

88

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Design and Implementation of Efficient and High-Speed Multiplication

Circuits Based on Vedic Algorithms

Muthana Yaseen Nawaf Isawi

University of Kirkuk

Department of Computer Science, College of Science

Muthana2085@yahoo.com

Abstract., The increasing speed of computer processors with each passing day has required the design of

arithmetic circuits to be verified as high performance. For this reason; by being observed the computer

arithmetic, it enabled faster algorithms to come out and verifications of hardware in terms of the facilities that

technology provides. The main aim of the computer arithmetic is the design of the circuits and algorithms that

will increase the speed of the numerical process. To this end, the design of arithmetic multiplication circuits with

a faster and higher bit length is presented through the efficient bit reduction method in this paper. The developed

fast and efficient algorithms for arithmetic multiplication process by using the efficient bit reduction method

have been observed in this work. By making changes in some multiplication methods that are based on Vedic

math’s, the higher bit length circuits of multiplication circuits in the literature which are 4 bits have been

developed by using some basic properties of multiplication like decomposition and bit shifting. Analysis of

arithmetic circuits is implemented by verifying functionally with VHDL simulations, getting output signal

waveform and measurements of delay time. All the circuits of hardware that are observed have been described

via VHDL and the performances of multiplication circuits that are synthesized have been presented via FPGA.

Key Words. Vedic algorithms, bit reduction, digital multiplier, VHDL, FPGA.

1.Introduction. To speak of today's engineering

world, multiplication-based operations are some of

the most commonly used functions and have

recently been used in many Digital Signal

Processing (DSP) applications such as Convolution,

Fast Fourier Transform, Filtering and in the

Arithmetic Logic Unit (ALU) of microprocessors

[1, 2]. The most commonly used process is the

multiplication process speed and designing the low-

power multiplication circuit has been the focus of

attention in recent years [3]. To minimize power

consumption and delay in digital systems are

required optimization at every stage of the design.

This optimization means choosing the best

algorithm for the situation, which means the highest

level of design, the topology and finally the

technology used in the implementation of the

digital circuits. Based on these components,

different types of available multiplication circuits

are designed [4, 5].

Recived : 13\11\2017 Revised : 18\12\2017 Accepted : 21\12\2017

Comp Page 88 - 99 Muthana .Y

Available online : 26/1/2018

DOI:10.29304/jqcm.2018.10.1.354

mailto:Muthana2085@yahoo.com

88

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

The use of multiplication methods has been

documented in the civilizations of Egypt, Babylon,

India, and China [3]. In the early days of the advent

of computers, multiplication was generally applied

through a series of operations (addition, subtraction,

and shifting). There are many algorithms proposed

in the literature to perform the multiplication

process, each offering different advantages and

performing differently in terms of delay, circuit

complexity, chip area and power consumption [5,

6]. The structure of the multipliers is generally

divided into three categories. The first is a serial

multiplier that focuses on the hardware and uses as

minimum chips as possible. Second is parallel

multipliers (tree and array) that perform

mathematical operations at high speed. But the

disadvantage of these multipliers is that they use a

larger chip area. The third is the serial-parallel

multiplier, which stands as a good alternative

between the serial multiplier that takes a long time

and the parallel multiplier that takes a large chip

area [1, 5]. This paper presents a high-speed

efficient multiplier implementation based on Vedic

multiplication algorithms (Urdhva Tiryakbhyam

Sutra and Nikhilam Sutra). In addition, various

algorithms for arithmetic multiplication using

efficient bit reduction method have been

investigated. The commonly used Vedic

multiplication algorithm and classical Booth

multiplication algorithm have been chosen as

arithmetic multiplication operations. However, in

order to understand the working logic of the

algorithms, the basic principles of multiplication

algorithms, hardware implementation circuits and

performance properties are given. However, the

proposed Vedic algorithm we have developed based

on Vedic mathematics is presented in detail.

2. Vedic Algorithms and Booth Multiplier

2.1 Vedic Mathematics: Vedic mathematics is part

of the four Veda “wisdom books”. It makes

explanations about some mathematical terms such

as geometry, trigonometry, arithmetic, quadratic

equations, factorization and even calculus [7].

Vedic mathematics is basically composed of 16

Sutra, which deals with the branches of

mathematics such as arithmetic, algebra, geometry.

 These methods can be applied directly to

geometry, trigonometry, differential, integral,

conics, and applied mathematics of various types.

Since Vedic formulas (Sutra) are claimed to be

based on the natural principles working conditions

of the human mind, they offer a very interesting

field and some efficient algorithms that can be

applied to various branches of engineering such as

programming and digital signal processing [7, 8].

2.2 Urdhva Tiryakbhyam Sutra: The multiplier is

based on the Urdhva Tiryakbhyam algorithm of the

ancient Indian Vedic mathematics. Urdhva

Tiryakbhyam Sutra is a general form that can be

applied to all cases of multiplication such as binary,

hex, decimal and octal. The word means "Vertical

& Crosswise" [7]. It is based on a new idea that

helps to produce all the partial products and then to

make the simultaneous additions of these partial

results. Thus, the partial products and the

parallelism in the production of their summaries

can be achieved using Urdhava Tiryakbhyam. Since

the partial results and their summations are

calculated in parallel, the multiplier is independent

of the clock frequency of the processor. On this

count, the multiplier will need the same time to

calculate the result, so it will be independent of the

clock frequency [7, 9].

The main advantage is the reduction of the need for

microprocessors to manage increasingly rising

clock times. While a higher clock frequency usually

results in an increased operating power, the

disadvantage is that it increases the power

dissipation which causes the device management to

increase in temperature. The advantage of the

multiplier is that as the number of bits increases, the

gate delay and area increase more slowly than the

other multipliers. Therefore, it is efficient in terms

of time, space and power [8, 10].

Now we will see how this algorithm is used with

binary numbers. An example (1101 * 1010) is

given in Table 1.

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

2.3 Nikhilam Sutra: It means "all from 9 and last

from 10". Basically, starting from the leftmost

digits, each number is subtracted from 9 and the last

number is subtracted from 10 [2, 7]. The Sutra

algorithm is based on two different methods of

multiplying numbers. The first is to find the nearest

base of two numbers in multiplication., and the

second is the subtraction method. Although the

Nikhilam Sutra is applicable to all multiplication

operations, it is essentially effective when the

numbers are large and the complexity of the

multiplication process is less [11]. We will illustrate

Sutra by taking the multiplication of two decimal

numbers (89 * 92) is show in Figure 1.

Figure 1: Multiplication using Nikhilam Sutra

2.4 Proposed Vedic Algorithm: In the binary

arithmetic, a new reduced bit multiplication

algorithm has proposed by modified the Nikhilam

Sutra algorithm using some basic features such as

decomposition and bit shifting. Based on the

proposed algorithm, a 4x4-bit multiplication

operation can be reduced to a single 2x2-bit

multiplication operation. As a result, this algorithm

reduces the delay for carry propagation more than

any 4x4 bit multiplication. In the 4-bit proposed

multiplication algorithm [4], it can be extended for

larger numbers with some changes depending on

the steps in the algorithm. The algorithm of

proposed Vedic multiplier for the multiplication of

two 8-bit numbers is given below.

(a) Initialization

Initialize: flag1 = flag2 = flag3 = flag4 = flag5 =

flag6 = flag7 = flag8 = flag9 = flag10 = flag11 =

flag12 = flag13 = 0

Table 1: Using Urdhva Tiryakbham for binary numbers

X = 1101, Y = 1010

 x3 x2 x1 x0 Multiplicand

 y3 y2 y1 y0 Multiplier

P6 P5 P4 P3 P2 P1 P0

p0 = x0y0;

c1p1 = x1y0 + x0y1;

c2p2 = c1 + x2y0 + x1y1 + x0y2;

c3p3 = c2 + x3y0 + x2y1 + x1y2 + x0y3;

c4p4 = c3 + x3y1 + x2y2 + x1y3;

c5p5 = c4 + x3y2 + x2y3;

 c6p6 = c5 + x3y3

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

(b) Preprocessing

Input 8-bit binary numbers a and b

n1 = Number of least significant consecutive zeros

in a

n2 = Number of least significant consecutive zeros

in b

n = n1 + n2

 a'= Right shift a by n1

 b'= Right shift b by n2

(c) Processing

1. IF (a' > 128 & b' > 128) THEN

 a'=255-a'; b=255-b'; flag1=1;

2. IF (a' > 64 & b' > 128) THEN

 b'=b'-128; flag2=1;

 [IF (b' > 64 & a' > 128) THEN a'=a'-128;]

3. IF (a' > 64 & b' > 64) THEN

 a'=128-a'; b=128-b'; flag3=1;

4. IF (a' > 32 & b' > 64) THEN

 b'=b'-64; flag4=1;

 [IF (b' > 32 & a' > 64) THEN a'=a'-64;]

5. IF (a' > 32 & b' > 32) THEN

 a'=64-a'; b'=64-b'; flag5=1;

6. IF (a' > 16 & b' > 32) THEN

 b'=b'-32; flag6=1;

 [IF (b' > 16 & a' > 32) THEN a'=a'-32;]

7. IF (a' > 16 & b' > 16) THEN

 a'=32-a'; b=32-b'; flag7=1;

8. IF (a' > 08 & b' > 16) THEN

 b'=b'-16; flag8=1;

 [IF (b' > 08 & a' > 16) THEN a'=a'-16;]

9. IF (a' > 08 & b' > 08) THEN

 a'=16-a'; b=16-b'; flag9=1;

10. IF (a' > 04 & b' > 08) THEN

 b'=b'-08; flag10=1;

 [IF (b' > 04 & a' > 08) THEN a'=a'-08;]

11. IF (a' > 04 & b' > 04) THEN

 a'=08-a'; b=08-b'; flag11=1;

12. IF (a' > 02 & b' > 04) THEN

 b'=b'-04; flag12=1;

 [IF (b' > 02 & a' > 04) THEN a'=a'-04;]

13. IF (a' > 02 & b' > 02) THEN

 a'=04-a'; b=04-b'; flag13=1;

14. IF (a'=01) THEN p'=b' | IF (b'=01) THEN

 p'=a'

 GOTO Step 16

15. Perform 4bit multiplication: p'=a'*b';

16. IF (flag13= 1) THEN

 p'= [LHS=04-(a'+b')+ Carry of RHS] |

[RHS=(2 bit)p'];

17. IF (flag12= 1) THEN p'=a'*04+(a'*b');

18. IF (flag11= 1) THEN

 p'= [LHS=08-(a'+b')+ Carry of RHS] |

[RHS=(3 bit)p'];

19. IF (flag10= 1) THEN p'=a'*08+(a'*b');

20. IF (flag9= 1) THEN

 p'= [LHS=16-(a'+b')+ Carry of RHS] |

[RHS=(4 bit)p'];

21. IF (flag8= 1) THEN p'=a'*16+(a'*b');

22. IF (flag7= 1) THEN

 p'= [LHS=32-(a'+b')+ Carry of RHS] |

[RHS=(5 bit)p'];

23. IF (flag6= 1) THEN p'=a'*32+(a'*b');

24. IF (flag5= 1) THEN p'= [LHS=64-(a'+b')+

Carry of RHS] | [RHS=(6 bit)p'];

25. IF (flag4= 1) THEN p'=a'*64+(a'*b');

26. IF (flag3= 1) THEN p'= [LHS=128-(a'+b')+

Carry of RHS] | [RHS=(7 bit)p'];

27. IF (flag2= 1) THEN p'=a'*128+(a'*b');

28. IF (flag1= 1) THEN p'= [LHS=255-(a'+b')+

Carry of RHS] | [RHS=(8 bit)p'];

29. p = Left shift p' by n bits

30. Return the product p

31. End

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

In the preprocessing stage, the multiplier and the

multiplied binary numbers are shifted directly to the

right to remove the least significant consecutive

zero bits. This reduces the calculation time by

reducing the number of multiplier and multiplicand

bits. The effect of the raised zero bits is combined

more efficiently by shifting the last output to the

left with the bits in the equal number.

To illustrate this multiplication table, consider the

multiplication of two binary numbers (11000000 *

11000000).

a = (1100 0000)2 = (C0)16 = (192)10

b = (1100 0000)2 = (C0)16 = (192)10

Preprocessing:

a' = 11 n1 = 6; shift a to the right by 6 bit

because the number zero is six;

b' = 11 n2 = 6; shift a to the right by 6 bit

because the number zero is six;

n = n1 + n2 = 12

Processing:

Since number a 'and b' is greater than (10)2, step 13

is taking place.

IF (a' > 02 & b' > 02) THEN

a' = 100 – a'; b' = 100 – b';

a' = 0100 - 0011; a' = 0001;

b' = 0100 - 0011; b' = 0001;

p' = a' * b';

p' = 0001 * 0001; p'(RHS) = 0001;

IF (flag13 = 1) THEN p'= [LHS=04-(a'+b')+ Carry

of RHS] | [RHS=(2 bit)p'];

(a'+b') = 0001+0001 = 0010

Co of RHS= 0

p' = [0100 – 0010 + 0] | [01]

p' = [10] | [01]

p' = 1001 Now we will shift the final result to

the left according to n.

n = 12

p = 1001 0000 0000 0000 = (36864)10

2.5 Booth Multiplication Algorithm: The Booth

multiplication algorithm is a very efficient

multiplication in signed numbers. The Booth

algorithm is a method that reduces the numbers of

generated partial products [1, 3]. The Booth

algorithm is based on the fact that the multiplicative

number presented in a certain range is converted to

a higher base number and the number of digits is

reduced [12]. In the Booth algorithm, the three-bit

parts of the multiplier are scanned and the

operations corresponding to the values of these

parts are performed. This reduces the summation

time and accelerates the multiplication process [3,

12]. Table 2 shows the 4-base (3 bit scans) Booth

Recording process. The multiplier number encoded

by the Booth Recording process is formulated

below.

Table 2: BOOTH-4 Recording Process

X i+1 X i X i-1 Z i

0 0 0 +0A

0 0 1 +A

0 1 0 +A

0 1 1 +2A

1 0 0 -2A

1 0 1 -A

1 1 0 -A

1 1 1 +0A

As an example, 1000011101 is taken as a

multiplier. The coding obtained by selecting 3

digits is as follows. where the start bit is

taken.

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

3. The Multipliers Implementation

3.1 (8x8) bit Urdhva Tiryakbhyam Multiplier:

The 8x8 bit multiplication is generated by using

four 4x4 bit multiplier blocks. Just as in the case of

a 4x4 multiplication block, the numbers a and b are

divided into smaller pieces at n / 2 = 4 bits long.

These newly formed 4-bit pieces are inserted as

input into the 4x4 multiplier block, where again

 these new pieces are divided into smaller pieces of

n / 4 = 2 bits long and added to the 2x2

multiplication block. The result that produced from

the output of the 4x4 multiplication block is sent to

an addition tree for addition as shown in Figure 3

[6, 11].

3.2 (8x8) bit Proposed Vedic Multiplier:
The general architecture structure of the proposed

Vedic multiplication circuit for the 8-bit

multiplication is shown in Figure 4.

Figure 2: Hardware structure of the 4-base Booth algorithm

Figure 3: Block Diagram of 8x8 Urdhva Multiply block

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

`Figure 4: Hardware architecture of the proposed Vedic multiplier

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

In the Figure 4 k1 represent [F1, F3, F5, F7, F9,

F11, F13, 0, 0], k2 = [22, 42, 62, 82, 102, 122, 0,

0], k3 = [21, 41, 61, 81, 101, 121, 0, 0] and k4 =

[f2, f4, f6, f8, f10, f12].

4. Performance Comparison

All multiplier algorithms are tested and simulated

by using VHDL and MAX + plus II environment

(3s100evq100-5 configuration). And Performance

analysis is performed using the Xilinx FPGA

Spartan 3E (XC3S100E, Package VQ100, Speed -

5) device. The VHDL and MAX + plus simulations

 of Urdhva, Booth and proposed Vedic

multiplication algorithms are shown in Figures 5, 6

and 7 for 8 bit operands, respectively. Here, it is

seen that arithmetic multiplication circuits are

functionally verified.

The multiplier circuits are synthesized on the FPGA

kit and their performance was obtained. As a

performance criterions, from input to output the

longest delay time and the total unit gate count

(chip area) has been taken as a criterion. The delay

here represents the delay on the FPGA kit. The

Table 3 shown below is FPGA hardware

performance of multiplication methods.

Figure 5: Timing diagram of 8x8 Urdhva multiplier

Figure 6: Timing diagram of 8x8 Booth multiplier

Figure 7: Timing diagram of 8x8 proposed Vedic multiplier

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Figure 8 shows the delay time (T) depending on the

bit length of the multiplication algorithms, Figure 9

shows the required chip area (A) based on the bit

length, and the productivity AxT (power

consumption) graph obtained by multiplying these

two values. Here, when calculating the delay time

T, the iteration counts of the algorithms, the number

of shifting, and the re-coding times are taken into

account.

According to the results obtained, the fastest of the

multiplication algorithms is the proposed Vedic

multiplication algorithm, but the excess chip area

that is used with this speed increment is emerging.

As the slowest algorithm, the Booth multiplication

algorithm works slower. However, this algorithm

requires minimum chip area. Urdhva multiplication

algorithm is an algorithm that requires medium

delay and medium chip area. Figure 10 shows that

on the AxT graph used as the basic performance

criterion, the minimal power consumption circuit

belongs to the circuit implemented by the proposed

Vedic method.

Table 3: FPGA implementation results

Device Utilization Summary (FPGA: Spartan 3E XC3S100E, Package VQ100, Speed -5)

Type of Multiplier Urdhva Booth Proposed

Number of bits Available 4bit 8bit 4bit 8bit 4bit 8bit

Number of Slices 960 16 75 18 93 13 47

Number of Slice Flip Flops 1920 0 0 0 0 8 15

Number of 4 input LUTs 1920 28 133 32 164 27 89

Number of bonded IOBs 66 16 32 16 32 15 27

Number of GCLKs 24 0 0 0 0 2 2

Number of IOs 16 32 16 32 18 34

Delay (ns) 11.005 21.544 12.767 23.934 6.947 9.887

Chip Area 228 634 217 592 260 1164

Muthana .Y

89

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Figure 8: Delay (T) graph of multiplication algorithms

Figure 9: Chip Area (A) graph of multiplication algorithms

Figure 10: Power consumption (A*T) graph of multiplication algorithms

Muthana .Y

88

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

5. CONCLUSION

In this study, multiplication algorithms that based

on Vedic Mathematics and based on the principle of

efficient bit reduction are examined. Performance

analysis of the algorithms was performed by

simulating all the multiplication circuits in VHDL

language. In addition, all hardware multiplication

circuits have been synthesized by using FPGA kit

to determine the performance of the circuits. In the

Multiplier circuits, it can be concluded that the

fastest one (i.e. the lowest delay time) is the

proposed Vedic multiplier circuit, while the slowest

one is the Booth multiplier circuit. On the other

hand, it has been seen that the Booth multiplier uses

the least number of the unit gates (i.e. it can be

produced with the least cost). If the amount of

power consumed in the chip is taken into

consideration, the proposed Vedic multiplier circuit

is best; The Booth multiplier circuit has been

determined to have the worst performance. The

Urdhva multiplier circuit exhibits a medium delay

and a medium cost performance at the same time.

7. REFERENCES

[1] G.-K. Ma, F. J. Taylor, “Multiplier Policies for

Digital Signal Processing”, IEEE ASSP Mag.,

Vol. 7, no. 1, pp. 6–20, (1990).

[2] P. D. Chidgupkar and M. T. Karad, “The

Implementation of Vedic Algorithms in Digital

Signal Processing”, Global J. of Engg. Edu., Vol.

8, no. 2, pp. 153-157, (2004).

[3] A.D. Booth, “A Signed Binary Multiplication

Technique”, Qrt. J. Mech. App. Math.,, Vol. 4, pp.

236–240, (1951).

[4] Harpreet Singh Dhillon and Abhijit Mitra, “A

Reduced-Bit Multiplication Algorithm for

Digital Arithmetic”, International Journal of

Computational and Mathematical Sciences 2, pp.

64-69, (2008).

[5] Wallace, C.S., “A suggestion for a fast

multiplier”, IEEE Trans. Elec. Comput., Vol. EC-

13, no. 1, pp. 14–17, (1964).

[6] H. Thapliyal and M. B. Srinivas, “High Speed

Efficient N×N Bit Parallel Hierarchical Overlay

Multiplier Architecture Based on Ancient Indian

Vedic Mathematics”, Enformatika Trans., Vol. 2,

pp. 225–228, (2004).

[7] Swami Bharati Krsna Tirtha, “Vedic

Mathematics”, Motilal Banarsidass, Varanasi,

India, (1965).

[8] Asmita Haveliya, “A Novel Design for High

Speed Multiplier for Digital Signal Processing

Applications (Ancient Indian Vedic mathematics

approach)”, International Journal of Technology

and Engineering System (IJTES), Vol. 2, no.1, pp.

27-31, (2011).

[9] Pushpalata Verma, K. K. Mehta,

“Implementation of an Efficient Multiplier

based on Vedic Mathematics Using EDA Tool”,

International Journal of Engineering and Advanced

Technology, Vol. 1, pp. 75-79, (2012).

[10] M.C. Hanumantharaju, H. Jayalaxmi, R.K.

Renuka, M. Ravishankar, "A High Speed Block

Convolution Using Ancient Indian Vedic

Mathematics", International Conference on

Computational Intelligence and Multimedia

Applications, Vol. 2, pp. 169-173, (2007).

[11] G.Ganesh Kumar and V.Charishma, “Design

of High Speed Vedic Multiplier using Vedic

Mathematics Techniques”, International Journal

of Scientific and Research Publications, Vol. 2, pp.

1-5, (2012).

[12] Rubinfield L.P., “A proof of the Modified

Booth’s Algorithm for Multiplication”, IEEE

Trans. Computers, Vol.25, no.10, pp. 1014-1015,

(1975).

Muthana .Y

88

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.1 Year 2018

ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

 تصوين وتنفيذ دوائز ضزب الفعالة وعالية السزعة بالاعتواد على خوارسهيات فيذيك

 هثنى ياسين نواف

 الحاسوب علوم قسن / العلوم كلية / كزكوك جاهعة

Muthana2085@yahoo.com

 : الوستخلص

ٌذج نًعانجاخ انكىيثٍىذش انى ذصًٍى انذوائش انحساتٍح راخ الاداء انعانً. يع يشوس الاٌاو ذطهثد انسشعح انًرضا

وقذ أذاح هزا انششغ إعادج انُظش فً انحساب انحاسىتً، ويكٍ يٍ ظهىس خىاسصيٍاخ سشٌعح، وتعط ذطثٍقاخ

ٍاخ انرً وانغشض انشئٍسً يٍ انحساب انحاسىتً هى ذصًٍى انذوائش وانخىاسصي .الاجهضج انزي ذىفشِ انركُىنىجٍا

اتٍح يٍ شأَها صٌادج سشعح انًعانجح انشقًٍح. ذحقٍقا نهزِ انغاٌح، هزا انثحث ٌقذو ذصًٍى وذُفٍز دوائش انعشب انحس

راخ انسشعح انعانٍح جذاً وتطىل تد أعهى يٍ خلال اسرخذاو غشٌقح خفط تد فعانح ورنك يٍ خلال إجشاء ذغٍٍشاخ

تد انى تد 4فً تعط أسانٍة عًهٍح انعشب انرً ذقىو عهى انشٌاظٍاخ انفٍذٌح، فقذ ذى ذطىٌش دوائش انعشب راخ

ذى .فً عًهٍح انعشب يثم انرحهٍم واصاحح انثراخ أعهى يٍ انذوائش انعشب تاسرخذاو تعط انخصائص الأساسٍح

كراتح وذُفٍز كىداخ خىاسصيٍاخ انعشب فً نغح ذىصٍف انعراد نهذاساخ انًركايهح عانٍح انسشعح انًعشوفح

(VHDL وذُفٍز ذحهٍلاخ الأداء نذوائش انعشب انحساتٍح عٍ غشٌق انرحقق انىظٍفً يٍ خلال انًحاكاج)XILINX

(، وانحصىل عهى إشاسج انخشج انًىجً وقٍاساخ FPGAنهثشيجح) انقاتهح انثىاتاخ نًصفىفاخ فانًرقش و انًٍذاٌ

 .أوقاخ انرأخٍش

Muthana .Y

mailto:Muthana2085@yahoo.com
mailto:Muthana2085@yahoo.com

