Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 8 - 14 Abdul Rahman .S/Raad .A/Mustafa. I

On second-order differential subordination and superordination of analytic functions involving the Komatu integral operator

Available online : 20 /1/2018

DOI: 10.29304/jqcm.2018.10.1.334

Abstract

In the present paper by using properties of the Komatu integral operator, we derive some properties of subordinations and superordinations associated with the Hadamard product concept.

Key words: Differential subordination, Differential superordination, Univalent function, Convex function, Komatu integral operator, Hadamard product.

Mathematics Subject Classification: 30C45, 30A10, 30C80.

1. Introduction and Definitions

Let $U = \{z \in C : |z| < 1\}$ be an open unit disc in C (complex plane) and $\overline{U} = \{z \in C : |z| \le$ 1 .

Let H(U) be the class of analytic functions in U and let H[a, k] be the subclass of H(U) of the form

$$
f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots,
$$

where $a \in C$ and $n \in N$ with $H_0 \equiv H[0, 1]$ and $H \equiv H[1, 1]$. Let A_p be the class of all analytic functions of the form

$$
f(z) = zp + \sum_{n=p+1}^{\infty} a_n z^n , (z \in U)
$$

(1.1)

in the open unit disk U. For functions $f \in A_p$ given by equation (1.1) and $g \in A_p$ defined by

$$
g(z) = zp + \sum_{n=p+1}^{\infty} b_n z^n \qquad , \qquad (z \in U)
$$

The Hadamard product(convolution) of f and g is defined by

$$
(f * g)(z) = zp + \sum_{n=p+1}^{\infty} a_n b_n z^n = (g * f)(z).
$$

Let f and F be members of H(U).The function f is said to be subordinate to a function F or F is said to be superordinate to f, if there exists a Schwarz function w analytic in U, with $w(0) = 0$ and $|w(z)| < 1$, $(z \in U)$, such that $f(z) = F(w(z)).$

We denote this subordination by

$$
f(z) < F(z)
$$
 or $f < F$.

Furthermore, if the function F is univalent in U, then we have the following equivalence [6, 12]

 $f(z) \le F(z) \Leftrightarrow f(0) = F(0)$ and $f(U) \subset F(U)$.

The method of differential subordinations (also known as the admissible functions method) was first introduced by Miller and Mocanu in 1978 [3] and the theory started to develop in 1981 [4]. For more details see [5].

Let Ω and Δ be sets in C, let $\psi : C^3 \times U \to C$ and h be univalent in U. If p is analytic in U with $p(0) = a$ with generalizations of implication

$$
\{\psi(p(z), zp'(z), zp''(z); z)\} \subset \Omega \implies p(U) \subset \Delta,
$$

with satisfies the second-order differential subordination

 ψ (p(z), zp' (z), zp"(z); z) < h(z), (1.2)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solution of the differential subordination or more simply dominant, if $p \prec q$ for all p satisfying (1.2). A dominant \tilde{q} satisfying \tilde{q} < q for all dominants (1.2) is said to be the best dominant of (1.2). And if p and Ψ($p(z)$, zp' (z), zp"(z); z) are univalent in U with satisfies the secondorder differential subordination

 $h(z) \prec \psi$ ($p(z)$, zp' (z), zp"(z); z), (1.3)

then p is called a solution of the differential superordination. An analytic function q is called a subordinant of the solutions of the differential superordination or more simply dominant, if $q \lt p$ for all p satisfying (1.3). A univalent subordinant \tilde{q} that satisfies q $\prec \tilde{q}$ for all subordinants $q \text{ of } (1.3)$ is said to be the best subordinant.

by using (1.3) we get

$$
\Omega \subset \{\psi(p(z), z p'(z), z p''(z); z)\}.
$$

For functions f and $g \in A(p)$, The Komatu integral operator $D_{m,p}^{\lambda}:A(p) \rightarrow A(p)$ $(\lambda \geq 0, m \in N \cup \{0\} \text{ and } N = \{1, 2, 3, \dots \})$ defined as follows:[10].

$$
D_{m,p}^{\lambda} (f * g)(z) =
$$

$$
\frac{m^{\lambda}}{\Gamma(\lambda)} \int_0^1 t^{m-2} \left(\log \frac{1}{t} \right)^{\lambda-1} (f * g)(z) (tz) dt,
$$

(1.4)

where the symbol Γ stands for the gamma function.

Thus, we get

$$
D_{m,p}^{\lambda}(\mathbf{f} * \mathbf{g})(\mathbf{z}) =
$$

\n
$$
z^{p} + \sum_{n=p+1}^{\infty} \left(\frac{m}{m+n-1}\right)^{\lambda} a_{n} b_{n} z^{n}.
$$

\n(1.5)

For λ , $\alpha \geq 0$, we obtain

$$
D_{m,p}^{\lambda}(D_m^{\alpha}(f * g)(z)) = D_{m,p}^{\lambda+\alpha}(f * g)(z) .
$$

From (1.5) we have

$$
\frac{z}{p} \left(D_{m,p}^{\lambda}(f * g)(z) \right)' = m D_{m,p}^{\lambda+1}(f * g)(z) - (m-1) D_{m,p}^{\lambda}(f * g)(z).
$$
\n(1.6)

The operator $D_m^{\lambda}(f * g)(z)$ is related to the transformation of the multiplier studied by Flett [8] Several interesting proposals were examined by the operator D_m^{λ} have been studied by Jung et al. [9] and Liu [11].

In order to prove our main results , we need the following definitions and lemmas.

Definition 1.1. ([13]) We denote by Q the set of functions q that are analytic and injective on $\overline{U}/E(a)$, where

$$
E(q) = \{x \in \partial U; \lim_{Z \to x} q(z) = \infty\},\
$$

and are such that $q'(x) \neq 0$ for $x \in \partial U/E(q)$. The subclass of Q for which $q(0) = a$ is denoted by $Q(a)$.

Definition 1.2. ([13]) Let Ω be a set in C, q(z) ∈ Q and n be a positive integer. The class of admissible functions $\Psi_n[\Omega, q]$ consists of those functions ψ : $C^3 \times U \rightarrow C$ that satisfy the admissibility condition ψ (r, s, t; z) $\notin \Omega$,

whenever $r = q(x)$, $s = yxq(x)$,

$$
\Re e\left\{1+\frac{t}{s}\right\} \ge y\Re e\left\{1+\frac{xq''(x)}{q'(x)}\right\},\
$$

where $z \in U$, $x \in \partial U / E(q)$ and $y \ge n$.

we get $\Psi_1[\Omega, q] = \Psi[\Omega, q]$.

In particular, when $q(z) = M \frac{M}{N}$ $\frac{m_2 + a}{M + \bar{\alpha} z}$, with $M > 0$ and $|a| < M$, then $q(U) = U_M = \{w : |w| <$ M }, $q(0) = a$, $E(q) = \emptyset$ and $q \in Q$. In this case, we set $\Psi_n[\Omega, M, a] = \Psi[\Omega, q]$, and in the special case when $\Omega = U_M$, the class is simply denoted by $\Psi_n[M, \alpha]$.

Definition 1.3. ([14]) Let Ω be a set in C and q \in H[a,n] with $q'(z) \neq 0$. The class of admissible functions $\Psi'[\Omega, q]$ consist of this functions $\psi : C^3 \times U \to C$ that satisfy the admissibility condition

$$
\psi(r,s,t;x) \in \Omega
$$

whenever $r = q(z)$, $s = \frac{zq'(z)}{z}$ $\frac{z}{j}$ for $z \in U$ and

$$
\Re e\left\{1+\frac{t}{s}\right\} \leq \frac{1}{j}\Re e\left\{1+\frac{zq^{\prime\prime}(z)}{q^{\prime}(z)}\right\},\
$$

for $z \in U$, $x \in \partial U$ and $j \ge n \ge 1$. We write $\Psi_1[\Omega, q] = \Psi[\Omega, q].$

Lemma 1.4. ([13]) Let $\psi \in \Psi_n[\Omega, q]$ with q(0) = a. If the analytic function

$$
p(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots,
$$

 $(z \in U)$ satisfies the following inclusion relationship $\psi(p(z), zp'(z), zp''(z); z) \in \Omega$,

then

 $p(z) \prec q(z)$ (z $\in U$). **Lemma 1.5.** ([14]) Let $\psi \in \Psi_n[\Omega, q]$ with q(0) $=$ a . If $p \in Q(a)$ and $\psi(p(z), zp'(z), zp''(z))$; z is univalent in U, then

 $\Omega \subset \psi(p(z), zp'(z), zp'(z))$ implies

$$
q(z) < p(z).
$$

In the present work, we get some results of differential subordination and superordination of Oros [15], [16] , we shall the study of the class of admissible functions involving the Komatu integral operator $D_{m,n}^{\lambda}(f * g)(z)$ de fined by (1.5) . We remark in passing that some interesting developments on differential subordination and superordination for various operators in connection with the Komatu integral operator were obtained by Ali *et al.* [1],[2] and Cho *et al.* [7].

2. Differential subordination results

Definition 2.1. Let Ω be a set in C,q \in Q₀ ∩ H[0,p]. The class of admissible functions Φ_n [Ω , q] consists of those functions $\phi : C^3$ $U \rightarrow C$ that satisfy the admissibility condition

$$
\phi(u,v,w;z;x) \notin \Omega,
$$

Whenever

$$
u = q(x),
$$

$$
v = \frac{yxq'(x) + p(m-1)q(x)}{pm}
$$

and

$$
\Re e \left\{ \frac{m^2 p^2 w - p^2 (m-1)^2 u}{p c v - p (m-1) u} - 2 p (m-1) \right\}
$$

$$
\geq y \Re e \left\{ 1 + \frac{x q''(x)}{q'(x)} \right\},
$$

for $z \in U$, $x \in \partial U / E(q)$, $\lambda \ge 1$ and $y \ge p$.

Theorem 2.2. Let $\phi \in \Phi_n[\Omega, q]$. If $f \in A$ satisfies

$$
\left\{\phi\begin{pmatrix}D_{m,p}^{\lambda}(\mathbf{f} * \mathbf{g})(\mathbf{z}), D_{m,p}^{\lambda+1}(\mathbf{f} * \mathbf{g})(\mathbf{z}), \\ D_{m,p}^{\lambda+2}(\mathbf{f} * \mathbf{g})(\mathbf{z}); \mathbf{z}\end{pmatrix}; \mathbf{z} \in
$$

$$
U\right\} \subset \Omega, \tag{2.1}
$$

then

$$
D_{m,p}^{\lambda}(f * g)(z) \prec q(z).
$$

Proof. Let $q(z) \in U$ define by

$$
g(z) = D_{m,p}^{\lambda}(f * g)(z).
$$
\n(2.2)

In view of relation (1.6) with from (2.2) , we have

$$
D_{m,p}^{\lambda+1}(\mathbf{f} * \mathbf{g})(z) = \frac{z g'(z) + p(m-1)g(z)}{pm}.
$$
\n(2.3)

Based on that

$$
D_{m,p}^{\lambda+2}(\mathbf{f} * \mathbf{g})(\mathbf{z}) =
$$

$$
\frac{z^2 g''(z) + 2p(m-1)z g'(z) + p^2(m-1)^2 g(z)}{p^2 m^2}.
$$
 (2.4)

Define the transformation from C^3 to C by

$$
u(r,s,t) = r, v(r,s,t) = \frac{s + p(m-1)r}{pm}, w(r,s,t) = \frac{t + 2p(m-1)s + p^2(m-1)^2r}{p^2m^2}.
$$
 (2.5)

Let

$$
\psi(r, s, t; z) = \phi(u, v, w; z)
$$

= $\phi(r, \frac{s + p(m-1)r}{pm}, \frac{t + 2p(m-1)s + p^2(m-1)^2r}{p^2m^2}; z)$. (2.6)

The proof shall get use of Lemma 1.4 .Using equations (2.2) , (2.3) amd (2.4) , from (2.6) , we have

$$
\psi(g(z), zg'(z), z^2 g''(z); z) \n= \phi(D_{m,p}^{\lambda}(f * g)(z), D_{m,p}^{\lambda+1}(f * g)(z), D_{m,p}^{\lambda+2}(f * g)(z); z).
$$
\n(2.7)

Therefore, (2.1) we have

$$
\psi(g(z), zg'(z), z^2g''(z); z) \in \Omega. \tag{2.8}
$$

See that

$$
1 + \frac{t}{s} = \frac{m^2 p^2 w - p^2 (m - 1)^2 u}{p c v - p (m - 1) u}
$$

- 2p (m - 1),

and since the admissibility condition for $\psi \in \Psi_n[\Omega, q]$. By Lemma 1.4,

$$
g(z) \prec q(z), \text{ or } D_{m,p}^{\lambda}(f * g)(z) \prec q(z).
$$

Theorem 2.3. Let $\phi \in \Phi_n[h, q]$ with $q(0) = 1$. If $f \in A(p)$ satisfies

$$
\phi \left(D_{m,p}^{\lambda}(f * g)(z), D_{m,p}^{\lambda+1}(f * g)(z), \right) \prec h(z) D_{m,p}^{\lambda+2}(f * g)(z) ; z \qquad (2.9)
$$

then

$$
D_{m,p}^{\lambda}(\mathbf{f} * \mathbf{g})(\mathbf{z}) \prec \mathbf{q}(\mathbf{z}) \cdot (\mathbf{z} \in U)
$$

The next is an extension of Theorem 2.2 to the case where the behavior of $q(z)$ on ∂U is unknown.

Corollary 2.4. $\Omega \in \mathcal{C}$ and let $q(z)$ be univalent in U with q(0) =1. Let $\phi \in \Phi_n[\Omega, q_\rho]$ for some $\rho \in (0,1)$, where $q_{\rho}(z) = q(\rho z)$. If $f(z) \in A(P)$ and

$$
\phi\left(\begin{matrix}D_{m,p}^{\lambda}(\mathbf{f}*g)(z), D_{m,p}^{\lambda+1}(\mathbf{f}*g)(z), \\ D_{m,p}^{\lambda+2}(\mathbf{f}*g)(z); z\end{matrix}\right) \in \Omega,
$$

then

$$
D_{m,p}^{\lambda}(f * g)(z) < q(z)
$$

Proof. By Theorem 2.2 we have $D_{m,p}^{\lambda}(f *$ $g(z) \lt q(\rho z)$. The result now deduced from the following subordination relationship $q_o(z) \prec q($

Theorem 2.5. Let $h(z)$ and $q(z)$ be univalent in U, with $q(0) = 1$ and set $q_0(z) = q(\rho z)$ and $h_o(z) = h(\rho z)$. Let $\phi : C^3 \times U \to C$ satisfy one of the following conditions: (1) $\phi \in \Phi_n[h, q_\rho]$, for some $\rho \in (0,1)$, or (2) there exists $\rho_0 \in (0,1)$ such that $\phi \in$ $\Phi_n[h_o, q_o]$, for all $\rho \in (\rho_0, 1)$. If $f(z) \in A$ satisfy (2.9), then

$$
D_{m,p}^{\lambda}(f * g)(z) \prec q(z).
$$

Proof. Case (1). By applying Theorem 2.2, we get $D_{m,n}^{\lambda}(f * g)(z) < q_0(z)$, since $q_0(z)$ $q(z)$, we deduce $D_{m,n}^{\lambda}(f * g)(z) < q($

Case (2). If we let $g_0(z) = D_{m,n}^{\lambda}(f * g)_0$ $= D_{m,n}^{\lambda} (f * g)(\rho z) = g(\rho z),$

then

$$
\phi\big(g_{\rho}(z), zg'_{\rho}(z), z^2 g''_{\rho}(z); \rho z\big) =
$$

$$
\phi(g(\rho z), zg'(\rho z), z^2 g''(\rho z); \rho z) \in h_o(U).
$$

By using Theorem 2.2 and the comment associated with (2.8) where $w(z) = \rho z$ is any mapping U in to U, we get

 $g_{\rho}(z) < q_{\rho}(z)$ for $\rho \in (\rho_0, 1)$. By letting $\rho \to 1^-$, we obtain $g(z) < q$

Hence,

$$
D_{m,p}^{\lambda}(f * g)(z) \prec q(z).
$$

Now, the next result we need the best dominant of the differential subordination (2.9).

Theorem 2.6. Let $h(z)$ be univalent in U and let $\phi : C^3 \times U \to C$. Suppose that the differential equation

$$
\phi\left(\frac{q(z), \frac{zq'(z)+p(m-1)q(z)}{pm}}{\frac{z^2q''(z)+2p(m-1)zq'(z)+p^2(m-1)^2q(z)}{p^2m^2}}; z\right) = h(z).
$$
\n(2.10)

has a solution $q(z)$ with $q(0) = 0$ and satisfy one of the following conditions:

(1) $q(z) \in Q_0$ and $\phi \in \Phi_n[h, q]$. (2) $q(z)$ is univalent in U and $\phi \in$

$$
\Phi_n[h,q_\rho]
$$
 for some $\rho \in (0,1)$, or

(3) $q(z)$ is univalent in U and there exists $\rho_0 \in$ (0,1) such that $\in \Phi_n[h_\rho, q_\rho]$ for all

$$
\rho\in(\rho_0,1).
$$

If $f(z) \in A(p)$ satisfies (2.9), then $D_{m,n}^{\lambda}(f \ast$ $g(z) \prec q(z)$ and $q(z)$ is the best dominant.

Proof. By applying Theorem 2.3 and 2,5, we deduce that $q(z)$ is a dominant of (2.9) . Since $q(z)$ satisfies (2.10), it is a solution of (2.9) and therefore q(z) will be dominated by all dominants of (2.9).

Hence, $q(z)$ is the best dominantof (2.9) . In the particular case $q(z) = Mz$, $M > 0$, and in view of the Definition 1.2, the class of admissible function $\Phi_n[\Omega, q]$ denoted by $\Phi_n[\Omega, M]$ is described below.

Definition 2.7. Let Ω be a set in C, $Re\{m\}$ > 0, $\lambda \ge 1$ and $M > 0$. The class of admissible functions $\Phi_n[\Omega, M]$ consists of those functions $\phi: C^3 \times U \to C$ that satisfy the admissibility condition:

$$
\phi\left(Me^{i\theta}, \frac{y+p(m-1)Me^{i\theta}}{pm}, \frac{L+[2p(m-1)y+p^2(m-1)^2Me^{i\theta}]}{p^2m^2}; z\right) \notin \Omega, \tag{2.11}
$$

whenever $\theta \in R$, $R(Le^{i\theta}) \geq$ 1 and $z \in U$.

Corollary 2.8. Let $\phi \in \Phi_n[\Omega, M]$. If $f(z) \in$ $A(P)$ satisfy the following inclusion relationship

$$
\phi\left(\begin{matrix}D_{m,p}^{\lambda}(f*g)(z), D_{m,p}^{\lambda+1}(f*g)(z), \\ D_{m,p}^{\lambda+2}(f*g)(z); z\end{matrix}\right) \in \Omega,
$$

then

$$
D_{m,p}^{\lambda}(\mathbf{f} * \mathbf{g})(\mathbf{z}) < M\mathbf{z}.
$$

Now, in the special case $\Omega = q(U)$ = $\{w : |w| < M\}$, the class $\Phi_n[\Omega, M]$ is denoted by $\Phi_n[M]$.

Corollary 2.9. Let $\phi \in \Phi_n[M]$. If $f(z) \in$ $A(P)$ satisfies

$$
\left|\phi\left(\begin{matrix}D_{m,p}^{\lambda}(f*g)(z), D_{m,p}^{\lambda+1}(f*g)(z),\\ D_{m,p}^{\lambda+2}(f*g)(z); z\end{matrix}\right)\right| < M,
$$

then

 $|D_{m,n}^{\lambda}(f * g)(z)| < M$. **Theorem 3.2.** Let $\phi \in \Phi_n[\Omega, q]$. If $f(z) \in$ $A(P)$, $D_{m,p}^{\lambda}(f * g)(z) \in Q_0$ and

$$
\phi\left(\frac{D_{m,p}^{\lambda}(f * g)(z), D_{m,p}^{\lambda+1}(f * g)(z)}{D_{m,p}^{\lambda+2}(f * g)(z); z}\right)
$$
 is
univalent in U, then

univalent in U, then

$$
\Omega \subset \phi \bigg(\frac{D_{m,p}^{\lambda}(f * g)(z), D_{m,p}^{\lambda+1}(f * g)(z),}{D_{m,p}^{\lambda+2}(f * g)(z); z} \bigg), \tag{3.1}
$$

implies

$$
q(z) < D_{m,p}^{\lambda}(f * g)(z). \quad (z \in U)
$$

Proof. By using (2.7) and (3.1) we get

$$
\Omega \subset \psi(g(z), zg'(z), z^2g''(z); z), (z \in U)
$$

From (2.5), we note that the admissibility condition for $\phi \in \Phi'_n[\Omega, q]$ is equivalent to the admissibility condition for ψ as given in Definition 1.3. therefore, and by Lemma 1.5 we get

$$
q(z) < g(z) \text{ or } q(z) < D_{m,p}^{\lambda}(f * g)(z).
$$
\n
$$
(z \in U)
$$

Theorem 3.3. Let $h(z)$ is analytic on U and $\phi \in \Phi'_n[h, q]$. If $f(z) \in A$ $D_{m,n}^{\lambda}(f * g)(z) \in Q_0$ and $\phi : C^3$ with

$$
\phi\left(\frac{D_{m,p}^{\lambda}(f*g)(z), D_{m,p}^{\lambda+1}(f*g)(z),}{D_{m,p}^{\lambda+2}(f*g)(z); z}\right)
$$
 is

univalent

in U, then

$$
h(z) < \phi \begin{pmatrix} D_{m,p}^{\lambda}(f * g)(z), D_{m,p}^{\lambda+1}(f * g)(z), \\ D_{m,p}^{\lambda+2}(f * g)(z); z \end{pmatrix},
$$
\n(3.2)

implies

$$
q(z) < D_{m,p}^{\lambda}(f * g)(z).
$$

Proof. By using relationship (3,2) we obtain

$$
h(z) = \Omega
$$

\n
$$
\subset \phi \left(D_{m,p}^{\lambda}(f * g)(z), D_{m,p}^{\lambda+2}(f * g)(z); z \right),
$$

and from Theorem 3,2, we have

$$
q(z) < D_{m,p}^{\lambda}(f * g)(z).
$$

Collect Theorem 2.3 and 3.3, we get the following sandwich type Theorem.

Theorem 3.4. Let $h_1(z)$ and $q_1(z)$ be analytic functions in U, $h_2(z)$ be univalent function in U, $q_2(z) \in Q_0$ with $q_1(0) = q_2(0) = 0$ and $\phi \in \Phi_n[h_2]$ \bigcap $\varphi'_{n}[h_{1}, q_{1}].$ If $f(z) \in$ $A(P)$, $\lambda_{m,n}$ (f * g)(z) $\in Q_0 \cap H[0, P]$ and $\phi(D_{m,n}^{\lambda}(f * g)(z), D_{m,n}^{\lambda+1}(f * g)(z), D_{m,n}^{\lambda+2}(f * g)(z))$

 $g(x)$; z) is univalent in U,

then

implies that

$$
h_1(z) < \phi \left(\begin{matrix} D_{m,p}^{\lambda}(f*g)(z), D_{m,p}^{\lambda+1}(f*g)(z), \\ D_{m,p}^{\lambda+2}(f*g)(z); z \end{matrix} \right)
$$

 $\langle h_2($

$$
q_1(z) < D_{m,p}^\lambda(f * g)(z) < q_2(z).
$$

References

[1] R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays. Math. Soc., 31, (2008), 193-207.

[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, On subordination and superordination of the multiplier transformation of meromorphic functions, Bull. Malays. Math. Soc., 33, (2010), 311-324. [3] S. Altınkaya and S. Yalcın, Coefficient estimates for two new subclasses of biunivalent functions with respect to symmetric points, J. Funct. Spaces, 2015, (2015), 5 pages.

[4] S. Altınkaya and S. Yalcın, General properties of multivalent concave functions involving linear operator of carlson-shaffer type, Comptes rendus de lacademie bulgare des Sciences, 69, (2016), 1533–1540.

[5] M. K. Aouf and A. O. Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta. Univ. Apulensis Math. Inform., 21, (2010), 7–20.

[6] T. Bulboaca, Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ. Cluj-Napoca, (2005).

[7] N. E. Cho, O. S. Kwon and H. M. Srivastava, Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu-Srivastava operator, Integral Transforms Spec. Funct., 21, (2010), 589-601.

[8] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38, (1972), 746-765.

[9] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain oneparameter families of integral operators, J. Math. Anal. Appl., 176, (1993), 138-147.

[10] Y. Komatu, Distortion Theorems in Relation to Linear Integral Operators, Kluwer Academic, Dordrecht, (1996).

[11] J. L. Liu, A linear operator and strongly starlike functions, J. Math. Soc. Jpn., 54, (2002), 975-981.

[12] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functins, Michigan Math. J., 28, (1981), 157- 171.

[13] S.S. Miller and P.T. Mocanu, Differential subordination. Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel. 2000. [14] S.S. Miller and P.T. Mocanu, Subordination of differential superordinations, complex varibals Theory Appl., 10, (2003),

815-826.

[15] G. I. Oros and G. Oros, Strong differential subordination, Turk. J. Math., 33, (2009), 249-257.

[16] G. I. Oros, Strong differential superordination. Acta. Univ. Apulensis, Mat. Inform, 19, (2009), 101-106.

حىل انحابعية وفىق انحابعية انحفاضهية يٍ انذرجة انثاَية بأسحخذاو انًؤثزانحكايم كىياجى

 عبذ انزحًٍ سهًاٌ جًعه رعذ عىاد حًيذ يصطفى ابزاهيى حًيذ

 كهية انحزبية نهعهىو انصزفة كهية انحزبية نهعهىو انصزفة

جامعة الآنبا*ر*
كلية التربية <mark>للعل</mark>وم الصرفة جمان جكلية التربية للعلوم ال **لسى انزياضيات لسى انزياضيات**

المستخلص :

في هذا انبحث بأسحخذاو خصائض يؤثز كىياجى اسحطعُا اٌ َشحك بعض خىاص انحابعية انحفاضهية وفىق انحابعية بالأعتماد على مفهوم ضرب هادمرد.