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Abstract. In this paper, we introduce the dual notion of ss-injective module, namely
ss-flat module. The connection between ss-injectivity and ss-flatness is given.
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1. Introduction
In [1], the notion of ss-injectivity was
introduced and studied. A right R-module M is
called ss-injective if any right R-homomorphism
f:S-NnJ— M extends to R; equivalently, if
Ext!(R/(S,nJ]),M) =0 L. Mao [2]
introduced the notion min-flat, for any left
R -module N , N is called min-flat if
Tor,(R/I,N) = 0 for every simple right ideal I.
In this paper, we introduce and investigate
the notion of ss-flat modules as a generalization
of flat modules. A left R-module M is said to
be ss-flat if Tor,(R/(S,NnJ),M)=0
Examples are established to show that the notion
of ss-flatness is distinct from that of min-flatness
and flatness. several properties of the class of flat
modules are given, for example, we prove that a
left R -module M is ss-flat iff M* =
Homy(M,Q/Z) is ss-injective iff the sequence
0— (5, N))®M — R®M is exact. Also, we
prove that the class of all left is closed under
pure submodule and direct limits. In Theorem 2.9,
we prove thataring R is right
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min-coherent iff the class of ss-flat modules is
closed under direct products iff z RS is ss-flat,
for any index set S iff every left R-module has
(SSF)-preenvelope, where SSF is the class of
all left ss-flat modules. Also, we introduce the
concept of ss-coherent ring as a proper
generalization of  coherent ring. Many
characterization of ss-coherent rings are given,
for example, we prove that a ring R is right
ss-coherent iff (a right R -module M is
ss-injective iff M* is ss-flat) iff the class of all
ss-injective right R -modules is closed under
direct limits. We study ss-flat modules and
ss-injective modules over commutative ring. For
example, we prove that a commutative ring R is
min-coherent iff Hom(M,N) is ss-flat for all
projective R -modules M and N . Also, we
prove that if R is a commutative ss-coherent
ring, then an R-module M is ss-injective iff
Hom(M,N) is ss-flat for any injective
R-module N.In
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Proposition 2.22, we prove that if M is a simple Examples 2.2.
module over a commutative ring R, then M is (1) Any flat module is ss-flat, but the converse
ss-flat iff M is ss-injective. As a corollary, we is not true. For example the Z-module Z,
prove that if R isa commutative ring, then R is is not flat for all n > 2 (see [5, Examples
a universally mininjective iff R is PS-ring iff (2), p. 155]), but it is clear that Z, as
R isan FS-ring, Z-module is ss-flat for any prime number
Next, we recall some facts and notions needed in D.
the sequel. An exact sequence 0 — A LN (2) Every ss-flat module is min-flat, since if M
g . i . is an ss-flat left R-module, then M* is an
— C — 0 of right R-modules is called pure if L :
. . . ss-injective right R -module (by Lemma
every finitely presented right R-module P is
. : . 2.3) and hence from [1, Lemma 2.6] we
projective with respect to this sequence and we o o
: have that M* is right mininjective. By [2,
called that f(A) is a pure submodule of B [3]. Lo
A right R-module M is called pure injective if Lemm_a 8.2], M is min-flat.
(3) The Bjork Example [6, Example 4.15]. Let

M is injective with respect to every pure exact
sequence [3]. Let R be aring and F be a class
of right R -modules. An R -homomorphism
f:M — N is said to be F-preenvelope of M
where N € F if, for every R-homomorphism
gM—F with FeF , there is an
R-homomorphism h: N — F such that hf = g.
An R-homomorphism f:N — M is said to be
F-precover of M where N € F if, for every
R-homomorphism g:L — M with L € F, there
is an R-homomorphism h:L — N such that
fh=g [4]. Let F (resp. G) be a class of left
(resp. right) R-modules. The pair ( F,G ) is said
to be almost dual pair if for any left R-module
M, MeF if and only if Mt €G; and G is
closed under direct summands and direct products
[4, p. 66].

Throughout this paper, R is an associative
ring with identity and all modules are unitary. By
J (resp., S,.) we denote the Jacobson radical
(resp., the right socle) of R. If X is a subset of
R, the right annihilator of X in R is denoted by
r(X). Let M and N be R -modules. The
character module M* is defined by M* =
Homyz(M,Q/Z) . The symbol Hom(M,N)
(resp., Ext™(M,N)) means Homgz (M, N) (resp.,
Extg(M,N) ), and similarly MQ®N (resp.,
Tor,,(M,N)) means M®xN (resp., TorX (M, N))
for an integer n > 1.

We can find the general background
materials, for example in [1, 2, 5].
2. ss-Flat Modules

Definition 2.1. Aleft R-module M is said to
be ss-flat if Tor,(R/(S,NJ),M) = 0.
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F be a field and let a+—a be an
isomorphism F — Fc F , where the
subfield F # F. Let R denote the left
vector space on basis {1,t}, and make R
into an F-algebra by defining t2 = 0 and
ta = at for all a € F. By [1, Example
4.4], R is right mininjective ring but not
right ss-injective ring. If dim(zF) is finite,
then R right artinian by [6, Example 4.15].
Therefore, R is a right coherent ring. Thus
R* is a left min-flat R -module by [2,
Theorem 4.5], but the left R-module R is
not ss-flat by Theorem 2.10 below.

Lemma 2.3. The following statements are
equivalent for a left R-module M:

(1) M isss-flat.

(2) MT isss-injective.

(3) Tor;(R/A,M) =0, for every semisimple
small right ideal A of R.

(4) Tor,(R/B,M)=0 for -every finitely
generated semisimple small right ideal B of
R.

(5) The sequence 0 — (S, NJ)@M — RQM
is exact.

(6) The sequence 0 — AQM — RRQM is

exact for every finitely generated semisimple
small right ideal A of R.
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Proof. (1) & (2) This follows from

Ext'(R/(S,nJ]) , M%) =

Tor, (R/(S, NnJ) ,M)* (see the dual version of

[7, Theorem 3.2.1]).

(2)=(3) By the dual version of [7, Theorem 3.2.1]

and [1, Proposition 2.7], Tor;(R/A, M)* =

Ext'(R/A,M*) = 0 for every semisimple small

rightideal A of R.

(3)=(1) Clear.

(4)=(3) Let I be a semisimple small right ideal

of R, so I =1liml; , where I; is a finitely
—

generated semisimple small right ideal of R,

fij:1; — I; is the inclusion map, and (I}, f;;) is

a direct system (see [7, Example 1.5.5 (2)]).

Clearly, (R/I; ,h;j) is a direct system of

R-modules, where h;j:R/I; — R/I; is defined

(h; ,limR/I;). Since the following diagram is

—
commutative:

0— 1 -RISR/L— 0

o, [l
Lj T

0—>IjL>R—]>R/Ij—>O

where i; and m; are the inclusion and natural
maps, respectively, thus the sequence 0 — I

SRS limR/I, — 0 s exact by [3, 24.6].
ﬁ

It follows from [3, 24.4] that the following
diagram is commutative:

R -5 R/, — 0

I I

R— limR/I; = 0
—
Thus the family of mappings {gi:R/li—>

R/limI; ,where g;(a + ;) = a + limli} forms
— —

a direct system of homomorphisms, since for
i<j, we get gjhjj(a+1;)= gj(a + Ij) =a+
liml; =g;(a+ 1) for all a+1; € R/I;. Thus,
—

there is an

R-homomorphism « such that the following

diagram is commutative with short exact rows
(see [3, 24.1]):

N

i i h;
0— I — R—5 R/I, —5lim R /I, — 0

—
H ‘ ‘ ‘l’a
i TT; .

0— I —R—5 R/l 25 R /liml; — 0
T g

_—
where 7 is the natural map, so it follows from
[8, Exercise 11 (1), p. 52] that limR/I; =

g

R/limI; . Therefore,
—

Tor, (R/I,M) = Tor, (R /lim I, M)
_

= Tor, (lim R/I; ,M)
XI11.5.4 (4)])

(by [9, Theorem

= lim Tory (R/I;,M) =0 (by  [10,
—

Proposition 7.8]).
(3)=(4) Clear.
(1)=(5) By [9, Theorem XII1.5.4 (3)], we have
the exact sequence
0 — Tory(R/(S, N]),M) — (S, N))®M —
Rr®M. Thus the equivalence between (1) and (5)
is true.
(4)=(6) is similar to (1)=(5)). =

In following, we will use the symbol SSI
(resp. SSF ) to denote the classes of ss-injective
right (resp. ss-flat left ) R-modules.
Corollary 2.4. The pair ( SSF, SSI ) is an
almost dual pair.

Proof. By Lemma 2.3 and [1, Theorem 2.4]. m

Lemma 2.5. For a ring R, the following
statements hold:

(1) If S, nJ is finitely generated, then every

pure submodule of ss-injective right
R-module is ss-injective.

(2) Every pure submodule of ss-flat left

R-module is ss-flat.

(3) Everydirect limits (direct sums) of ss-flat left

R-modules is ss-flat.

(4) If M,N are left R-modules, M = N, and M

is ss-flat, then N is ss-flat.
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Proof. (1) Let M be an ss-injective right
R-module and N be a pure submodule of M.
Since R/(S, nJ) is finitely presented, thus the
sequence Hom(R/(S, nJ]) ,M) —
Hom(R/(S,nJ) ,M/N) — 0 is exact. By [9,
Theorem XI1.4.4 (4)], we have the exact
sequence
Hom(R/(S, nJ) ,M) —
Hom(R/(S, n]) ,M/N) —
Ext'(R/(S,n]) ,N) —
Ext'(R/(S,NJ) ,M) =0
Ext'(R/(S,nJ) ,N)=0 .
ss-injective right R-module.
(2), (3) and (4) By Corollary 2.4 and [4,
Proposition 4.2.8,p. 70]. m

Recall that a right R-module M is said to
be FP -injective (or absolutely pure) if
Ext!(N,M) =0 for every finitely presented
right R -module N (see [11, 12]). A right
R-module M is called n-presented, if there is
an exact sequence F, — F,_; — -+ — Fy —
M — 0 such that each F; is a finitely generated
free right R-module (see [13]). A ring R is
called min-coherent, if every simple right ideal
of R is finitely presented (see [2]); equivalently,
if every finitely generated semisimple small right
ideal is finitely presented. In the following
definition, we will introduce the concept of
ss-coherent ring as a generalization of coherent
ring
Definition 2.6. A ring R is said to be right
ss-coherent ring, if R is a right min-coherent
and S, nJ is finitely generated; equivalently, if
S, nJ is finitely presented.
Example 2.7.

which leads to
Hence N is an

(1) Every coherent ring is ss-coherent.
(2) Every ss-coherent ring is min-coherent.
(3) Let R be a commutative ring, then the

polynomial ring R[x] is not coherent ring
with zero socle by [2, Remark 4.2 (3)]. Hence
R[x] is an ss-coherent ring but not coherent.

Corollary 2.8. Aright ideal S, nJ of a ring
R is finitely generated if and only if every
FP-injective right R-module is ss-injective.
Proof. By [11, Proposition, p. 361]. m
Theorem 2.9. The following statements are
equivalent for aring R:

(1) R isaright min-coherent ring.

(2) If M is an ss-injective right R-module, then

Mt is ss-flat.

(10)

(11)

(12)

(13)

(14)
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@)
(4)
®)

(6)
Y]

If M is an ss-injective right R-module, then
M** is ss-injective.

A left R-module N is ss-flat if and only if
Nt is ss-flat.

SSF is closed under direct products.

xRS is ss-flat for any index set S.
Ext?(R/I,M) = 0 for every FP -injective
right R -module M and every finitely
generated semisimple small right ideal 1.

f 0O->N—M-—>H—0 is an exact
sequence of right R -modules with N is
FP -injective and M is ss-injective, then
Ext'(R/I,H) =0 for every finitely
generated semisimple small right ideal 1.
Every left R -module has
(SSF)-preenvelope.

If a:M — N is an (SSI)-preenvelope of a
right R-module M, then a*:N* — M* is
an (SSF)-precover of M™.

For any positive integer n and any
by, ...,b, €S, NnJ , then the right ideal
{reR|byr+byry+-+b,rn=
0 for somery, -, 1, € R} is
generated.

For any finitely generated semisimple small
right ideal A of R and any x € S, N/, then
{r € R: xr € A} is finitely generated.

r(x) is finitely generated for any simple
right ideal xR.

Every simple submodule of a projective right
R-module is finitely presented.

®)

)

an

finitely

Proof. (1)=(2) Let I be a finitely generated
semisimple small right ideal of R, thus there is

an exact sequence F2£>F1£>I—>0 in
which F; is a finitely generated free right
R-module, i = 1,2 by hypothesis. Therefore,

the sequence F, 2, F; i R R/I — 0 is
exact, where i:/ — R and m:R — R/I are
the inclusion and the natural maps, respectively
and B =ia,;. Thus R/I is 2-presented and
hence [13, Lemma 2.7] implies that
Tor, (R/I,M*) = Ext'(R/I,M)* = 0
Therefore, M* is an ss-flat left R-module.
(2)=(3) By (2) and Lemma 2.3.

(3)=(4) Assume that N is an ss-flat left
R-module, thus N* is ss-injective by Lemma
2.3 and this implies that N*** is ss-injective by
(3). So N** is ss-flat by Lemma 2.3 again. The
converse is obtained by [3, 34.6 (1)] and Lemma
2.5(2).
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(4)=(5) By (4), (SSF)** < SSF. Since ( SSF,
SSI ) is an almost dual pair (by Corollary 2.4),
thus [4, Proposition 4.3.1 and Proposition 4.2.8
(3)] implies that SSF is closed under direct
products.

(5)=(6) Clear.

(6)=(1) By Example 2.2 (2) and [2, Theorem
4.5].

(1) = (7) Let I be a finitely generated
semisimple small right ideal of R and let M be
a FP-injective right R-module. By [9, Theorem
X1l.4.4 (3)], we have the exact sequence
Ext!(I,M) — Ext?(R/I,M) — Ext?(R, M)
But Ext'(I,M) =0 (since M is FP -injective
and I is finitely presented) and Ext?(R,M) =0
(since R is projective). Thus Ext2(R/I,M) =
0.

(MN=@8) Let 0 >N —>M—>H—0 be an
exact sequence of right R-modules, where N is
FP-injective and M is ss-injective and let I be
a finitely generated semisimple small right ideal
of R. By [9, Theorem XIl.4.4 (4)], we have an
exact sequence 0 = Ext*(R/I,M) —
Ext'(R/I,H) — Ext?(R/I,N) =0 Thus
Ext!(R/I,H) = 0 for every finitely generated
semisimple small right ideal I of R.

(8)=> (1) Let N be a FP -injective right
R-module, thus we have the exact sequence
0—N—>EN)—EN)/N—0. Let I be a
finitely generated semisimple small right ideal of

R, thus Ext*(R/I,E(N)/N) = 0 by hypothesis.

So it follows from [9, Theorem XI1.4.4 (4)] that
the sequence 0 = Ext(R/I,E(N)/N) —
Ext?(R/I,N) — Ext*(R/I1,E(N)) =0 is
exact, and so Ext?>(R/I,N) = 0. Hence we have
the  exact sequence 0 = Ext!(R,N) —
Ext'(I,N) — Ext*(R/I,N)=0  (see [9,
Theorem XI1.4.4 (3)]). Thus Ext*(I,N) = 0 and

this implies that I is finitely presented (see [11]).

Therefore R is a right min-coherent.

(5)<=(9) By Corollary 2.4 and [4, Proposition
4.2.8 (3), p- 70].

(2)=(10) Since (SSI)* < SSF (by hypothesis)
and (SSF)* < SSI (by Lemma 2.3), thus the
result follows from [14, 3.2, p. 1137].

(10)=(2) By taking M is an ss-injective right
R-module in (10).

(1) = (11) Let by,by,..,b, €S, NnJ . Put
K, =bR+ bR+ -+ bR and K, =b,R+

«++b,R . Thus K, =b,R+K, . Define
fiR — K /K, by f(r) = byr + K, which is a
well-define R -epimorphism, because if

n=n € R, then b17”1 - b17'2 =0€ Kz, that iS
byr; + K, = by, + K,. Now we have
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ker(f) ={r eR|byr + K, =K,} ={r €
Rlbir€EK,}={r€R|byr+byr,+-+
b, 1, =0 for some r,,---,1, € R}. By (1) and
using [15, Lemma 4.54 (1)], we have that K, /K,
is finitely presented. But R/ker(f) =K, /K, SO
ker(f) is finitely generated.
(11)=(12) Let x € S, nJ and A be any finitely
generated semisimple small right ideal of R,
then A=@", aq;R, so we have that {re
RlxreA}y={reRlxr+a,nr+ +a,rn=
0 forsomery,--,n, € R} if finitely generated
by hypothesis.
(12)=>(13) By taking A = 0.
(13)=(1) Let xR be a simple right ideal. Since
r(x) is finitely generated and xR = R/r(x),
thus xR is finitely presented.
(1)=(14) Let S, =@;¢; a;R, where a;R is a
simple right ideal for each iel. If P is a
projective right R -module, then P is
isomorphic to a direct summand of R®) for
some index set S. Let A be any simple
submodule of P, then A =B <®@gS, =
Ds®D;c; a;R. Since A is finitely generated, then
there are finite index sets S, €S and [, €I
such that A =B <®=@; @;c;, ;R , s0 it
follows from [15, Lemma 4.54 (3)] that A is
finitely presented.
(14)=(1) Clear. m

Recall that a subclass F of Mod-R is
said to be definable if it is closed under direct
products, direct limits and pure submodules (see
[4, Definition 2.4.1, p. 29]).
Theorem 2.10. The following statements are
equivalent for aring R:

(1) R isaright ss-coherent ring.

(2) A right R-module M is ss-injective if and
only if M* is ss-flat.

(3) A right R-module M is ss-injective if and
only if M** is ss-injective.

(4) SSI is closed under direct limits.

(5) S,.n7] is finitely generated and every pure
quotient of ss-injective right R-module is
ss-injective.

(6) The following two conditions hold:

(@) Every right R -module has an

(SSI)-cover.
Every pure quotient of ss-injective right
R-module is ss-injective.

(b)
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Proof. (1)=(2) Let M* be ss-flat. Then M**
is ss-injective by Lemma 2.3, so it follows from
[3, 346 (1)] and Lemma 2.5 (1) that M is
ss-injective. The converse is obtained by
Theorem 2.9.

(2)=(3) Let M*t be ss-injective, thus M™* is
ss-flat by Lemma 2.3 and hence M is
ss-injective by hypothesis. The converse is true
by Theorem 2.9.

(3)= (1) Let M be an FP -injective right
R-module, then the exact sequence 0 - M —
EM) - E(M)/M — 0 is pure by [16,
Proposition 2.6 (c)], so it follows from [3, 34.5]
that the sequence 0 — M*t — E(M)*t —
(E(M)/M)** — 0 is split. Since E(M)** is
ss-injective by hypothesis, thus M** s
ss-injective and hence M is ss-injective by
hypothesis again. Therefore, S, nJ is finitely
generated by Corollary 2.8, and so S, njJ is
finitely presented by Theorem 2.9. Thus R is a
right ss-coherent ring.

(1)=(4) Let {M;},cp be a direct system of
ss-injective right R-modules. Since S, Nj is
finitely presented, then R/S, nJ is 2-presented,
so it follows from [13, Lemma 2.9 (2)] that

Ext! (R /(S n)),lim M,1> =

—
lim Ext*(R/(S, nJ),M;) = 0. Hence lim M,
— —

is ss-injective.

(4)=>(2) Let {E;:i € I} be afamily of injective
right R -modules. Since
D E; = li_r)n {Dici, Ei o € L1, finite }  (see

[3, p. 206]), then D¢, E; is ss-injective and
hence S, nj is finitely generated by [1,
Corollary 2.25]. By Lemma 2.5, SSI is closed
under pure submodules. Since SSI is closed
under direct products ( by [1, Theorem 2.4]) and
since SSI is closed under direct limits ( by
hypothesis), thus SSI is a definable class. By [4,
Proposition 4.3.8, p. 89], (SSI,SSF) is an
almost dual pair and hence a right R-module M
is ss-injective if and only if M™* is ss-flat
(2)=(5) By the equivalence between (1) and (2),
we have that S, nJ is finitely generated. Now,
let 0>N—M—>M/N—O0 be a pure
exact sequence of right R-modules with M is
ss-injective, so it follows from [3, 34.5] that the
sequence 0 —» (M/N)* - Mt —- Nt — 0 is
split. By hypothesis, M* is ss-flat, so (M/N)*
is ss-flat. Thus M/N is ss-injective by
hypothesis again.
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(5)=>(4) Let {M;};ca be a direct system of

ss-injective right R-modules. By [3, 33.9 (2)],

there is a pure exact sequence @jecp M; —

lim M; — 0. Since @,ex M, is ss-injective by

—_—

[1, Corollary 2.25], thus lim M, is ss-injective
—_—

by hypothesis.

(5) & (6) By [1, Corollary 2.25] and [17,

Theorem 2.5]. =

Corollary 2.11. A ring R is ss-coherent if
and only if it is min-coherent and the class SSI
is closed under pure submodules.

Proof. ( = ) Suppose that R is
ss-coherent ring, thus R is min-coherent
and S, NnJ is a finitely generated right
ideal of R. By Lemma 2.5 (1), SSI is
closed under pure submodules.

(&) Let M be any ss-injective right
R -module. Since R is min-coherent,
thus Theorem 2.9 implies that M™* is
ss-flat. Conversely, let M be any right
R-module with such that M* is ss-flat.
By Lemma 2.3, M** is ss-injective.
Since M is a pure submodule of M**
( by [3, 34.6 (1)]) and since SSI is
closed under pure submodule ( by

hypothesis) it follows that M is
ss-injective. Hence for any right
R -module M, we have that M is

ss-injective if and only if M™* is ss-flat.
Thus Theorem 2.10 implies that R is
ss-coherent. m

Corollary 2.12. The following statements are
equivalent for a right min-coherent ring R:

(1) Every ss-flat left R-module is flat.

(2) Every ss-injective right R -module is
FP-injective.

(3) Every ss-injective pure injective right
R-module is injective.

Proof. (1)= (2) For any ss-injective right

R-module M, then M* is ss-flat by Theorem
2.9,and so M* is flat by hypothesis. Thus M*+
is injective by [10, Proposition 3.54]. Since M
is pure submodule of M** , then M s
FP-injective by [20, 35.8].

(2)=(3) By [16, Proposition 2.6 (c)] and [3,
33.7].
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(3)= (1) Assume that N is an ss-flat left
R-module, thus N* is ss-injective pure injective
by Lemma 2.3 and [3, 34.6 (2)]. Thus N* is
injective, and so N is flat by [10, Proposition
354]. =

Proposition 2.13. The following statements
are equivalent for a right ss-coherent ring R:

(1) R isaright ss-injective ring.

(2) Every left R-module has a monic ss-flat
preenvelope.

(3) Every right R-module has epic ss-injective
cover.

(4) Every injective left R-module is ss-flat.

(5) Every flat right R-module is ss-injective.

Proof. (1)=(2) Let N be a left R-module,
then there is an R-epimorphism a:Rff) — Nt
for some index set S by [10, Theorem 2.35],
and so there is an R-monomorphism g: N —
(R})S by applying [9, Proposition X1.2.3], [3,
11.10 (2) (ii)] and [3, 34.6 (1)], respectively. On
the other hand, N has ss-flat preenvelope
f:N — F by Theorem 2.9. Since (R})S is
ss-flat by Theorem 2.9 again, thus there is an
R -homomorphism h:F — (R%)5 such that
hf =g , so this implies that f is an
R-monomorphism.

(2)=(4) Let N be an injective left R-module,
then there is an R-monomorphism f:N — F
with F is ss-flat. But N = f(N) €® F, so we
have that N is ss-flat by Lemma 2.5 (4).
(4)=(5) Let M be a flat right R-module, then
M* is injective and hence ss-flat. Thus M is
ss-injective by Theorem 2.10.

(5)=(1) Obvious, since Ry is flat.

(1)=(3) Let M be any right R-module, then M
has ss-injective cover, say, g:N — M by
Theorem 2.10. By [10, Theorem 2.35], there is
an R -epimorphism f:Rff) — M for some
index set S. Since R,(f) is ss-injective by [1,
Corollary  2.25], then there is an
R -homomorphism h:RY? — N such that
gh = f,s0 g isan R-epimorphism.

(3)=(1) Let f:N — Ry be an epic ss-injective
cover. Since Ry is projective, then there is an
R-homomorphism g: R, — N such that fg = I,
thus f is split, and so N = ker(f) @ B for
some ss-injective submodule B of N. Therefore,
Rp = N/ker(f) = B is ss-injective. m
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Proposition 2.14. The class SSI is closed
under cokernels of homomorphisms if and only
if coker(a) is ss-injective for every ss-injective
right R-module M and a € End(M).

Proof. (=) Clear.

(<) Let A and B be any ss-injective right
R-modules and f be any R-homomorphism
from A to B. Define a:A@B —> AP B by
a((x,y) =(0,f(x)) . Thus, we have that
A®B)/im(@ = (ADB)/(0& im (f))
=A® (B/im(f)) is ss-injective.  Thus
B/im (f) is ss-injective. m

Proposition 2.15. The class SSF is closed
under kernels of homomorphisms if and only if
ker(a) is ss-flat, for every ss-flat left R-module
M and a € End(M).

Proof. (=) Clear.

(&) Let g:N — M be any R-homomorphism
with N and M are ss-flat left R -modules.
Define a:NOM - ND M by a((a, b)) =
(0,g(b)) . Thus ker(a) =ker(g) ®M is
ss-flat by hypothesis and hence ker(g) is
ss-flat. m

Theorem 2.16. If R is a commutative ring,
then the following statements are equivalent:

(1) R is amin-coherentring.

(2) Hom(M,N) is ss-flat for all ss-injective
R-modules M and all injective R-modules
N.

(3) Hom(M,N) is ss-flat for all injective
R-modules M and N.

(49) Hom(M,N) is ss-flat for all projective
R-modules M and N.

(5) Hom(M,N) is ss-flat for all projective

R-modules M and all ss-flat R-modules N.

Proof. (1)=(2) If I is a finitely generated
semisimple small ideal of R, then I is finitely
presented. By [9, Theorem XI1.4.4 (3)], we have
the exact sequence 0 — Hom(R/I,M) —
Hom(R,M) — Hom([,M) — 0 . Thus the
sequence 0 — Hom(Hom(Il,M),N) —
Hom(Hom(R, M),N) —
Hom(Hom(R/I,M),N) — 0 is exact by [9,
Theorem XIl.4.4 (3)] again. So we have the
exact sequence 0 — Hom(M, N)®I —
Hom(M, N)®R — Hom(M,N)®(R/I) — 0
by [7, Theorem 3.2.11] and this implies that
Hom(M, N) is ss-flat.

(2)=(3) Clear.
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(3) > (1) By [5, Proposition 2.3.4] and
[10,Theorem 2.75], we have that (R**)S =

(Hom(R*®R,Q/Z))’ = (Hom(R*,R*))® for
any index set S Thus
(R**) = Hom(R*, (R*)5) is ss-flat for any
index set S by [3, 11.10 (2)] and since R* and
(R*)S are injective. Since RS is a pure
submodule of (R**)S by [3, 34.6 (1)] and [18,
Lemma 1 (2)], so it follows from Lemma 2.5 (2)
that RS is ss-flat for any index set S. Thus (1)
follows from Theorem 2.9.

(1)=(5) Since M is a projective R-module, thus
there is a projective R-module P such that
M@ P =R® for some index set S. Therefore,
Hom(M, N) @ Hom(P,N) = Hom(R®, N)

= (Hom(R,N))’ = NS by [3, 11.10 and 11.11].
But NS is ss-flat by Theorem 2.9, thus
Hom(M, N) is ss-flat.

(5)=(4) Clear.

(4)=(1) For any index set S, by [3, 11.10 and
11.11], we have that RS = Hom(R®),R). Thus
RS is ss-flat by (4), so it follows from Theorem
2.9 that (1) holds. m

Corollary 2.17. The following statements are

equivalent for a commutative ss-coherent ring R:

(1) M isan ss-injective R-module.

(2) Hom(M,N) is ss-flat for any injective
R-module N.

(3) MQN is ss-injective for any flat R-module
N.

Proof. (1)=(2) By Theorem 2.16.
(2)=(3) By [10, Theorem 2.75], we have that

(M®N)* = Hom(M,N™*) for any R-module N.

If N is flat, then N* is injective by [10,
Proposition 3.54], so (M®N)* is ss-flat by
hypothesis. Therefore, MQN is ss-injective by
Theorem 2.10.

(3)=(2) This follows from [5, Proposition 2.3.4],
since R isflat. m

Corollary 2.18. Let R be a commutative
ss-coherent ring and SSF is closed under
kernels of homomorphisms. Then the following
conditions hold for any R-module N:

(1) Hom(M,N) is ss-flat for any ss-injective
R-module M.

(2) Hom(N,M) is ss-flat for any ss-flat
R-module M.

(3) MQN s ss-injective for any ss-injective
R-module M.

41

Akeel. R/ Adel. S

Proof. (1) Let M be an ss-injective R-module.
It is clear that the exact sequence 0 — N —
E, — E; induces the exact sequence 0 —
Hom(M,N) — Hom(M, E;) — Hom(M, E,)
where E, and E; are injective R-modules. By
Theorem 2.16, we have that Hom(M, E,) and
Hom(M, E;) are ss-flat, thus Hom(M,N) is
ss-flat by hypothesis.

(2) Let M be an ss-flat R-module, so we have
the exact  sequence 0 — Hom(N, M)
— Hom(F,, M) — Hom(F;, M) where F, and
F; are free R-modules. By Theorem 2.16, the
modules Hom(Fy,,M) and Hom(F;,M) are
ss-flat. Therefore Hom(N,M) is ss-flat by
hypothesis.

(3) Let M be any ss-injective R-module, then
(M®N)* = Hom(M,N*) is ss-flat by [10,
Theorem 2.75] and applying (1), and hence
M@®N is ss-injective by Theorem 2.10. m
Theorem 2.19. Let R be a commutative
ss-coherent ring, then the following conditions
are equivalent:

(1) R isan ss-injective ring.

(2) Hom(M, N) is ss-injective for any projective
R-module M and any flat R-module N.

(3) Hom(M, N) is ss-injective for any projective
R-modules M and N.

(4) Hom(M,N) is ss-injective for any injective
R-modules M and N.

(5) Hom(M, N) is ss-flat for any flat R-module
M and any injective R-module N.

(6) MQN is ss-flat for any flat R-module M

and any injective R-module N.

Proof. (1)=(2) Since R is ss-injective, thus

every flat R -module is ss-injective by
Proposition 2.13. Let M be a projective
R -module, then M @ P =R® for some

projective R-module P and for some index set
S. Thus for all flat R-module N, we have
Hom(M, N) @ Hom(P,N) = Hom(R®,N) =
NS by [3, 11.10 and 11.11]. Since NS is
ss-injective, thus Hom(M, N) is ss-injective.
(2)=(3) Clear.

(3)=(1) Since R = Hom(R,R) by [3, 11.11],
thus R is ss-injective ring.
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(1)=(4) By the dual version of [7, Theorem
3.2.1], Ext(R/(S, n]) ,Hom(M, N))
= Hom(Tor,(R/(S, Nn]) ,M),N) for all
injective R-modules M and N. By Proposition
2.13, M is ss-flat. Thus
Tor;(R/(S,nJ) ,M) =0 and hence
Hom(M, N) is ss-injective.

(4)=(1) To prove R is an ss-injective ring, we
need to prove that every injective R-module is
ss-flat (see Proposition 2.13). Now, let M be
any injective R-module, then Hom(M,R™) is
ss-injective, o)
0 = Ext'(R/(S, nJ) ,Hom(M,R")) =
Hom(Tor; (R/(S, NJ),M),R*) =

(Tory(R/(S, N]), M)QR)*

= Tor,(R/(S, n]),M)* by applying the dual
version of [7, Theorem 3.2.1], [10, Theorem 2.75]
and [5, Proposition 2.3.4]. Therefore,
Tor, (R/(S-NJ),M) =0 , since Q/Z is
injective cogenerator. Thus M is ss-flat.
(5)=(1) and (6)=(1) By taking M =R and
using [3, 11.11] and [5, Proposition 2.3.4].
(1)=(5) Let M be a flat R-module and N be
an injective R -module,then Hom(M,N) is
injective. Therefore Hom(M,N) is ss-flat by
Proposition 2.13.

(1)=(6) Let M be a flat R-module and let N
be an injective R-module. Then N is ss-flat by
Proposition 2.13, so the sequence 0 —
N®(S,NnJ) — N is exact. Since M is flat,
then the sequence 0 — MQNQ(S.NJj) —
MQ@N is exact and this implies that M@N is
ss-flat. m

Proposition 2.20. Let R be a commutative

ring, then the following statements are
equivalent:
(1) M isss-flat.
(2) Hom(M,N) is ss-injective for all injective
R-module N.
(3) MQN is ss-flat for all flat R-module N.

(1)=(2) Let N be any injective
-module. Since

Ext'(R/(S, n]) ,Hom(M, N))

= Hom(Tor,(R/(S,NnJ) ,M),N) =0 by the

dual version of [7, Theorem 3.2.1], then

Hom(M, N) is ss-injective.

(2)=>(3) Let N be a flat R-module, then N* is

injective by [10, Proposition 3.54]. So it follows

from [10, Theorem 2.75] that (MQN)* =

Hom(M,N*) is ss-injective. Thus M®N is

ss-flat by Lemma 2.3.

(3)=(2) Follows from [5, Proposition 2.3.4]. =

Proof.
R
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Proposition 2.21. Let R be a commutative
ringand M be a semisimple R-module. If M is
ss-flat, then End(M) is ss-injective as
R-module.

Proof. By [5, p. 157], there is a group
epimorphism o: (S, NHOM — (S, n )M
given by a®x+— ax for each generator
a®x € (S, NJ)®M . Thus we have the
commutative diagram:

i1®Ipm
0 — (S, N HOM 225 r@M

L.

0— (S, N)IM —=— M

where I, is the identity map, i, and i, are
the inclusion maps, and f is an isomorphism
defined by [5, Proposition 2.3.4]. Since
fo(i;®1y) is Z-monomorphism, then ¢ is
isomorphism. Therefore S Nn)HRM =
S, n)IM c J(M) =0 by [19, Theorem 9.2.1].
So it follows from [10, Theorem 2.75] that
0 = Hom((S, N ))®M, M) = Hom(S, n
J,End(M)). But the sequence 0 = Hom(S, n
J,End(M)) — Ext*(R/(S, n]),End(M))

— Ext'(R,End(M)) =0 is exact by [9,
Theorem XI.4.4 (3)] Thus
Ext'(R/(S,nJ),End(M)) =0 and hence

End(M) is an ss-injective as R-module. m

Proposition 2.22. Let R be a commutative
ring and M be a simple R-module. Then M is
ss-flat if and only if M is ss-injective.

Proof. (=) Let M=mR be a simple
R-module. Define f:Hom(mR,mR) — mR by
f(a) = a(m). We assert that f is a well define
R -homomorphism. Let a;=a, , then
a;(m) = a;(m), so f(ay) = f(az). Now, let

a,a, € End(lM) and r,,€R , then
f(na; + nay) = (na; + nay)(m) =
(ra))(m) + (az)(m) = rna;(m) +
ra,(m) =rf(a)) +r.f(ay) proving the
assertion. ~ Since  f(End(M))=M  and

ker(f) = {a € End(M): f(a) =0} =

{a € End(M): a(m) = 0} = {&¢ € End(M): 0 #
m € ker(e)} =0 , then End(M)=M and
hence M is ss-injective by Proposition 2.21.
(<) Let {S3}1en be a family of all simple
R -modules and E =E(@;epSy) - Then
Hom(M,E) = M by the proof of [12, Lemma
2.6], so it follows from the dual version of [7,
Theorem 3.2.1] that Ext'(R/(S,n)),M) =
Hom(Tor, (R/(S, N J),M),E). Since M is
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ss-injective,then

Hom(Tor; (R/(S, NJ),M),E) =0. But E is

injective cogenerator by [8, Corollary 18.19],

thus  Tor,(R/(S,NJ),M)=0 (see [7,

definition 3.2.7]) and hence M is ss-flat. m
Recall that a ring R is called PS-ring

(resp., FS-ring) if S, is projective (resp., flat)

(see [20]); equivalently, if S, nJ is projective

(resp., flat). The following corollary extends a

result of [20, Proposition 8 (1)] that a

commutative FS-ringis PS-ring.

Corollary 2.23. The following statements are

equivalent for a commutative ring R:

(1) R isauniversally mininjective.

(2) R isa PS-ring.

(3) R isan FS-ring.

(4) S, isss-flat.

Proof. By [1, Corollary 1.19] and Proposition
222. m
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