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Abstract 

The variations in exchange rate, especially the sudden unexpected increases and decreases, have 

significant impact on the national economy of any country. Iraq is no exception; therefore, the accurate 

forecasting of exchange rate of Iraqi dinar to US dollar plays an important role in the planning and 

decision-making processes as well as the maintenance of a stable economy in Iraq. This research aims 

to compare Box-Jenkins methodology to neural networks in terms of forecasting the exchange rate of 

Iraqi dinar to US dollar based on data provided by the Iraqi Central Bank for the period  30/01/2004 

and 30/12/2014. 

Based on the Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute 

Percentage Error (MAPE) as criteria to compare the two methodologies, it was concluded that Box-

Jenkins is better than neural network approach in forecasting. 

Keywords: Time series analysis, Autoregressive Moving Average models, Artificial neural network, 

Backpropagation algorithm. 

 

1- Time series [     ] 

Time series is a sequence of observations of a specific 

phenomenon throughout a previous time period. 

Usually, these observations are dependent and 

organized according to time. Time series can be 

classified to two types: stationary and non-stationary 

time series. The word stationary refers to the absence of  

growth in the data meaning that the data fluctuate 

around a constant level without any increasing or 

decreasing trend. Therefore, time series can be 

stationary if it has the two following conditions: 

a. mean stationary 

 (  )                (1)                                   

b. variance stationary 

    (  )   (    )  

                                 ( ) 
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 In practice, most of time series, especially economic 

series, are non-stationary and difficult to model. 

Therefore, series that are not mean stationary can be 

transformed to stationary by taking the differences of d 

degree as follow: 

     (   )                                        (3)                                   

Where L is the backshift operator. The degree of 

differences usually equals to 1 or 2. 

The model of time series is a function that relates the 

current value of time series to the past values and adds 

the random error. This model is divided to three types: 

A. Autoregressive models [ ] 
These models are often referred to as AR(p) and 

can be written in the following formula: 

   

                                                                

(4) 

  : Autoregressive parameters and j = (1,2, …, 

p) 

  :  Deviation of the original time series     

from its mean  

  : Random error,    (    
 )    

B. Moving Average Models  [ ] 
These models are often referred to as MA (q) and 

can be written in the following formula: 

                                (5) 

βτ : Moving average parameters and    = (1, 2, 

…,q) 

C. Autoregressive Moving Average Models [   ] 

These models are often referred to as ARMA (p, q) 

and can be written in the following formula: 

 

 

                          

                               (6) 

 

 

 

2- Box-Jenkins methodology  [     ] 

Introduced by Box and Jenkins in 1970, Box-Jenkins 

approach is one of the most distinguished statistical 

approaches to analyse the time series of specific 

phenomenon and forecasting the possible variations that 

may occur in the future based on previous observations 

of the phenomenon.  

Box-Jenkins methodology mainly relies on representing 

stable data using autoregressive moving average 

models. This methodology consists of three repetitive 

phases including identification, parameters estimation, 

and diagnostic checking. The identification phase 

includes the selection of the proper model to represent 

the data and determining its rank after examining the 

stability of the data in the mean and variance by plotting 

the orginal time series, plotting the autocorrelation 

function of the data, and applying one of the three tests 

that include Augmented Dickey – Fuller (ADF), 

Phillips – Perron (P.P), and Kwiatkowski – Phillips – 

Schmidt – Shin (KPSS).  

If the time series is not mean stationary, appropriate 

number of differences can be taken to accomplish 

stationary in the mean. If the time series is not variance 

stationary, specific transformations can be taken, such 

as the log or the square root, to accomplish stability. In 

the second phase, the model is estimated using one of 

the estimation methods, such as Ordinary Least Square 

method, moments method, the conditional maximum 

likelihood, and the exact maximum likelihood method.  

In the third phase, the randomization of residuals of the 

estimated model is examined by plotting the 

autocorrelation function of the residuals or applying 

Box- Pierce test, often referred to as QBP, or Ljung -Box 

test, often referred to as QLB. When the model pass the 

third phase successfully, the model is used to forecast  
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the future  values of the studied phenomenon using the 

following formula: 

 ̂ ( )   (    )  

               (      )         (        ) 

                    (      )          (      )  

                  (    )                                                  (7) 

where l represents the length of the forecasted time 

period.  

3-Artificial neural networks 

[                      ] 

Artificial neural network is a computational technique 

that simulates the way human brain uses to perform a 

specific task. It consists of several processing units 

defined as neurons or nodes that are organized in three 

levels (layers) including input level, hidden level that 

consists of one or more hidden layer, and the output 

level. the nodes of each level are associated with the 

next level through connection force called weights, 

which work on saving the acquired knowledge from the 

training of network.  

The nodes at the input level are called the input nodes 

and so on for the other levels. In addition, there is a 

node called the bias b that has a positive value of one 

and has the same constant role in the regression model. 

Each node of the hidden and output levels is provided 

with an activation function, linear or nonlinear, that 

works on processing the input signal and preventing the 

output of the processing node from reaching high value, 

which may stop the network leading to a failure of the 

training process. 

Neural networks are divided to two types including 

single layer and multiple layer networks. The single 

layer network does not have the hidden level and 

contains one layer of weights that connects the input  

 

level to the output level. when applying the input signal 

   in this type of network, we can obtain the output 

signal    through the following formula:  

    (∑   
 
        )                     (8) 

Where 

          

As for multi-layer networks, it has the ability to solve 

more complex problems because it contains the hidden 

level with one hidden layer or more. The output signal 

is obtained in this type of networks as follows 

     (         )             (9) 

Where: 

M: number of  layers  

Z
m-1

: output vector of the layer m-1 

g
m 

: activation function of the layer m 

b
m
: bias vector of the layer m 

X
m
: weights matrix of the layer m 

Z
0
 = V, and V is the input vector.  

(3-1) Backpropagation algorithm [     ] 

The backpropagation algorithm is a generalization of 

the least mean squares algorithm where it is used to 

train multiple layers networks. It is often referred to as 

BP and is considered one of the most used algorithms 

among the supervised learning algorithms. It consists of 

three stages: 

1- Feed forward propagation stage [     ] 

In this stage, inputs Z
0
 = V are applied on the 

network and random initial weights X
1
 are 

generated in small values. In addition, this stage 

includes determining the learning rate   and the 

momentum   by small value that falls within (0, 1) 

and (1,  ] respectively. Data are processed starting 

from the input layer to the output layer throughout  
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the hidden layers. The outputs of the network are 

obtained using the following formula: 

  
    (  

 )              (  ) 

      =  
 (∑     

     

     
      

 )             (11)                                                     

 

Which can be written as a matrix 

 

     (  )                                         (12)                                                                             

      =   (         )                      (13) 

                                                  

2-Backward Propagation Stage  [     ] 

In this stage, the sensitivities   is calculated from 

the last layer, which represents the output layer,  to 

the first layer throughout the hidden layers.  

Sensitivity  M
 in the last layer M can be calculated 

using the following formula: 

      ̇ (  )(   )                       (14)                                                      

Where 

d: desired output 

z: calculated output by network 

 ̇ (  )  

[

 ̇ 
 (  

 )    

  ̇ 
 (  

 ) 
               
               

  

                   
                   
               

       ̇
  
 ( 

  
 )

] and  

 ̇ 
 (  

 )  
 

   
    

 (  
 )            (15)                                    

While sensitivity     in the hidden layer m, where 

m= 1,2, …, M-1, can be calculated using the 

following formula:  

          ̇ (  )(    )                        (16) 

      Where   

X
m+1

: weights matrix of the layer m+1 

 

 

 

 

 

 

 

 

 

 ̇ (  )  [

 ̇ 
 (  

 )    

  ̇ 
 (  

 ) 
               
               

  

                   
                   
               

       ̇  
 (   

 )

] 

and 

 ̇ 
 (  

 )  
 

   
    

 (  
 )       

                                                        (  )  
  

       3- Updating weights stage [     ] 

After passing the feed forward propagation and the 

Backward Propagation stages, the stage of updating 

the weights and biases begins using the following 

formulas: 

  ( )    (   )     (   )     (18) 

  ( )    (   )     (   )      (19)                            

Where 

1- In case of not using the momentum: 

   (   )      (    )  

   (   )       

2- In case of using the momentum: 

   (   )      (   )

 (   )   (    )  

   (   )      (   )  (   )    

4- Data 

The data used in this study is a time series of exchange 

rate of Iraqi dinar to the US dollar and was provided by 

the Iraqi Central Bank. The data consist of 132 monthly 

observations from 30/01/2004 to 30/12/2014 as show in 

table (1) below. 

 

 

 

 

 

 

 

Emaan .Y / Mohammed .H 



 

5 
 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.9   No.2   Year  2017 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 

  

Table 1: Exchange rate of Iraqi dinar to the US dollar 

month 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

1 1467 1453 1483 1323 1224 1179 1185 1185 1206 1226 1222 

2 1409 1459 1480 1299 1225 1178 1185 1185 1236 1231 1222 

3 1423 1469 1480 1290 1222 1178 1185 1185 1240 1255 1222 

4 1443 1474 1481 1284 1216 1179 1185 1187 1263 1267 1218 

5 1462 1473 1485 1275 1212 1187 1185 1196 1250 1270 1222 

6 1460 1468 1485 1269 1205 1180 1185 1197 1241 1237 1213 

7 1463 1476 1486 1261 1202 1184 1185 1197 1253 1218 1214 

8 1463 1480 1488 1253 1196 1184 1185 1199 1248 1209 1213 

9 1463 1481 1488 1249 1188 1183 1185 1200 1228 1211 1204 

10 1463 1475 1486 1245 1185 1183 1185 1200 1200 1220 1207 

11 1463 1477 1467 1240 1183 1183 1188 1200 1207 1218 1200 

12 1462 1479 1394 1216 1180 1185 1195 1218 1222 1222 1205 

 

5- Box- Jenkins methodology 

application 

 

 

The first stage: identification 

The time series of the exchange rate data was 

plotted as shown in figure (1) below 

 

  

 

 

 

 

 

 

 

 

 

By looking at figure (1), we notice that the data 

Yt does not fluctuate around constant level, and 

it takes a decreasing trend which indicates that 

the time series is not mean stationary  and  not 

variance stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To check the accuracy of results about the 

stationary of the time series in the mean, 

autocorrelation function and partial 

autocorrelation function were plotted for the 

raw data as shown in figure (2) below. 

 

 

 

 

Figure 1: Exchange rate of Iraqi dinar to the US dollar 
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By looking at figure (2), we notice that the 

autocorrelation function is slowly decreasing 

toward the zero and does not cut after the first 

and the second lag, which indicates that the 

raw data is not mean stationary.  

 

To increase accuracy in the results about the 

stationary of the time series in the variance, 

ADF, P.P, and KPSS tests were applied as 

shown in table (2) below. 

 

Test Model Test Statistic Critical Values p-Value 

ADF 

without constant -0.837279 -1.943304 0.3514 

With constant -0.979861 -2.883756 0.7591 

With constant and time trend -1.307575 -3.444756 0.8817 

P.P 

without constant -1.397307 -1.943304 0.1504 

With constant -1.46627 -2.883756 0.5477 

With constant and time trend -1.200101 -3.444756 0.9059 

KPSS 
With constant 0.937165 0.643000  

With constant and time trend 0.277682 0.146000  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Correlogram of raw data Yt 
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By checking the P-value of each model of the 

estimated models for both tests ADF and P.P at 

0.05 significance level (alpha), we accept the 

null hypothesis and concluded that the time 

series has unit root meaning that it is not 

variance stationary. In addition, through ADF 

test, we concluded that the time series needs to 

take differences.  

By comparing the calculated value of KPSS 

test statistic to the critical value, we accept the 

alternative hypothesis, which means that the 

time series is not variance stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It becomes clear from the results of ADF, P.P, 

and KPSS tests of the transformed data, shown 

in table (3) below, that the time series is 

variance stationary. In addition, the results of  

 

 

 

 

 

From the results of plots and tests, we 

conclude that the time series is not mean 

stationary and not variance stationary. 

Therefore, the log transformation was applied 

then the first difference was taken to 

accomplish stationary in the series in the 

variance and the mean respectively as shown 

in figure (3) which shows that the 

autocorrelation function of the transformed 

data is cut after the first lag, which indicates 

that the time series is mean stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADF indicate that the series does not need to 

take anymore differences, which indicates that 

the series is mean stationary. 

 

 

 

 
 

 

Figure 3: Correlogram of transformed data Wt 
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Table 3: The tests results of transformed data Wt 

Test Model Test Statistic Critical Values p-Value 

ADF 

without constant -8.18208 -1.943304 0.0000 

With constant -8.197312 -2.883756 0.0000 

With constant and time trend -8.149873 -3.444756 0.0000 

P.P 

without constant -8.344295 -1.943304 0.0000 

With constant -8.382012 -2.883756 0.0000 

With constant and time trend -8.343332 -3.444756 0.0000 

KPSS 
With constant 0.214289 0.643000  

With constant and time trend 0.098436 0.146000  

 

In this stage, the suggested primary model 

ARIMA(1,1,1) has been estimated by the 

Exact Maximum Likelihood method. Some 

models have been suggested which are very  

 

 

 

closes to the primary model as:  

ARIMA(1,1,0), ARIMA(2,1,0), 

ARIMA(2,1,2), ARIMA(2,1,1), 

ARIMA(1,1,2) and ARIMA (0,1,1) model as 

shown in table (4) below 

 

4: estimated parameters of ARIMA (p,d,q) models 

ARIMA parameters P-Value ARIMA parameters P-Value 

(2,1,2)  ̂  870081.0 8700.0 (2,1,1)  ̂  870660.0 8700.0 

  ̂  87080000 .70.e-86   ̂  -87...000 876080 

  ̂  87610.00 07.0e-015   ̂  -87.0.80. 87.00. 

  ̂  8701..08 .788e-034 (0,1,1)  ̂  8781..0.8 171.e-05 

(1,1,2)  ̂  -8711.100 878..1 (2,1,0)  ̂  0.443303 3.82e-06 

  ̂  87016.00 .7..e-8.   ̂  -0.0253968 0.7905 

  ̂  87000..6 .7..e-80     

(1,1,0)  ̂  87.10.60 670.e-80     

(1,1,1)  ̂  87.8...0 878.01     

  ̂  878110008 8706..     

 

To select the best model among the estimated 

models to represent the data, some statistical 

criteria including AIC, BIC, H-Q, MSE, MAE, 

MPE, and MAPE were calculated as shown in 

table (5) below. 
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Table 5: Estimated criteria of ARIMA (p, d, q) models 

ARIMA Criterion ARIMA Criterion 

(2,1,2) AIC -856.1266 (2,1,1) AIC -846.4964 

 H-Q -850.2850  H-Q -841.8231 

 BIC -841.7506  BIC -834.9956 

 MSE 8.2251e-005  MSE 8.8286e-005 

 MAE 0.0055517  MAE 0.005339 

 MPE -0.014625  MPE -0.012791 

 MAPE 0.077613  MAPE 0.074591 

(1,1,2) AIC -855.4026 (0,1,1) AIC -845.4281 

 H-Q -850.7329  H-Q -843.0915 

 BIC -843.9054  BIC -839.6777 

 MSE 8.4133e-005  MSE 9.0732e-005 

 MAE 0.005490  MAE 0.0054472 

 MPE -0.012031  MPE -0.015472 

 MAPE 0.076745  MAPE 0.076101 

(1,1,0) AIC -850.1698 (2,1,0) AIC -848.2394 

 H-Q -847.8332  H-Q -844.7344 

 BIC -844.4194  BIC -839.6138 

 MSE 8.8425e-005  MSE 8.8399e-005 

 MAE 0.0053075  MAE 0.005309 

 MPE -0.011707  MPE -0.012026 

 MAPE 0.074140  MAPE 0.074167 

(1,1,1) AIC -848.2102    

 H-Q -844.7053    

 BIC -839.5846    

 MSE 8.8409e-005    

 MAE 0.0053073    

 MPE -0.011881    

 MAPE 0.074141    

 

Based on the significance of estimated 

parameters shown in table (4) and the values of 

criteria shown in table (5), ARIMA (1,1,0) 

model was selected to represent the data. We 

can also conclude from table (4) that ARIMA 

(1,1,0) model fulfills the stationary condition 

|α1| = |0.431265| < 1.  

 

 

 

 

 

 

 

 

 

The third stage: Diagnostic Checking 

To ensure the efficiency of ARIMA (1,1,0) 

model in representing the data, the model 

residuals were tested by calculating and 

plotting the autocorrelation function of the 

residuals as shown in figure (4) and table (6). 

By looking at figure (4) and table (6), we 

notice that all autocorrelation cofficients of the 

model residuals fall within trust limits and do 

not significantly differ from zero, which 

indicates that the residuals represent the white 

noise. 
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Table 6: Autocorrelation coefficients of residuals for ARIMA (1,1,0) model 

 

 

 Figure 1: Correlogram of residuals for ARIMA (1,1,0) model 
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By testing the P-value, we accept the null hypothesis 

and conclude that the residuals of ARIMA (1,1,0) 

model are completely random and represent the white 

noise. Therefore, ARIMA (1,1,0) model represent the 

best model to estimate the exchange rate 

6- Artificial neural network methodology 

application 

The main step in designing the neural network model of 

a specific time series is determining the number of input 

variables. Based on the results of  Box-Jenkins 

methodology that showed ARIMA (1,1,0) model as the 

best model to represent the data, we conclude that the 

input variables include the Yt-1 only. Therefore, the 

number of input nodes equal to one. Because the goal 

here is to predict one-step-a head, one. 

output node was set in the output layer, which include 

one variable Yt. In addition, one hidden layer was 

determined for the hidden level. By choosing  

 

 

 

backpropagation algorithm to train the network, a 0.5 

learning speed and 0.9 momentum were selected, and 

we include 100% of the data for the training due to the 

small sample size. 

Because there is no constant rule to select the activation 

functions in both the hidden and output layers, 5 models 

including ANN(1), ANN(2), ANN(3), ANN(4), and 

ANN(5)  were built with different activation functions 

as shown in table (8). Based on the activation function 

in the output layer of each model, the processing 

formula was determined. The number of hidden nodes 

in each models were also determined based on the try 

and error approach and the following formulas: 

Number of hidden nodes = R  

Number of hidden nodes = 2R                                

Number of hidden nodes = 2R +1           

Where R represents the number of the input nodes. 

 

 

 

 

 

 

 

 

 

 

To increase the accuracy of the results, Ljung- 

Box test was applied on the model residuals 

      

as shown in table (7) below. 

 
 
 

Table 7: Ljung-Box test results 

df 𝑸𝑳𝑩 𝝌𝟐(𝒅𝒇  𝒂𝒍𝒑𝒉𝒂 النموذج  𝟎.𝟎𝟓) p-value 

ARIMA(1,1,0) 23 15.4305 35.172 15.4305 
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Table 8: Artificial neural networks models 

 

 

F
irst M

o
d

el A
N

N
( 1

 )
 Activation function for hidden layer Hyperbolic tangent 

Activation function for output  layer sigmoid 

Data preprocessing formula normalized 

Number of Hidden 

Nodes 
MSE MAE MAPE 

Number of Hidden 

Nodes 
MSE MAE MAPE 

1 355.3003 13.8103 1.0669 6 244.4384 10.8591 0.8442 

2 239.2133 10.7915 0.8421 7 240.6842 10.4926 0.8174 

3 314.3509 12.3766 0.96 8 320.4959 12.2783 0.9625 

4 363.1231 14.0481 1.0874 9 268.5468 11.936 0.9279 

5 299.6979 12.6116 0.9751 10 276.1918 11.8453 0.9259 

S
eco

n
d

  M
o
d

el A
N

N
( 2

 )
 

Activation function for hidden layer sigmoid 

Activation function for output  layer sigmoid 

Data preprocessing formula normalized 

Number of Hidden 

Nodes 
MSE MAE MAPE 

Number of Hidden 

Nodes 
MSE MAE MAPE 

1 308.7995 12.6732 0.98 6 400.6688 13.8814 1.0779 

2 399.0621 14.5312 1.0978 7 366.3151 14.5746 1.1027 

3 337.6484 12.7363 1.0029 8 272.8888 9.5703 0.7261 

4 246.7104 10.5956 0.8088 9 297.0384 12.5679 0.9652 

5 256.438 11.5061 0.8838 10 272.4871 11.658 0.9101 

T
h

ird
  M

o
d

el A
N

N
( 3

 )
 Activation function for hidden layer Hyperbolic tangent 

Activation function for output  layer Identity 

Data preprocessing formula normalized 

Number of Hidden 

Nodes 
MSE MAE MAPE 

Number of Hidden 

Nodes 
MSE MAE MAPE 

1 177.339 7.6599 0.5865 6 184.5194 8.0842 0.6196 

2 173.3501 7.6115 0.5843 7 196.4128 8.754 0.6751 

3 198.175 8.6334 0.6629 8 179.8835 7.9118 0.6056 

4 183.9683 8.0917 0.6195 9 182.1894 7.9497 0.6101 

5 183.2493 7.9365 0.6103 10 184.5148 8.1362 0.6227 

F
o

rth
  M

o
d

el A
N

N
( 4

 )
 Activation function for hidden layer sigmoid 

Activation function for output  layer identity 

Data preprocessing formula normalized 

Number of Hidden 

Nodes 
MSE MAE MAPE 

Number of Hidden 

Nodes 
MSE MAE MAPE 

1 211.7407 9.3136 0.7118 6 182.8886 8.0308 0.6238 

2 222.3407 9.6718 0.7421 7 198.721 8.6888 0.6715 

3 185.2495 8.2581 0.6293 8 181.8466 7.9717 0.6123 

4 195.651 8.7934 0.6728 9 220.4262 9.1451 0.7009 

5 191.5193 8.686 0.6657 10 185.0319 8.1435 0.6259 

F
ifth

  M
o

d
el A

N
N

( 5
 )

 Activation function for hidden layer Hyperbolic tangent 

Activation function for output  layer Hyperbolic tangent 

Data preprocessing formula Adjusted normalized 

Number of Hidden 

Nodes 
MSE MAE MAPE 

Number of Hidden 

Nodes 
MSE MAE MAPE 

1 298.7304 12.7281 0.9971 6 307.0816 12.5883 0.992 

2 183.2822 8.6717 0.6709 7 284.4868 11.752 0.9224 

3 175.6466 8.3228 0.6452 8 267.8135 11.5292 0.899 

4 274.034 11.7873 0.9162 9 281.4044 11.748 0.923 

5 283.5786 11.9748 0.9335 10 304.3154 12.8228 1.0107 
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Regardless the number of the hidden nodes, by 

examining table (8) and based on MSE, MAE, 

and MAPE criteria, the best model among the 

designed models is ANN (3). Therefore, we 

conclude that the best activation function for 

the hidden layer is the bipolar function and the 

linear function for the output layer. In addition, 

by testing the third model, it is apparent that 

the best number of nodes for the hidden layer 

is 2.  

 

Therefore, we conclude that the best formula to 

determine the number of hidden nodes is 2R.  

Based on the third model ANN (3) with 2 

nodes and constant requirements of the other 

network except the sample size, data was 

divided to two sets including the training and 

the testing with specific portions as shown in 

table (9). The network was retrained again and 

the results are shown in table (9).

 

 

 

 

 

 

 

 

By examining table (9), we conclude that the inclusion 

of all the data in the training leads to the lowest 

potential error. This is clear through the MSE criterion 

that reach its lowest value when 100% of the data is 

included in the training, which indicates a safe primary 

selection of the data size. 

Based on the third model with 2 hidden nodes  and 

constant network requirements except the momentum 

value, different models were designed with different 

momentum values as shown in table (10) below. 

 

 

 

 

 

 

 

 

 

Table 9: Values of the criteria when data partitioning 

Training Data Testing Data MSE MAE MAPE 

100 0 173.3501 7.6115 0.5843 

90 10 184.357 8.2431 0.6318 

80 20 183.1978 7.2871 0.5619 

70 30 180.9971 7.763 0.5966 

60 40 188.8886 7.575 0.5855 

50 50 179.1047 7.9445 0.6062 

40 60 198.5476 9.2811 0.7166 

30 70 189.0676 8.8814 0.674 

20 80 204.1265 8.046 0.6266 

10 90 185.3909 7.3814 0.573 

 

Table 10: Values of the criteria during momentum change and fixed learning rate 

Learning Rate Momentum Time MSE MAE MAPE 

870 870 0:00:00.09 173.3501 7.6115 0.5843 

870 870 0:00:00.08 184.3754 8.1804 .6289 

870 87. 0:00:00.05 171.2072 7.4626 .5748 

870 876 0:00:00.05 170.5924 7.5583 .5800 

870 870 0:00:00.17 188.2508 8.3374 .6406 

870 87. 0:00:00.37 180.5767 7.9174 .6067 

870 871 0:00:00.08 173.5609 7.5861 .5816 

870 87. 0:00:00.03 171.6374 7.3010 .5630 

870 870 0:00:00.09 197.1893 8.9972 .6925 
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By examining table (10), we conclude that the 

momentum value affects the training time and 

the error calculated by the network. We also 

conclude that   the best value of momentum 

that gives the lowest possible error at 

appropriate time with 0.5 learning rate is 0.6.  

 

 

 

Based on the last modifications of the third 

model of the network, a comparison was 

conducted between the network training  

without data processing and the network 

training with data processing by using 

normalized formula . The results are shown in 

table(11). 

 

 

 

  

By examining table (11), we conclude that data 

processing is a crucial step before providing 

the network with data. This is apparent through 

the values of MSE, MAE, and MAPE criteria 

as shown in table (11). 

Therefore, the best model of the neural 

network that can be used in the estimation is  

 

 

the third model with 2 hidden nodes and 0.6 

momentum at 0.5 learning rate.  

By comparing the calculated values of MSE, 

MAE, and MAPE for both models ARIMA 

(1,1,0) and AAN (3) using Box-Jenkins and 

the neural network respectively, we conclude 

that the best methodology in forecasting the 

exchange rate is Box-Jenkin methodology as 

shown below.

 

 

 

7- Conclusions: 

1- The series of exchange rate of Iraqi dinar 

to the US dollar is non-stationary in the 

mean and the variance. 

2- The best model in forecasting the 

exchange rate using Box-Jenkins 

methodology is ARIMA (1,1,0). 

3- The best model of the artificial neural 

network to forecast the exchange rate 

using backpropagation algorithm is the 

network designed with one variable (  ), 

hyperbolic activation function in the 

hidden layer and linear activation function 

in the output layer, learning rate of (0.5  ), 

(0.6 ) momentum, and two hidden nodes 

in one hidden level. 

4- Based on the MSE, MAE and MAPE 

criterion, it is apparent that Box-Jenkins 

methodology is better than the neural 

network in forecasting the exchange rate 

of Iraqi dinar to the US dollar. 

 

8- Recommendations: 

1- Compare the backpropagation 

network and the Jordan or Elman 

network in predicting the exchange 

rate. 

2- Apply the hybrid methodology to 

predict the exchange rate. Then 

compare the hybrid model and the 

pure neural network model to choose 

the best. 

Table 11: Values of criteria for final model without processing 

Final Model MSE MAE MAPE 

Without Processing 13345.0652 99.8602 7.5583 

With Processing 170.5924 7.5583 .5800 

 

methodology MSE MAE MAPE 

Box-Jenkins 156.0669 6.867803 0.005323 

artificial neural networks 170.5924 7.5583 .5800 
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 المستخلص :

والانخفاضات المفاجئة وغٌر المتوقعة لها تأثٌر كبٌر على ان التقلبات التً تحدث فً سعر الصرف ولا سٌما الارتفاعات 

الاقتصاد القومً لأي دولة ومنها العراق. لذا فأن التنبؤ الدقٌق بسعر صرف الدٌنار العراقً مقابل الدولار الامرٌكً له اثر 

 صادي للعراق .كبٌر فً عملٌة التخطٌط واتخاذ القرار بالإضافة الى المحافظة على التوازن والاستقرار الاقت

ٌهدف هذا البحث الى المقارنة بٌن اسلوب بوكس جٌنكنز واسلوب الشبكات العصبٌة الاصطناعٌة  فً التنبؤ  بسعر صرف 

الدٌنار العراقً مقابل الدولار الامرٌكً بالاعتماد على البٌانات المأخوذة من البنك المركزي العراقً للفترة من 

 . 30/12/2014الى  30/01/2004

كمعاٌٌر  MAPEومتوسط مطلق الخطأ النسبً  MAE,متوسط مطلق الخطأ  MSEوبالاعتماد على متوسط مربع الخطأ 

الشبكة العصبٌة الاصطناعٌة فً  احصائٌة للمفاضلة بٌن الاسلوبٌن تم التوصل الى ان اسلوب بوكس جٌنكنز أفضل من اسلوب

 التنبؤ.
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