Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018
ISSN (Print): 2074 — 0204 ISSN (Online): 2521 — 3504

Comp Page 88 - 99 Muthana .Y

Design and Implementation of Efficient and High-Speed Multiplication
Circuits Based on Vedic Algorithms

Muthana Yaseen Nawaf Isawi

University of Kirkuk
Department of Computer Science, College of Science
Muthana2085@yahoo.com
Recived : 13\11\2017 Revised : 18\12\2017 Accepted : 21\12\2017

Available online : 26/1/2018

DOI:10.29304/jgcm.2018.10.1.354

Abstract. The increasing speed of computer processors with each passing day has required the design of
arithmetic circuits to be verified as high performance. For this reason; by being observed the computer
arithmetic, it enabled faster algorithms to come out and verifications of hardware in terms of the facilities that
technology provides. The main aim of the computer arithmetic is the design of the circuits and algorithms that
will increase the speed of the numerical process. To this end, the design of arithmetic multiplication circuits with
a faster and higher bit length is presented through the efficient bit reduction method in this paper. The developed
fast and efficient algorithms for arithmetic multiplication process by using the efficient bit reduction method
have been observed in this work. By making changes in some multiplication methods that are based on Vedic
math’s, the higher bit length circuits of multiplication circuits in the literature which are 4 bits have been
developed by using some basic properties of multiplication like decomposition and bit shifting. Analysis of
arithmetic circuits is implemented by verifying functionally with VHDL simulations, getting output signal
waveform and measurements of delay time. All the circuits of hardware that are observed have been described
via VHDL and the performances of multiplication circuits that are synthesized have been presented via FPGA.

Key Words. Vedic algorithms, bit reduction, digital multiplier, VHDL, FPGA.

attention in recent years [3]. To minimize power

1.Introduction. To speak of today's engineering consumption and delay in digital systems are
world, multiplication-based operations are some of required optimization at every stage of the design.
the most commonly used functions and have This optimization means choosing the best
recently been wused in many Digital Signal algorithm for the situation, which means the highest
Processing (DSP) applications such as Convolution, level of design, the topology and finally the
Fast Fourier Transform, Filtering and in the technology used in the implementation of the
Arithmetic Logic Unit (ALU) of microprocessors digital circuits. Based on these components,
[1, 2]. The most commonly used process is the different types of available multiplication circuits
multiplication process speed and designing the low- are designed [4, 5].

power multiplication circuit has been the focus of

AA

mailto:Muthana2085@yahoo.com

Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.10 No.1 Year 2018

ISSN (Online): 2521 — 3504

The use of multiplication methods has been
documented in the civilizations of Egypt, Babylon,
India, and China [3]. In the early days of the advent
of computers, multiplication was generally applied
through a series of operations (addition, subtraction,
and shifting). There are many algorithms proposed
in the literature to perform the multiplication
process, each offering different advantages and
performing differently in terms of delay, circuit
complexity, chip area and power consumption [5,
6]. The structure of the multipliers is generally
divided into three categories. The first is a serial
multiplier that focuses on the hardware and uses as
minimum chips as possible. Second is parallel
multipliers (tree and array) that perform
mathematical operations at high speed. But the
disadvantage of these multipliers is that they use a
larger chip area. The third is the serial-parallel
multiplier, which stands as a good alternative
between the serial multiplier that takes a long time
and the parallel multiplier that takes a large chip
area [1, 5]. This paper presents a high-speed
efficient multiplier implementation based on Vedic
multiplication algorithms (Urdhva Tiryakbhyam
Sutra and Nikhilam Sutra). In addition, various
algorithms for arithmetic multiplication using

efficient bit reduction method have been
investigated. The commonly used Vedic
multiplication algorithm and classical Booth

multiplication algorithm have been chosen as
arithmetic multiplication operations. However, in
order to understand the working logic of the
algorithms, the basic principles of multiplication
algorithms, hardware implementation circuits and
performance properties are given. However, the
proposed Vedic algorithm we have developed based
on Vedic mathematics is presented in detail.

2. Vedic Algorithms and Booth Multiplier

2.1 Vedic Mathematics: Vedic mathematics is part
of the four Veda “wisdom books”. It makes
explanations about some mathematical terms such
as geometry, trigonometry, arithmetic, quadratic
equations, factorization and even calculus [7].

A4

Muthana .Y

Vedic mathematics is basically composed of 16
Sutra, which deals with the branches of
mathematics such as arithmetic, algebra, geometry.

These methods can be applied directly to
geometry, trigonometry, differential, integral,
conics, and applied mathematics of various types.
Since Vedic formulas (Sutra) are claimed to be
based on the natural principles working conditions
of the human mind, they offer a very interesting
field and some efficient algorithms that can be
applied to various branches of engineering such as
programming and digital signal processing [7, 8].

2.2 Urdhva Tiryakbhyam Sutra: The multiplier is
based on the Urdhva Tiryakbhyam algorithm of the
ancient Indian Vedic mathematics. Urdhva
Tiryakbhyam Sutra is a general form that can be
applied to all cases of multiplication such as binary,
hex, decimal and octal. The word means "Vertical
& Crosswise" [7]. It is based on a new idea that
helps to produce all the partial products and then to
make the simultaneous additions of these partial
results. Thus, the partial products and the
parallelism in the production of their summaries
can be achieved using Urdhava Tiryakbhyam. Since
the partial results and their summations are
calculated in parallel, the multiplier is independent
of the clock frequency of the processor. On this
count, the multiplier will need the same time to
calculate the result, so it will be independent of the
clock frequency [7, 9].
The main advantage is the reduction of the need for
microprocessors to manage increasingly rising
clock times. While a higher clock frequency usually
results in an increased operating power, the
disadvantage is that it increases the power
dissipation which causes the device management to
increase in temperature. The advantage of the
multiplier is that as the number of bits increases, the
gate delay and area increase more slowly than the
other multipliers. Therefore, it is efficient in terms
of time, space and power [8, 10].

Now we will see how this algorithm is used with
binary numbers. An example (1101 * 1010) is
given in Table 1.

Journal of AL-Qadisiyah for computer science and mathematics
ISSN (Online): 2521 — 3504

ISSN (Print): 2074 — 0204

Vol.10 No.1 Year 2018

Muthana .Y
Table 1: Using Urdhva Tiryakbham for binary numbers
X =1101,Y =1010 METHODOLOGY
X3 X2 X1 Xg Multiplicand 1101 -
Y3 Y2 Y1 Yo Multiplier 1010
11Q§
Pl
P6 P5 P4 P3 P2 P1 PO 1010
. 1101
Po = XoYo,) P2
1010
C1P1 = X1Yo + XoY1, 1101
> P
CoP2 = C1+ XoYo + X1Y1 + XoYo, _ 1010
1101
C3P3 = C2 + X3Yo t Xoy1 + X1Y2 + XoY3, K P4
iolo
CaPsa = C3+ X3y1 + XoY2 + X1Y3,/ 1101
X Ps
CsPs = C4 + X3Y2 + XoY3, _1010
1101
CePs = Cs+ X3Y3 P6
1010

2.3 Nikhilam Sutra: It means "all from 9 and last
from 10". Basically, starting from the leftmost
digits, each number is subtracted from 9 and the last
number is subtracted from 10 [2, 7]. The Sutra
algorithm is based on two different methods of
multiplying numbers. The first is to find the nearest
base of two numbers in multiplication., and the
second is the subtraction method. Although the
Nikhilam Sutra is applicable to all multiplication
operations, it is essentially effective when the
numbers are large and the complexity of the
multiplication process is less [11]. We will illustrate
Sutra by taking the multiplication of two decimal
numbers (89 * 92) is show in Figure 1.

89 x 92
Nearest base = 100

89 (100 - 89)
92 (100 -92)

89 11
92 >< 08

Moultiplication
81 88 Result

Common
Difference

Result = 89x92 = 8188

Figure 1: Multiplication using Nikhilam Sutra

2.4 Proposed Vedic Algorithm: In the binary
arithmetic, a new reduced bit multiplication
algorithm has proposed by modified the Nikhilam
Sutra algorithm using some basic features such as
decomposition and bit shifting. Based on the
proposed algorithm, a 4x4-bit multiplication
operation can be reduced to a single 2x2-bit
multiplication operation. As a result, this algorithm
reduces the delay for carry propagation more than
any 4x4 bit multiplication. In the 4-bit proposed
multiplication algorithm [4], it can be extended for
larger numbers with some changes depending on
the steps in the algorithm. The algorithm of
proposed Vedic multiplier for the multiplication of
two 8-bit numbers is given below.

(a) Initialization
Initialize: flagl = flag2 = flag3 = flag4 = flag5 =

flagb6 = flag7 = flag8 = flag9 = flag1l0 = flagll =
flagl2 = flagl3 =0

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018
ISSN (Online): 2521 — 3504

ISSN (Print): 2074 — 0204

(b) Preprocessing

Input 8-bit binary numbers a and b
nl = Number of least significant consecutive zeros
ina
n2 = Number of least significant consecutive zeros
inb
n=nl+n2
a'= Right shift a by nl
b'= Right shift b by n2
(c) Processing
1.IF (@ >128 & b' > 128) THEN
a'=255-a"; b=255-b"; flagl=1;
2.IF (@' > 64 & b' > 128) THEN
b'=b'-128; flag2=1;
[IF (b'> 64 & a' > 128) THEN a'=a'-128;]
3.IF (3> 64 & b' > 64) THEN
a'=128-a'; b=128-b’; flag3=1;
4.1F (a'> 32 & b' > 64) THEN
b'=b'-64; flag4=1;
[IF (b' > 32 & a' > 64) THEN a'=a'-64;]
5.1F (8 > 32 & b' > 32) THEN
a'=64-a'; b'=64-b"; flag5=1,
6. IF (@' > 16 & b' > 32) THEN
b'=b'-32; flag6=1;
[IF (b'> 16 &a' > 32) THEN a'=a'-32;]
7.1F (@ > 16 & b' > 16) THEN
a'=32-a’; b=32-b"; flag7=1,
8. IF (a'> 08 & b' > 16) THEN
b'=h'-16; flag8=1;
[IF (b'>08 & a' > 16) THEN a'=a'-16;]
9.IF (@' > 08 &b’ > 08) THEN
a'=16-a"; b=16-b"; flag9=1;
10. IF (a' > 04 & b' > 08) THEN
b'=b'-08; flag10=1;
[IF (b'>04 & a' >08) THEN a'=a'-08;]
11. IF (@' > 04 & b' > 04) THEN
a'=08-a"; b=08-b'"; flagl1=1;

q)

Muthana .Y

12. IF (a' > 02 & b' > 04) THEN
b'=b'-04; flag12=1,;
[IF (b'>02 & a' > 04) THEN a'=a'-04;]
13.1F (a'> 02 & b' > 02) THEN
a'=04-a"; b=04-b"; flag13=1,

14. IF (2'=01) THEN p'=b' | IF (b'=01) THEN

p=a’
GOTO Step 16
15. Perform 4bit multiplication: p'=a"*b’;
16. IF (flag13= 1) THEN

p'= [LHS=04-(a'+b")+ Carry of
[RHS=(2 bit)p'T;

17. IF (flag12= 1) THEN p'=a'*04+(a™*b");
18. IF (flagl1= 1) THEN

p'= [LHS=08-(a'+b")+ Carry of
[RHS=(3 bit)p;

19. IF (flag10= 1) THEN p'=a"*08+(a™*b");
20. IF (flag9= 1) THEN

p'= [LHS=16-(a'+b")+ Carry of
[RHS=(4 bit)p;

21. IF (flag8= 1) THEN p'=a*16+(a"*b’);
22. IF (flag7= 1) THEN

p'= [LHS=32-(a'+b")+ Carry of
[RHS=(5 bit)p;

23. IF (flag6= 1) THEN p'=a*32+(a"*b’);

RHS] |

RHS] |

RHS] |

RHS] |

24. IF (flags= 1) THEN p'= [LHS=64-(a'+b)+

Carry of RHS] | [RHS=(6 bit)pT;
25. IF (flagd= 1) THEN p'=a*64+(a™b'");

26. IF (flag3= 1) THEN p'= [LHS=128-(a'+b")+

Carry of RHS] | [RHS=(7 bit)pT;
27. IF (flag2= 1) THEN p'=a*128+(a™b");

28. IF (flagl= 1) THEN p'= [LHS=255-(a'+b)+

Carry of RHS] | [RHS=(8 bit)pT;
29. p = Left shift p' by n bits

30. Return the product p

31. End

Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.10 No.1 Year 2018

ISSN (Online): 2521 — 3504

In the preprocessing stage, the multiplier and the
multiplied binary numbers are shifted directly to the
right to remove the least significant consecutive
zero bits. This reduces the calculation time by
reducing the number of multiplier and multiplicand
bits. The effect of the raised zero bits is combined
more efficiently by shifting the last output to the
left with the bits in the equal number.

To illustrate this multiplication table, consider the
multiplication of two binary numbers (11000000 *
11000000).

a= (1100 0000)2 = (C0)16 = (192)10
b= (1100 0000)2 = (C0)16 = (192)10

Preprocessing:

a =11 nl =6; shift ato the right by 6 bit
because the number zero is six;
b'=11 n2 = 6; shift a to the right by 6 bit

because the number zero is six;
n=nl+n2 =12

Processing:

Since number a ‘and b' is greater than (10),, step 13
is taking place.

IF (@ > 02 & b' > 02) THEN

a'=100-a b'=100-b’;
a'=0100-0011; a'=0001;
b'=0100-0011; b'=0001;
p'=a *b

p'= 0001 * 0001; p'(RHS) =0001;

IF (flagl3 = 1) THEN p'= [LHS=04-(a'+b’)+ Carry
of RHS] | [RHS=(2 bit)p'];

(a'+b") = 0001+0001 = 0010

Coof RHS=0

p'=[0100-0010+0]|[01]

p'=[10]][01]

p' = 1001 Now we will shift the final result to

the left according to n.
n=12

p = 1001 0000 0000 0000 = (36864)10

ay

Muthana .Y

2.5 Booth Multiplication Algorithm: The Booth
multiplication algorithm is a very efficient
multiplication in signed numbers. The Booth
algorithm is a method that reduces the numbers of
generated partial products [1, 3]. The Booth
algorithm is based on the fact that the multiplicative
number presented in a certain range is converted to
a higher base number and the number of digits is
reduced [12]. In the Booth algorithm, the three-bit
parts of the multiplier are scanned and the
operations corresponding to the values of these
parts are performed. This reduces the summation
time and accelerates the multiplication process [3,
12]. Table 2 shows the 4-base (3 bit scans) Booth
Recording process. The multiplier number encoded
by the Booth Recording process is formulated
below.

Zi==2Xip1 + Xi +Xi

Table 2: BOOTH-4 Recording Process

X i+1

X
X

Z;
+0A

Pl O O|Fr|[PkF|O|] O

rlo|lr|lo|lr|ol|lr]|o
+
o
>

R|lRr|R,r|R,r|oOo|lo| O

As an example, 1000011101 is taken as a
multiplier. The coding obtained by selecting 3
digits is as follows. where the start bit X_, = 0 is
taken.

2A +2A +A
10000111010

0 -A

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018
ISSN (Print): 2074 — 0204 ISSN (Online): 2521 — 3504

Muthana .Y
Multiplier Init 0 Multiplicand
—
2-but shuft
Xi+l X1 X i1 Mk

Recodmg Logic

neg | two

ADD/SUB
Control

non

Figure 2: Hardware structure of the 4-base Booth algorithm

3. The Multipliers Implementation

3.1 (8x8) bit Urdhva Tiryakbhyam Multiplier:
The 8x8 bit multiplication is generated by using
four 4x4 bit multiplier blocks. Just as in the case of
a 4x4 multiplication block, the numbers a and b are
divided into smaller pieces at n / 2 = 4 bits long.
These newly formed 4-bit pieces are inserted as
input into the 4x4 multiplier block, where again

these new pieces are divided into smaller pieces of
n/ 4 = 2 bits long and added to the 2x2
multiplication block. The result that produced from
the output of the 4x4 multiplication block is sent to
an addition tree for addition as shown in Figure 3
[6, 11].

3.2 (8x8) bit Proposed Vedic Multiplier:

The general architecture structure of the proposed
Vedic multiplication circuit for the 8-bit
multiplication is shown in Figure 4.

a7 a6 a5ad4a3a2alal
b7 b6 b5 b4.03 b2 b1 b0

a7 a6 a5a4a3a2alal
b7 b6 b5 b4 b3 b2 bl b0

a7 a6 a5 a4 a3a2al a0
b7 b6 b5 b4a'b3 b2 b1 b0

a7 a6 a5a4/a3a2alal
b7 b6 b5 b4'b3 b2 b1 bO

b[7:4] b[7:4] b[3:0] b[3:0]
’I’ + a[7:4] a[3:0] a[7:4] a[3:0]

4x4 4x4 4x4 4x4
multiply block multiply block multiply block multiply block
4 P e aral _} qo17:01
: 0000, s
{q3[7:0], 0000 } | I {l ,q2(7:0]} 10000, 7:4]]
Adder Adder [3:0]
Adder
Qi15:4] QE3:0]

Figure 3: Block Diagram of 8x8 Urdhva Multiply block

qay

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018
ISSN (Print): 2074 —0204 ISSN (Online): 2521 — 3504

Muthana .Y

- -
sS —» l«— s2
54— - l«— sl

n = = — A- - -L

10000000 U 10000000

<+

01000000 Rep P & Regl (—l— - 01000000

00100000] <{ 00100000

00010000 Regl0 \—» 110 12« Rt [{(] y2 <« 00010000

00001000 Regll 5 411 13 «—| Regd | v3 <« 00001000

00000100 Regl2 —» 112 14 «—| Regt | o <« 00000100

00000010 Regld |—» 113 B RS C | ;‘ <« 00000010

00000001 25 00000001

Regld —»1l4 16 «— Regb | o6
Regls —» 115 r7 «— Reg? _CI—__ v7
Reglé | 5 116 18 «—| Regs | v8

Left Shift a'
Circuit () E’ k2 |
Left Shift |

Circuit () k3

LHS of p*

Adder

e [2bit | 3bit 4bit | Sbit | Gbit 7bit | Sbit
8 AT %— rl6 F13 F11 9 F7 F5 F1
n E

A

a

I
k4

Figure 4: Hardware architecture of the proposed Vedic multiplier

q¢

Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.10 No.l Year 2018
ISSN (Online): 2521 — 3504

In the Figure 4 k1 represent [F1, F3, F5, F7, F9,
F11, F13, 0, 0], k2 = [22, 42, 62, 82, 102, 122, 0,
0], k3 =[21, 41, 61, 81, 101, 121, 0, 0] and k4 =
[f2, f4, 6, f8, 10, f12].

4. Performance Comparison

All multiplier algorithms are tested and simulated
by using VHDL and MAX + plus Il environment
(3s100evq100-5 configuration). And Performance
analysis is performed using the Xilinx FPGA
Spartan 3E (XC3S100E, Package VQ100, Speed -
5) device. The VHDL and MAX + plus simulations

Muthana .Y

of Urdhva, Booth and proposed Vedic
multiplication algorithms are shown in Figures 5, 6
and 7 for 8 bit operands, respectively. Here, it is
seen that arithmetic multiplication circuits are
functionally verified.

The multiplier circuits are synthesized on the FPGA
kit and their performance was obtained. As a
performance criterions, from input to output the
longest delay time and the total unit gate count
(chip area) has been taken as a criterion. The delay
here represents the delay on the FPGA kit. The
Table 3 shown below is FPGA hardware
performance of multiplication methods.

Ref. |0.0ns H:]:] Time: |814.0ns Interval: |814.0ns |
0.0ns

Name: _Value: I 100.]Dns 200.10ns SUD.IUns AOU.IOns 500.‘Dns BUO,RUns 700.10ns 800.0ns 900.‘Uns 1.C
D~ a B 10101010 10101010

= b B 01010101 01010101
o r B0011100001110010 0011100001110010

Figure 5: Timing diagram of 8x8 Urdhva multiplier
Ref [0.0ns |[€I2] Time: [861.0ns Interval: [861.0ns
0.0ns

Name: Value: 100]0ns 200.|0ns 30[],10ns AUD]Uns SDU.IDns BUU,lUns 700.(Uns BOD}Dns 90010ns 1.0
= X 801100110 01100110

= Y B 00110011 00110011

= Result | B 0001010001010010 0001010001010010

Figure 6: Timing diagram of 8x8 Booth multiplier

Ref. [130.0ns | (=I2] Time: [845.0ns Interval: |715.0ns |
L_‘130‘Dns
Name: _Value: l 100.0np 2000ns 300.0ns 4000ns 5000ns 6000ns 700.0ns 800.0ns 900.Ons 1.0
= izin 1 |
g9 clock ! T 1L T L] | [
- a B 11100111 11100111
- b B 10010010 10010010
S product |B 001000001110111110 1 001000001110111110

Figure 7: Timing diagram of

8x8 proposed Vedic multiplier

q0

Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.10 No.1 Year 2018

ISSN (Online): 2521 — 3504

Muthana .Y
Table 3: FPGA implementation results
Device Utilization Summary (FPGA: Spartan 3E XC3S100E, Package VQ100, Speed -5)
Type of Multiplier Urdhva Booth Proposed

Number of bits Available 4bit 8bit 4bit 8bit 4bit 8bit
Number of Slices 960 16 75 18 93 13 47
Number of Slice Flip Flops 1920 0 0 0 0 8 15
Number of 4 input LUTs 1920 28 133 32 164 27 89
Number of bonded 10Bs 66 16 32 16 32 15 27
Number of GCLKs 24 0 0 0 0 2 2
Number of 10s 16 32 16 32 18 34
Delay (ns) 11.005 | 21.544 | 12.767 | 23.934 | 6.947 9.887
Chip Area 228 634 217 592 260 1164

Figure 8 shows the delay time (T) depending on the
bit length of the multiplication algorithms, Figure 9
shows the required chip area (A) based on the bit
length, and the productivity AXT (power
consumption) graph obtained by multiplying these
two values. Here, when calculating the delay time
T, the iteration counts of the algorithms, the number
of shifting, and the re-coding times are taken into
account.

a1

According to the results obtained, the fastest of the
multiplication algorithms is the proposed Vedic
multiplication algorithm, but the excess chip area
that is used with this speed increment is emerging.
As the slowest algorithm, the Booth multiplication
algorithm works slower. However, this algorithm
requires minimum chip area. Urdhva multiplication
algorithm is an algorithm that requires medium
delay and medium chip area. Figure 10 shows that
on the AXT graph used as the basic performance
criterion, the minimal power consumption circuit
belongs to the circuit implemented by the proposed
Vedic method.

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018
ISSN (Print): 2074 —0204 ISSN (Online): 2521 — 3504

Muthana .Y

45
40
35
30
25
20
15
10 -

Delay Time (ns)

H A 1
Bit Length (Bit)
| m Urdhva mBooth ®m Proposed |

T=

Figure 8: Delay (T) graph of multiplication algorithms

7000
6000
5000
4000
3000
2000
1000

Area

1p

Ch

A
o

H A 3
Bit Length (Bit)
| ® Urdhva mBooth m Proposed |

Figure 9: Chip Area (A) graph of multiplication algorithms

120000

100000

80000
60000
40000

A*T

20000

0

£ A AlS
Bit Length (Bit)
m Urdhva ®mBooth ® Proposed |

Figure 10: Power consumption (A*T) graph of multiplication algorithms

Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.10 No.1 Year 2018

ISSN (Online): 2521 — 3504

5. CONCLUSION

In this study, multiplication algorithms that based
on Vedic Mathematics and based on the principle of
efficient bit reduction are examined. Performance
analysis of the algorithms was performed by
simulating all the multiplication circuits in VHDL
language. In addition, all hardware multiplication
circuits have been synthesized by using FPGA kit
to determine the performance of the circuits. In the
Multiplier circuits, it can be concluded that the
fastest one (i.e. the lowest delay time) is the
proposed Vedic multiplier circuit, while the slowest
one is the Booth multiplier circuit. On the other
hand, it has been seen that the Booth multiplier uses
the least number of the unit gates (i.e. it can be
produced with the least cost). If the amount of
power consumed in the chip is taken into
consideration, the proposed Vedic multiplier circuit
is best; The Booth multiplier circuit has been
determined to have the worst performance. The
Urdhva multiplier circuit exhibits a medium delay
and a medium cost performance at the same time.

7. REFERENCES

[1] G.-K. Ma, F. J. Taylor, “Multiplier Policies for
Digital Signal Processing”, IEEE ASSP Mag.,
Vol. 7, no. 1, pp. 6-20, (1990).

[2] P. D. Chidgupkar and M. T. Karad, “The
Implementation of Vedic Algorithms in Digital
Signal Processing”, Global J. of Engg. Edu., Vol.
8, no. 2, pp. 153-157, (2004).

[3] A.D. Booth, “A Signed Binary Multiplication
Technique”, Qrt. J. Mech. App. Math.,, Vol. 4, pp.
236-240, (1951).

[4] Harpreet Singh Dhillon and Abhijit Mitra, “A
Reduced-Bit Multiplication Algorithm for
Digital Arithmetic”, International Journal of
Computational and Mathematical Sciences 2, pp.
64-69, (2008).

aA

Muthana .Y

[5] Wallace, C.S., “A suggestion for a fast
multiplier”, IEEE Trans. Elec. Comput., Vol. EC-
13, no. 1, pp. 14-17, (1964).

[6] H. Thapliyal and M. B. Srinivas, “High Speed
Efficient NxN Bit Parallel Hierarchical Overlay
Multiplier Architecture Based on Ancient Indian
Vedic Mathematics”, Enformatika Trans., Vol. 2,
pp. 225-228, (2004).

[7] Swami Bharati Krsna Tirtha, “Vedic
Mathematics”, Motilal Banarsidass, Varanasi,
India, (1965).

[8] Asmita Haveliya, “A Novel Design for High
Speed Multiplier for Digital Signal Processing
Applications (Ancient Indian Vedic mathematics
approach)”, International Journal of Technology
and Engineering System (IJTES), Vol. 2, no.1, pp.
27-31, (2011).

[91 Pushpalata Verma, K. K. Mehta,
“Implementation of an Efficient Multiplier
based on Vedic Mathematics Using EDA Tool”,
International Journal of Engineering and Advanced
Technology, Vol. 1, pp. 75-79, (2012).

[10] M.C. Hanumantharaju, H. Jayalaxmi, R.K.
Renuka, M. Ravishankar, "A High Speed Block
Convolution Using Ancient Indian Vedic
Mathematics”, International Conference on
Computational Intelligence and Multimedia
Applications, Vol. 2, pp. 169-173, (2007).

[11] G.Ganesh Kumar and V.Charishma, “Design
of High Speed Vedic Multiplier using Vedic
Mathematics Techniques”, International Journal
of Scientific and Research Publications, Vol. 2, pp.
1-5, (2012).

[12] Rubinfield L.P., “A proof of the Modified
Booth’s Algorithm for Multiplication”, IEEE
Trans. Computers, Vol.25, no.10, pp. 1014-1015,
(1975).

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018
ISSN (Print): 2074 — 0204 ISSN (Online): 2521 — 3504

Muthana .Y

i cila j ol sa o e Yl Ao) Adle g Aladl) o pda i) 9 L g avanal

) g3 Cpaaly e
Goulal) agle and [a glal) 43S / & oS S drala
Muthana2085@yahoo.com

: paliiuall

bl 2131 iy Abaal) 55 5l apansal 5 s oI Cilallaal 5y i) de puadl kel ALY 55 5 pe
il (s dagpu Gla ol sd sedh (e (S csmlall Claall Bl sale) Jajall s AU 5
W Dl all s A sall apaal s (o sulall Cluadl (o)l (2l s, L ol 5S35 865 (53 3 3¢y
Aball ol i) g 2y apanal aify i) 138 Alall o3g] Lat el Andlaall de s 334 Lild e
s el pa) UMA e I35 Allad Cy (il A8y pha aladiul YA Ge el Jslay s Tas Adlall de yudl cld
G)y £ ld il il sk a3 a8 il sl)l e gl A el Dlee ol ey b
il dal s dabaill Jie el dlee 8 Al Gailiadl) Gas aladinly copeall ol (e e
Ly el G pull Adle ALSEd) ol Sliall Chaag da) & el Gl o)A ChlagS daiy A
XILINX 3\Slaall JMA (ga (giada sl il (3350 ce Apball o puall il 5l oY) @3las b 5 (VHDL)
il 5 o sall 2530 5L e Jseanlly ((FPGA) daweall AL <l sl cld bl Cadiiall Glasall

salal) e f

19

mailto:Muthana2085@yahoo.com
mailto:Muthana2085@yahoo.com

