer, R. (1994). *Extending Modules*. Pitman Research Notes in Mathematics 313, Longman, Harlow.
- [9] Hatem Yahya .(2007). Semimaximal submoduless, Ph.D. Thesis, College of Education Ibn Al-Haitham, University of Baghdad.
- [10] Kasch F. Modules and Rings (1982), Acad. Press, London.

Farhan .D

المقاسات الجزئيه العظمئ من النمط T

فرحان داخل شياع جامعة القادسية / كلية التربية / قسم الرياضيات

المستخلص:

في هذا البحث عرفنا و درسنا مفهوم المقاسات الجزئية العظمى من النمط T كتعميم المقاسات الجزئية العظمى العديد من الخواص والمميزات لهذا المفهوم برهنت.