Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 1 - 7

Areej .T /Baneen .N

Some Properties of Fuzzy AB-ideal of AB-algebras

Areej Tawfeeq HameedBaneen Najah AbaasDepartment of Mathematics, Faculty ofEducation for Girls, University of Kufa.
areej238@gmail.comareejtawfeeq@uokufa.edu.iq

Recived : 8\10\2017

Revised : 29\10\2017

Accepted : 1\11\2017

Available online : 20 /1/2018

DOI: 10.29304/jqcm.2018.10.1.333

Abstract:

In this research we have introduced the concept of fuzzy AB-ideal of AB-algebra and also we proved some relevant characteristics and theories. We also studied the fuzzy relations on AB-algebras and fuzzy derivations AB-ideals. We presented the characteristics and theories that illustrat the two concepts that is promted us to study Cartesian Product of fuzzy derivations AB-ideals.

Keywords:

Fuzzy derivation AB-ideal of AB-algebras, Cartesian Product of Fuzzy Derivations AB-ideals .

Mathematics Subject Classification: 06F35, 03G25, 03B52.

Introduction:

The notion of BCC-algebras was proposed by W.A. Dudek in ([9],[10],[11]). S.S. Ahn and

H.S. Kim have introduced the notion of QSalgebras. A.T. Hameed and et al ([7],[8]) introduced the notions of QS-ideal and fuzzy QS-ideal of QS-algebra. A.T. Hameed, and et al have introduced the notion of fuzzy QSideal of QS-algebra in [1]. A.T. Hameed introduce new of abstract algebras: is called KUS-algebras and define its ideals as KUSalgebras in ([5]). In 2017, A.T. Hameed and B.N. Abbas. introduced the notion of ABideals in AB-algebras, described connections between such ideal and congruences and some properties of AB-algebra in ([2],[3]). A.T. Hameed and B.N. Abbas, considered the fuzzification of AB-ideals in AB-algebras [4]. In this paper, we introduce the notion of fuzzy derivation on ABalgebras and obtain some of related properties and we characterized Cartesian Product of Fuzzy Derivations AB-ideals.

1.Preliminaries:

We review some definitions and properties that will be useful in our results.

Definition 1.1.([2],[3]) Let X be a set with a binary operation "*" and a constant 0. Then (X, *, 0) is called **an AB-algebra** if the following axioms satisfied: for all x, y, z \in X:

(i)
$$((x * y) * (z * y)) * (x * z) = 0$$

(ii) $0 * x = 0$,
(iii) $x * 0 = x$,

Note that: Define a binary relation (\leq) on X by x * y = 0 if and only if, $x \leq y$. Then(X, \leq) is a partially ordered set.

Proposition 1.2.([2],[3]) In any AB-algebra X, for all x, y, $z \in X$, the following properties hold:

(1)
$$(x * y) * x = 0.$$

(2) $x \le y$ implies $x * z \le y * z$
(3) $x \le y$ implies $z * y \le z * x$

Remark 1.3.([2],[3]) An AB-algebra is satisfies for all x, y, $z \in X$ (1) (x * y) * z = (x * z) * y

$$(2) (x * (x * y)) * y = 0.$$

Definition 1.4.([2],[3]) Let X be an ABalgebra and $I \subseteq X$. I is called **an AB-ideal of X** if it satisfies the following conditions:

(i) $0 \in I$, (ii) $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$.

Definition 1.5.([2],[3]) For an AB-algebra X, we denote $x \land y = y * (y * x)$, for all x, y $\in X$,

 $x \land y \le x, y$. **Definition 1.6.**([2],[3]) An AB-algebra is said to be **commutative** if and only if, satisfies for all $x, y \in X, x * (x * y) =$ $y * (y * x), i.e, x \land y = y \land x$. **Definition 1.7.**([2],[3]) Let X be an AB-algebra. A mapping $d : X \to X$ is a left-right derivation (briefly,(l,r)-derivation) of X, if it satisfies the identity $d(x * y) = (d(x) * y) \land (x * d(y))$, for all x, y \in X, if d satisfies the identity d(x * y) = $(x * d(y)) \land (d(x) * y)$, for all x, y \in X. Then d is a right-left derivation (briefly, (r, l)-derivation) of X. Moreover, if d is both a (l,r) and (r,l)-derivation, then d is a derivation of X.

Example 1.8. Let $X = \{0,1,2,3\}$ be an AB-algebra in which the operation (*) is defined as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

Define a map
$$d: G \rightarrow G$$
 by
$$d(x) = \begin{cases} 0 & if \ x = 0, 1, 3, \\ 2 & if \ x = 2. \end{cases}$$

And define a map $d^* : G \to G$ by $d^*(x)$ $\begin{cases} 0 & if \ x = 0,1, \\ 2 & if \ x = 2,3. \end{cases}$

Then it is easily checked that d is both a (l,r) and (r,l)-derivation of G and d^{*} is a(r,l)-derivation but not a (l,r)-derivation of G.

Definition 1.9. ([2],[3]) A derivation of an AB-algebra is said to be **regular** if d(0) = 0.

Definition 1.10. ([4]) A fuzzy subset μ of AB-algebra X is called **a fuzzy AB-subalgebra of X** if $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$, for all x, $y \in X$.

Definition 1.11.([4]) A fuzzy subset μ of AB-algebra X is called **a fuzzy AB-ideal of X** if it satisfies : FAB₁) $\mu(0) \ge \mu(x)$; FAB₂) $\mu(x \ast z) \ge \min\{\mu(x \ast (y \ast z)), \mu(y)\},\$ for all x, y, z \in X.

Definition 1.12. [6]. A fuzzy μ is called a fuzzy relation on any set S, if μ is a fuzzy subset $\mu: X \times X \rightarrow [0,1]$.

Definition 1.13. [6].If μ is a fuzzy relation on a set S and is a fuzzy subset of X, then μ is a fuzzy relation on β if μ {x, y} \leq min (β (x), β (y)), \forall x, y \in X.

Definition 1.14 [6].Let μ and β be a fuzzy subset of a set X, the Cartesian product of μ and β is defined by $(\mu \times \beta)(x, y) = \min\{\mu(x), \beta(y)\}, \quad \forall x, y \in X.$

Lemma 1.15 [6]. Let μ and β be a fuzzy subset of a set X, then (i) $\mu \times \beta$ a fuzzy relation on X, (ii) $(\mu \times \beta)_t = \mu_t \times \beta_t, \forall t \in [0,1].$

2.(Fuzzy) Derivations AB-Ideals on AB-Algebras:

We review the definition of fuzzy derivations AB-algebra and study some properties of it.

Definition 2.1. Let (X, *, 0) be an AB-algebra. and $d: X \rightarrow X$ be a self map. A non-empty subset A of an AB-algebra X is called **left derivations AB-ideal of X,** If it satisfies the following conditions:

1) $0 \in A$,

2) $d(x) * (y * z) \in A$, and $d(y) \in A$ implies $d(x * z) \in A$. **Definition2.2.** Let (X, *, 0) be an AB-algebra. and $d : X \rightarrow X$ be a self map. A non-empty subset A of an AB- algebra X is called **right derivations AB-ideal of X**, If it satisfies the following conditions: 1) $0 \in A$,

2) $x * d(y * z) \in A$, and $d(y) \in A$ implies $d(x * z) \in A$.

Definition 2.3. Let(X ;*,0)be an AB-algebra. and $d: X \rightarrow X$ be a self map. A non-empty subset A of an AB- algebra X is called derivations AB-ideal of If it satisfies the following conditions: 1) $0 \in A$,

2) $d((x * y) * z) \in A$, and $d(y) \in A$ implies $d(x * z) \in A$.

Definition 2.4. Let (X, *, 0) be an AB-algebra. and $d: X \rightarrow X$ be a self map. A non-empty subset A of an AB-algebra X is called **a fuzzy derivations AB-ideal of X** If it satisfies the following conditions:

- 1) $\mu(0) \ge \mu(x);$
- 2) $\mu(d(x*z)) \ge \min\{ \mu(d(x*(y*z)), \mu(d(y))) \}^{"}$, for all x, y, z $\in X$

Example 2.5. Let $X=\{0,1,2,3\}$ be an AB-algebra in which the operation (*) is defined as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

Define a map d : X \rightarrow X by $d(x) = \begin{cases} 0 & if \ x = 0,1,3, \\ 2 & if \ x = 2. \end{cases}$

Define a fuzzy set μ : X \rightarrow [0,1] by $\mu(d$ (0))=t₀, $\mu(d$ (1))= t₁, $\mu(d$ (2) = $\mu(d$ (3)) =t₂ Where $t_0, t_1, t_2 \in [0,1]$, with

 $t_0 > t_1 > t_2$. Routine calculations give that μ is not fuzzy left (right)derivations AB-ideal of AB-algebra.

<i>Example 2.6.</i> Consider the set X = {0, 1, 2, 3, 4, 5}	
with the operation defined by the following table:	

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

(2) Let $x * y \le d(y)$, Then by Theorem (2.7(1)) we get, $\mu(d (x * y)) \ge \mu(d (x))$ (3) Let $(x * y) * (z * y) \le d(x * z)$, by (Theorem (2.7(1)) we get, $\mu(d ((x * y) * (z * y))) \ge \mu(d (z * x))$ (4) Let $\mu(d (x * y)) = \mu(d (0))$, then $\mu(d (x)) = \mu(d (x * 0)) \ge min\{\mu(d (x * y)) * 0), \mu(d (y))\} = min\{\mu(d (x * y))\}$ $= min\{\mu(0), \mu(d (y))\} = \mu(d (y)).$

define $d(x): X \to X \text{ by} d(x) = \begin{cases} 0 & \text{if } x = 0, 1, 2, 3, 4 \\ \text{if } x = 5 \end{cases}$ define a fuzzy set $\mu: X \to [0,1]$ by $\mu(d(0)) = t_0$, $\mu(d(1))$ B-bigebra X is also fuzzy left derivations $\mu(d(1)) = \mu(d(2)) = t_2$, $\mu(d(3)) = \mu(d(4)) = t_3$. Where $t_0, t_1, t_2, t_3 \in [0,1]$, with $t_0 > t_1 > t_2 > t_3$. Routine calculations give that μ is a fuzzy derivations AB-ideal of AB-ideals of AB-algebra X, then AB-algebra. $\forall x, y, z \in X(\cap \mu_i)(0) = \inf(\cap \mu_i(0))$ $\geq \inf(\mu_i(d(x)) = (\cap \mu_i)(d(x))$ and

Theorem 2.7. Let μ be a fuzzy derivations AB-ideal of AB-algebra *X*.

(1) If $x \le d(y)$, then $\mu(d(x)) \ge \mu(d(y))$,

(2) If $x * y \le d(y)$, then

 $\mu(d\ (x*y)) \geq \mu(d\ (y)),$

(3) If
$$(x * y) * (z * y) \le d(x * z)$$
, then $\mu(d)$

 $((x * y) * (z * y))) \ge \mu(d (z * x)),$

(4) If $\mu(d (x * y)) = \mu(d (0))$, then

$$\mu(d(x)) \ge \mu(d(y))$$

Proof :

(1) Let $x \le d(y)$, and since $d(y) \le y$, hence $x \le y$, i.e. x * y = 0, then

 $\mu(d(x)) = \mu(d(x * 0))$

 $\geq min\{\mu(d (x * y) * 0), \mu(d (y))\}$

(from Definition (2.4(2)))

$$= \min\{\mu(d \ (x * y)), \mu(d \ (y))\}$$

$$= min\{\mu(d (0), \mu(d (y))\} = \mu(d (y))$$

 $\begin{aligned} \forall x, y, z \in X(\cap \mu_i)(0) &= \inf (\cap \mu_i(0)) \\ &\geq \inf (\mu_i (d (x)) = (\cap \mu_i)(d (x)) \text{ and} \\ (\cap \mu_i)(d (x * z)) &= \inf (\mu_i(d(x * z)) \\ &\geq \inf (\min\{\mu_i (d (x * y) \\ * z)), \mu_i (d (y))\} \\ &= \min\{\inf (\mu_i (d (x * y) * z)), \mu_i (d (y))\} \\ &= \min\{(\cap \mu_i)(d(x * y) * z), (\cap \mu_i)(d(y))\}. \end{aligned}$

Theorem 2.9. Let μ be a fuzzy set in X, then μ is a fuzzy derivations AB-ideal of X if and only if it satisfies : $\forall \alpha \in [0, 1]$, $U(\mu, \alpha) \neq \phi$ implies $U(\mu, \alpha)$ is AB-ideal of X, where $U(\mu, \alpha) = \{x \in X / \mu(d(x)) \geq \alpha\}.$ **Proof:** Assume that μ is a fuzzy derivations AB-ideal of X, let $\alpha \in 0,1$ be such that U (μ , α) $\neq \phi$ and x, y \in X, such that $x \in U$ (μ, α) then $\mu(d(x)) \ge \alpha$, and so by $\mu(d(0)) = \mu(d(0 * y)) \geq$ (fl_2) $min\{ \mu(d(0 * x) * y),$ $\mu(d(x))$ $min\{\mu(d(0) * y), \mu(d(x))\}$ $= \min\{ \mu(0 * y), \mu(d(x)) = \min\{ \mu(0),$ $\mu(d(x)) = \alpha$, hence $0 \in U(\mu, \alpha)$. Let $d(x * (y * z)) \in U(\mu, \alpha)$ and $d(y) \in$ $U(\mu , \alpha)$, by $(FL_2) \quad \mu(d(x * z)) \ge$ $min\{\mu(d(x * y) * z), \mu(d(y))\} = \alpha$, so that $x^*z \in U(\mu, \alpha)$.

Hence $U(\mu, \alpha)$ is AB-ideal of X. Conversely, Let $U(\mu, \alpha)$ is AB-ideal of X, let x, y, $z \in X$ be such that $\mu(d(x^*z)) > \min\{ \mu(d(x^*y)^*z), \mu(d(y)) \},$ taking $\beta_0 = \frac{1}{2} \{ \mu(d(x * z)) + \min\{ \mu(d(x * y) * z), \mu(d(y)) \} \},$ we have $\beta_0 \in [0,1],$ $\mu(d(x * z))$ $< \beta_0 < \min\{ \mu(d(x * y) * z), \mu(d(y)) \} \},$ it follows that $d(x * y) * z \in U(\mu, \beta_0)$ and $y \in U(\mu, \beta_0)$, this this is a contradiction and therefore μ is a fuzzy derivations AB-ideal of X.

3. Cartesian Product of Fuzzy Derivations AB-ideals:

The following definitions introduce the notion of Cartesian Product of Fuzzy Derivations AB-ideals and some Properties of it.

Definition 3.1. Let μ and β be a fuzzy derivations subset of a set X,**the Cartesian product of \mu and \beta is** defined by $(\mu \times \beta)(d(x, y))$ = $min\{\mu(d(x)), \beta(d(y))\}, \forall x, y \in X.$

Definition 3.2. If β is a fuzzy derivations subset of a set X, the strongest fuzzy relation on X, that is a **fuzzy derivations relation on** β **is** μ_{β} given by

 $\mu_{\beta} (d (x, y)) = min \{ \beta (d(x)), \beta (d(y)) \},\$ $\forall x, y \in X.$

Proposition 3.3. For a given fuzzy derivations subset β of AB-algebra X, let μ_{β} be the strongest fuzzy derivations relation on X. If μ_{β} is a fuzzy derivations AB-ideal of X ×X then $\beta(d(x)) \leq \beta(d(0)) = \beta(0), \forall x \in X.$ **Proof:** Since μ_{β} is a fuzzy derivation AB-ideal of X

×X it follows from (F₁) that $\mu_{\beta}(\mathbf{x},\mathbf{x}) = \min\{\beta (d(x)), \beta (d(x))\} \le \beta$ (d(0,0))

 $= \min\{ \beta (d(0), \beta (d(0)) \text{ where } (0,0) \in X \times X \text{ then } \beta (d(x)) \le \beta (d(0)) = \beta (0).$

Remark 3.4. Let X and Y be AB-algebras, we define * on X \times Y by $(x, y) * (u, v)(x * u, y * v), \forall (x, y), (u, v) \in X \times Y$ then clearly $(X \times Y, *, (0,0))$ is an AB-algebra. **Theorem 3.5.** Let μ and β be a fuzzy derivations AB-ideals of AB-algebra X, then $\mu \times \beta$ is a fuzzy derivations AB-ideal of X $\times X$. **Proof:** (1) $(\mu \times \beta)(d(0,0)) = \min\{\mu(0), \beta(0) \ge \min\{\mu(d(x)), \beta(d(x))\} = \mu \times \beta(d(x,y)) \forall x, y \in X \times X.$ (2) Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$, then

$$\begin{split} & \mu \times \beta(x_1 * z_1, x_2 * z_2) = \min\{\mu(d(x_1, z_1) * \\ & \beta(d(x_2, z_2)) \\ & \geq \min\{\mu(d(x_1 * (y_1 * z_1)), \mu(d(y_1)), \\ & \beta(d(x_2 * (y_2 * z_2)), \beta(d(y_2))\} \\ & = \min\{\min\{\mu(d(x_1 * (y_1 * z_1)), \\ & \beta(d(x_2 * (y_2 * z_2)), \mu(d(y_2)))\} \\ & = \min\{\mu \times \beta((d(x_1 * (y_1 * z_1)), \\ & (d(x_2 * (y_2 * z_2))), \mu \times \beta(d(y_1)), (d(y_2)))\} \\ & + \text{hence } \mu \times \beta \text{ is a fuzzy derivations AB-ideal of } \\ & X \times X . \end{split}$$

Theorem 3.6. Let β be a fuzzy derivations subset of AB-algebra X and let μ_{β} be the strongest fuzzy derivations relation on then β is a fuzzy derivations AB-ideal of X if and only if μ_{β} is a fuzzy derivations AB-ideal of X ×X. **Proof:**

Let β be a fuzzy derivations AB-ideal of X. (1) From (F_1) , we get $\mu_{\beta}(0,0)$ $=\min\{ \beta(d(0)), \beta(d(0))\} = \min\{ \beta(0), \beta(0)\}$ $\geq \min\{\beta(d(\mathbf{x})), \beta(d(\mathbf{y}))\} = \mu_{\beta}(d(\mathbf{x})), d(\mathbf{y})),$ $\forall x, y \in X \times X.$ (2) $\forall (x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$, we have from (F_2) $\mu_{\beta}(x_1 * z_1, x_2 * z_2) = \min\{\beta(d(x_1 * z_1) + d(x_2)) = 0\}$ z_1), β (d($x_2 * z_2$))} $\geq \min\{\beta(d(x_1 * (y_1 * z_1)), \beta(d(y_1)),$ $\beta(d(x_2 * (y_2 * z_2)), \beta(d(y_2)))$ $= \min\{\min\{\beta(d(x_1 * (y_1 * z_1)),$ $\beta(d(x_2 * (y_2 *$ z_2))},min{ $\beta(d(y_1)),\beta(d(y_2))$ } $= \min\{\mu_{\beta}((d(x_1 * (y_1 * z_1)),$ $(d(x_2 * (y_2 * z_2))), \mu_\beta (d(y_1)), (d(y_2))))$

Hence μ_β is a fuzzy derivations AB-ideal of $X{\times}X$.

X×X. Conversely, let μ_{β} be a fuzzy derivations AB-ideal of $X \times X$, (1) \forall (x, y) \in X×X, we have, $\min\{\beta(0),\beta(0)\}=\mu_{\beta}(x,y)=\min\{\beta(x),\beta(y)\},\$ It follows that $\beta(0) \ge \beta(x) \forall x \in X$, (2) Let $(x_1,x_2),(y_1,y_2),(z_1,z_2) \in X \times X$, then $\min\{\beta(d(x_1 * z_1), \beta(d(x_2 * z_2)))\}$ $= \mu_{\beta}(d(x_1 * z_1), d(x_2 * z_2))$ \geq $\min\{\mu_{\beta}(d(x_1,x_2)^*((y_1,y_2)^*(z_1,z_2))),\mu_{\beta}(d(x_1,x_2)^*(y_1,y_2)^*(z_1,z_2))),\mu_{\beta}(d(x_1,x_2)^*(y_1,y_2)^*(y_1,y_2)^*(y_1,y_2)))\}$ $y_1), d(y_2))\}$ $= \min\{\mu_{\beta}(d(x_{1}*(y_{1}*z_{1})), d(x_{2}*(y_{2}*$ $z_2)), \mu_{\beta}(d(y_1), d(y_2))\}$ $= \min\{\min\{\beta(d(x_1 * (y_1 * z_1)), \beta(d(x_2 *$ $(y_2 * z_2)$,min{ $\beta(d(y_1)),\beta(d(y_2))$ } $= \min\{\beta(d(x_1 * (y_1 * z_1)), \beta(d(y_1)), \beta(d(x_2 * z_1)), \beta(d(y_1)), \beta(g(y_1)), \beta(g(y_1)$ $(y_2 * z_2)), \beta(d(y_2))\}$

In particular, if we take
$$x_2, y_2, z_2 = 0$$
, then
 $\beta(d(x_1 * z_1) \ge \min\{\beta(d(x_1 * (y_1 * z_1)), \beta(d(y_1))\}.$

Hence β be a fuzzy derivations AB-ideal of X.

Conclusions and discussion

1) we presented some properties related to fuzzy AB-ideal of AB- algebra, among these properties, derivations AB-ideals, Cartesian Product of Fuzzy Derivations AB-ideals.

2) We recommend finding other properties for this type of algebra.

References

- A.T. Hameed, A.A. Alfatlawi and A.K. Alkurdi, Fuzzy QS-ideals of QSalgebras, International Journal of Algebra, 11, 1(2017), 43-52.
- [2] A.T. Hameed and B.N. Abbas, AB-ideals of AB-algebra, Applied Mathematical Sciences, 11,35(2017), 1715-1723.
- [3] A.T. Hameed and B.N. Abbas, **Some Properties of AB-ideals of AB-algebra**, Algebra Letters, To apper, 2017.
- [4] A.T. Hameed and B.N. Abbas, Fuzzy AB-ideals of AB-algebra, To apper, 2017.
- [5] A.T. Hameed, Fuzzy ideals of some algebras, PH. Sc. Thesis, Ain Shams University, Faculty of Sciences, Egypt, 2015.
- [6] P. Bhattacharye and N.P. Mukheriee, Fuzzy relation and fuzzy group in form, Sci, 36(1985), 267-282.
- [7] S.M. Mostafa, A.T. Hameed and A.H. Abed, Fuzzy KUS-ideals of KUSalgebra, Basra, Journal of Science (A), 34, 2 (2016), 73-84.
- [8] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, On KUS-algebra, 7, 3 (2013), 131-144.
- [9] W.A. Dudek, A new characterization of ideals in BCC-algebras, Novi Sad J. Math., 29(1999),139 – 145.
- [10] W.A. Dudek, and J. Thomys, On some generalizations of BCCalgebras, Intern. J. Computer Math., 89(2012), 1596-1606.
- [11] W.A. Dudek, On BCC-algebras, Logique et Analyse ,129-131(1991), 103-111.

بعض خصائص المثاليات الضبابية الى الجبر -AB

أريج توفيق حميد بنين نجاح عباس

جامعة الكوفة، كلية التربية للبنات، قسم الرياضيات

المستخلص:

و كذلك بر هنا بعض الخصائص والنظريات ذات الصلة بالموضوع -ABفي هذا البحث قدمنا مفهوم المثالي الضبابي الى الجبر وقدمنا الخصائص والنظريات التي توضح المفهومين -ABوكذلك درسنا العلاقات الضبابية واشتقاقات المثاليات الضبابية الى الجبر -ABمما دفعنا الى دراسة الضرب الديكارتي الى اشتقاقات المثاليات الضبابية الى الجبر