Math Page 15 - 25

Zena .H

On the(G. n) Tupled fixed point theorems in fuzzy metric spacea

Zena Hussein Maibed

Department of Mathematics, College of Education for Pure Science, Ibn Al-Haithem, University of Baghdad mrs_zena.hussein@yahoo.com

 Recived : 5\7\2017
 Revised : 14\9\2017
 Accepted : 10\1\2018

 Available online :
 17 /2/2018

 DOI: 10.29304/jgcm.2018.10.2.363

Abstract

The porpose of this paper is to introduce a new concepts of (G.n)tupled fixed point and (G.n)- tupled coincidence point. And, to study the existence of tupled fixed (coincidence) point for any type of mappings. We will also establish some convergence theorems unique (G. n) to a tupled fixed (coincidence) point in the complete fuzzy metric spaces.

Keywords: fuzzy metric spaces, continuous t – norm , fixed point, upper semi – continuous, equicontinuous.

Subject classification: 46S40.

1. Introduction

In [1], Kamosil and Mchalek introduced the concept of fuzzy metric spaces(F.M.S). the existence of fixed points for mappings in fuzzy metric spaces studied by Gregri and Sapea

[2], Mihet [3]. The Fixed point theory for contractive mappings in fuzzy metric spaces is associated the fixed point theory for the same of type mappings in probabilistic metric space of menger type see, Qlu and Hong[4], Hong and Peng[5], Mohudine and Alotibietal [6], Wang [7], Hong [8], Sadtietal [9], [10] and many others. Zhand and Xiao[11] and Hu[12] introduced a coupled fixed point theorem for. In this paper, we introduce the concepts of (G.n) – tupled fixed (coincidence) point and we the (G. n)-tupled establish fixed (coincidence) point theorems in fuzzy metric spac es .

Now, we recall the following:

Definition (1.1) [3]

A binary operation $\aleph : [0,1]^2 \rightarrow [0,1]$ is called a continuous t– norm if the following conditions are satisfy:

- i. X is a associative and commutative.
- ii. $a \aleph 1 = a \quad \forall a \in [0,1].$
- iii. $a \aleph b \le c \aleph d$ whenever $a \le c \& b \le d$, $\forall a, b, c, d \in [0,1].$
- iv. X is continuous.

And denoted by (c.t.n)

Definition (1.2)[4]

A triple (F, \mathcal{G}, \aleph) is called fuzzy metric space (F. M. S) if $X \neq \emptyset$, \aleph is continuous t – norm and $\mathcal{G}: F \times F \times$ $(0, \infty) \rightarrow$

[0,1] is a fuzzy set the satisfying the following conditions.

- i. $\mathcal{G}_{(x,y,t)} > 0$
- ii. $\mathcal{G}_{(x,y,t)}=1$ iff x = y
- iii. $\mathcal{G}_{(x,y,t)} = \mathcal{G}_{(y,x,t)}$
- iv. $\mathcal{G}_{(x,y,r)}: (0,\infty) \to [0,1]$ is continuous.

v. $\mathcal{G}_{(x,z,t+s)} \ge \mathcal{G}_{(x,y,t)} \\ \\ \\ \mathcal{G}_{(y,z,s)} \\ \forall t, s > 0."$ Now, we will add the condition

 $\lim_{t \to \infty} \mathcal{G}_{(x,y,t)} = 1 \quad \forall x, y \in F.$

Lemma (1.3) [3]

In any fuzzy metric space (F, \mathcal{G}, \aleph) , where \aleph is (c.t.n)If there exits $\Delta \in {}^{\circ}C$ such that $\mathcal{G}_{(x,y,\emptyset_{(t)})} \leq \mathcal{G}_{(x,y,t)}, \forall t > 0$ then x = y.

Definition(1.4) [9]

For any $v \in [0,1]$, the sequence $\langle \aleph^n v \rangle_{n=1}^{\infty}$ be defined by: $\aleph^1 v = v$ and $\aleph^n v = (\aleph^{n-1} v) \aleph v$. Then a t -

norm \aleph is said to be (c.t. n)of $\mathcal{H} - \mathcal{T}$ ype if the sequence $\langle \aleph^n v \rangle_{n=1}^{\infty}$ is equicontinuous at v = 1.

Definition (1.5) [13]

Let (F, \mathcal{G}, \aleph) be a (F. M. S) then

- i. A sequence in (v_n) in X is said to be convergent to a point $v \in X$ if $\lim_{t\to\infty} \mathcal{G}_{(v_n,v,t)} = 1$ for all t > 0.
- ii. A sequence in (v_n) in X is called a Cauchy sequence if for each $0 < \varepsilon < 1$ and t > 0, there exists a positive integer n_0 such that $\mathcal{G}_{x_n,v_m,t_1} > 1 \varepsilon$ for each $n, m \ge n_0$."

Now we will give the concept of $(G.n)_{-}$ tupled fixed(coincidence) point.

Definition (1.6)

Let $Z_1, Z_2, \dots, Z_n: F^n \to F$ are mappings. Any element $(x_1, x_2, \dots, x_n) \in F^n$ is called a (G.n) tupled fixed point of this mappings if

$$Z_{1}\left(\left(Z_{2}(\dots, (Z_{n(x_{1}, x_{2}, \dots, x_{n})), \dots,))\right)\right) = x_{1}$$

$$Z_{1}\left(\left(Z_{2}(\dots, (Z_{n(x_{2}, x_{3}, \dots, x_{1})), \dots,))\right)\right) = x_{2}$$

$$\vdots$$

$$Z_{1}\left(\left(Z_{2}(\dots, (Z_{n(x_{n}, x_{1}, \dots, x_{n-1})), \dots,))\right)\right) = x_{n}$$

Definition (1.7)

Let $Z_1, Z_2, \dots, Z_n: F^n \to F$ and $E_1, E_2, \dots, E_n: F \to F$ are mappings. Any element $(x_1, x_2, \dots, x_n) \in F^n$ is called (G.n) – tupled coincidence point of this mapping if

$$Z_{1} \left(Z_{2} \left(\dots \dots \left(Z_{n(x_{1},x_{2},\dots,x_{n})} \right) \dots \dots \right) \right)$$

= $E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1})} \right) \dots \dots \right) \right)$
 $Z_{1} \left(Z_{2} \left(\dots \dots \left(Z_{n(x_{2},x_{3},\dots,x_{1})} \right) \dots \dots \right) \right)$
= $E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2})} \right) \dots \dots \right) \right)$
 \vdots
 $\mathcal{F}_{1} \left(\mathcal{F}_{2} \left(\dots \dots \left(\mathcal{F}_{n(x_{n},x_{1},\dots,x_{n-1})} \right) \dots \dots \right) \right)$

In this paper ,we consider °C is the set of all functions $\Delta: [0, \infty) \rightarrow [0, \infty)$ such that: Δ is increasing function.

 Δ is upper semi – continuous .

 $\sum_{n=0}^{\infty} \Delta^{n}_{(t)} < \infty \quad ; \quad \forall t > 0 \quad \text{where } \Delta^{n+1}_{(t)} = \Delta(\Delta^{n}_{(t)}), \ n \in N.$

2.Main Results

Now, we establish the convergence theorems to a unique (G.n) – tupled fixed point as follows:

Theorem (2.1): Let $Z_1, Z_2, ..., Z_n: F^n \rightarrow F$ and let (F, \mathcal{G}, \aleph) be a complete (F.M.S) such that \aleph (c.t.n) of $\mathcal{H} - \mathcal{T}$ ype Suppose that $\Delta \in ^{\circ} C$ satisfying:

$$\begin{split} \mathcal{G}[Z_1\left(\left(Z_2(\dots,(Z),\dots,(Z),\dots,)\right)\right),\\ Z_1\left(\left(Z_2(\dots,(Z),\dots,(Z),\dots,)\right)\right),\Delta_{(t)}] \geq \\ \mathcal{G}[x_1,y_1,t] \aleph \mathcal{G}[x_2,y_2,t] \aleph \dots \dots \aleph \mathcal{G}[x_n,y_n,t] \\ (2.1) \end{split}$$

where t > 0 and $x_i, y_i \in F$, $\forall i = 1, 2, \dots, n$

If F containing $Z_1\left(\left(Z_2(\dots,(Z_{n(X^n)}),\dots,)\right)\right)$.

Then there exists a unique (G.n) – tupled fixed point of compose these mappings.

Proof:

Suppose that $x_0^1, x_0^2, \dots, x_1^n \in F$, since F containing $Z_1\left(\left(Z_2\left(\dots, (Z_{n(X^n)})\dots,)\right)\right)$, that there exists $x_1^1, x_1^2, \dots, x_1^n \in F$ such that x_1^1 $= Z_1\left(\left(Z_2\left(\dots, (Z_{n(x_0^1, x_0^2, \dots, x_0^n, x_0^n)})\dots,)\right)\right)$, x_1^2 $= Z_1\left(\left(Z_2\left(\dots, (Z_{n(x_0^n, x_0^1, \dots, x_0^{n-1})})\dots,)\right)\right)$ \vdots x_1^n $= Z_1\left(\left(Z_2\left(\dots, (Z_{n(x_1^1, x_1^2, \dots, x_1^n)})\dots,)\right)\right)$, Also, $x_2^1 =$ $Z_1\left(\left(Z_2\left(\dots, (Z_{n(x_1^n, x_1^1, \dots, x_1^{n-1})})\dots,)\right)\right)$, x_2^2 $= Z_1\left(\left(Z_2\left(\dots, (Z_{n(x_1^n, x_1^1, \dots, x_1^{n-1})})\dots,)\right)\right)$ \vdots x_2^n $= Z_1\left(Z_2\left(\left(\dots, (Z_{n(x_1^n, x_1^1, \dots, x_1^{n-1})})\dots,)\right)\right)$

In general, we can construct the sequences, $< x_k^1 > , < x_k^2 > , ...$, and $< x_k^n >$ as $= Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^{1}, x_{k-1}^{2}, \dots, x_{k-1}^{n})} \right) \dots \right) \right) \right),$ -1 x_k^2 $= Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^2, x_{k-1}^3, \dots, x_1^n, x_{k-1}^{-1})} \right) \dots \right) \right) \right)$ x_k^n $= Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^{n, x_{k-1}^{1}, \dots, x_{k-1}^{1}n-1}) \right) \dots \right) \right) \right)$ We want to show that the above sequences are Cauchy sequences in (F, \mathcal{G}, \aleph) . Since \aleph is (c.t.n) of $\mathcal{H} - \mathcal{T}$ ype then we have, $\forall \Lambda >$ $0 \exists \mu > 0$ such that: $(1-\mu) \& (1-\mu) \& \dots \& (1-\mu) \ge 1 - \Lambda, \forall n \in \mathbb{N}.$ On other hand, for all $x, y \in F$, $\mathcal{G}(x, y, .)$ is continuous and $\lim_{t\to\infty}(x, y, t) = 1$ then there exists $t_{\circ} > 0$ such that: $\mathcal{G}[x_0^{-1}, x_1^{-1}, t_0] \ge 1 - \mu, \mathcal{G}[x_0^{-2}, x_1^{-2}, t_0] \ge 1 - \mu$ $\mu, \dots, \mathcal{G}[x_0^n, x_1^n, t_0] \ge 1 - \mu$ (2.2)By using (2.1), we get: • $\mathcal{G}[x_1^{1}, x_2^{1}, \Delta_{(t_0)}] =$ $\mathcal{G}\begin{bmatrix} Z_1\left(\left(Z_2\left(\dots\left(Z_{n(x_0^{1},x_0^{2},\dots,x_0^{n})}\right)\dots\right)\right)\right),\\ Z_1\left(\left(Z_2\left(\dots\left(Z_{n(x_1^{1},x_1^{2},\dots,x_1^{n})}\right)\dots\right)\right)\right),\Delta_{(t_0)}\end{bmatrix}\\ \geq \mathcal{G}[x_0^{1},x_1^{1},t_0] \aleph \mathcal{G}[x_0^{2},x_1^{2},t_0] \aleph \dots \dots \aleph \mathcal{G}[x_0^{n},x_1^{n},t_0]$ Also • $\mathcal{G}[x_1^2, x_2^2, \Delta_{(t_0)}] =$ $\mathcal{G} \begin{bmatrix} Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(x_0^2, x_0^3, \dots, x_0^{n}, x_0^{-1})} \right) \dots \right) \right) \right), \\ Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(x_1^2, x_1^3, \dots, x_1^{n}, x_0^{-1})} \right) \dots \right) \right) \right), \\ \Lambda_{\dots} \end{bmatrix}$ $\geq \mathcal{G}[x_0^2, x_1^2, t_0] \aleph \mathcal{G}[x_0^3, x_1^3, t_0] \aleph \dots \dots \\ * \mathcal{G}[x_0^n, x_1^n, t_0]$ we continue this process in the same way

$$\mathcal{G}[x_1^{n}, x_2^{n}, \Delta_{(t_0)}] = \\ \mathcal{G}\begin{bmatrix} Z_1\left(\left(Z_2\left(\dots\left(Z_{n(x_0^{n}, x_0^{1}, \dots, x_0^{n-1})\right)\dots\right)\right)\right), \\ Z_1\left(\left(Z_2\left(\dots\left(Z_{n(x_1^{n}, x_1^{1}, \dots, x_1^{n-1})\right)\dots\right)\right)\right), t_0\end{bmatrix} \end{bmatrix}$$

 $\geq \mathcal{G}[x_0^{n}, x_1^{n}, t_0] \aleph \mathcal{G}[x_0^{1}, x_1^{1}, t_0] \aleph \dots \dots \aleph \mathcal{G}[x_0^{n-1}, x_1^{n-1}, t_0]$

As the same way and by using above inequalities
•
$$g[x_1^{-1}, x_1^{-1}, \Delta^2(x_0)] =$$

 $g\left[\begin{bmatrix} Z_1\left(\left(Z_2\left(\dots (Z_n(x_1^{-1}, x_1^{-2}, \dots, x_1^{-n}) \right) \dots \right) \right), \Delta^2(x_0) \right]$
 $g\left[\begin{bmatrix} Z_1\left(\left(Z_2\left(\dots (Z_n(x_1^{-1}, x_2^{-1}, \dots, x_n^{-n}) \dots \right) \right), \Delta^2(x_0) \right] \right) \\ = g[x_1^{-1}, x_1^{-1}, d_{0_1}] MS[x_1^{-1}, x_2^{-1}, d_{0_1}] M \dots MS[x_1^{-n}, x_1^{-n}, d_{0_1}] \\ = g[x_1^{-1}, x_1^{-1}, d_{0_1}] MS[x_1^{-1}, x_2^{-1}, d_{0_1}] M \dots MS[x_1^{-n}, x_1^{-n}, d_{0_1}] \\ = g[x_1^{-1}, x_1^{-1}, d_{0_1}] MS[x_1^{-1}, x_2^{-1}, d_{0_1}] M \dots MS[x_1^{-n}, x_1^{-n}, d_{0_1}] \\ = g[x_1^{-1}, x_1^{-1}, d_{0_1}] MS[x_1^{-1}, x_2^{-1}, d_{0_1}] M \dots MS[x_1^{-n}, x_1^{-n}, d_{0_1}] \\ = g[x_1^{-1}, x_1^{-1}, d_{0_1}] MS[x_1^{-1}, x_2^{-1}, d_{0_1}] M \dots MS[x_1^{-n}, x_1^{-n}, d_{0_1}] \\ = g[x_1^{-1}, x_1^{-n}, d_{0_1}] MS[x_1^{-1}, x_2^{-1}, d_{0_1}] M \dots MS[x_1^{-n}, x_1^{-n}, d_{0_1}] M \dots MS[x_1^{-$

$$\begin{split} &\lim_{k \to \infty} x_k^{n} = \\ &\lim_{k \to \infty} Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^{n}, \dots, x_{k-1}^{n-1})} \right) \dots \right) \right) \to a_n \\ & \mathcal{G} \begin{bmatrix} Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^{1}, x_{k-1}^{2}, \dots, x_{k-1}^{n})} \right) \dots \right) \right) \\ &, Z_1 \left(Z_2 \left(\dots \left(Z_{n(a_1, a_2, \dots, a_n)} \right) \dots \right) \right), \Delta_{(t)} \end{bmatrix} \\ &\geq \mathcal{G}[x_{k-1}^{-1}, a_1, t] \aleph \mathcal{G}[x_{k-1}^{-2}, a_2, t] \aleph \dots \aleph \mathcal{G}[x_{k-1}^{n}, a_n, t] \\ & \text{As } n \to \infty \text{ and by continuity of } \mathcal{G}, \text{ we get} \end{split}$$

$$\mathcal{G}\left[a_1, Z_1\left(\left(Z_2\left(\dots\left(Z_{n(a_1,a_2,\dots,a_n)}\right)\dots\right)\right), \Delta_{(t)}\right)\right] =$$

1 Also,

$$\mathcal{G} \begin{bmatrix} Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^2, x_{k-1}^3, \dots, x_{k-1}^{-1})} \right) \dots \right) \right) \right) \\ , Z_1 \left(\left(Z_2 \left(\dots \left(Z_{n(a_1, a_2, \dots, a_n)} \right) \dots \right) \right) \right), \Delta_{(t)} \end{bmatrix} \\ \geq \mathcal{G}[x_{k-1}^2, a_2, t] \aleph \mathcal{G}[x_{k-1}^3, a_3, t] \aleph \dots \aleph \mathcal{G}[x_{k-1}^{-1}, a_1, t] \\ \text{As, } n \to \infty$$

$$\mathcal{G}\left[a_2, Z_1\left(Z_2\left(\dots\left(Z_{n(a_2, a_3, \dots, a_n)}\right) \dots\right)\right), \Delta_{(t)}\right] = 1$$

Continuity

$$\begin{aligned} & \mathcal{G}\left[\begin{bmatrix} (x_{k-1}^{n}, x_{k-1}^{1}, \dots, x_{k-1}^{n-1}), \\ Z_{1}\left((Z_{2}(\dots(Z_{n(a_{n},a_{1},\dots,a_{n}-1})) \dots)) \right), \Delta_{(t)} \end{bmatrix} \\ &\geq \mathcal{G}[x_{k-1}^{n}, a_{n}, t] \aleph \mathcal{G}[x_{k-1}^{1}, a_{1}, t] \aleph \dots \aleph \\ \mathcal{G}[x_{k-1}^{n-1}, a_{n-1}, t] \\ & \text{As } n \to \infty, \text{we get} \\ & \mathcal{G}\left[a_{n}, Z_{1}\left(\left((Z_{2}(\dots(Z_{n(a_{n},a_{1},\dots,a_{n-1})}) \dots)) \right) \right), \Delta_{(t)} \right) \\ &= 1. \text{ And hens,} \\ & a_{1} = Z_{1}\left((Z_{2}(\dots(Z_{n(a_{2},a_{3},\dots,a_{1})}) \dots)) \right), a_{n-1} \right) \\ & a_{n} = Z_{1}\left((Z_{2}(\dots(Z_{n(a_{n},\dots,a_{n-1})}) \dots)) \right) \\ & \text{Therefore.} \end{aligned}$$

 (a_1, a_2, \dots, a_n) is (G.n) – tupled fixed point of compose the mappings of Z_1, Z_2, \dots, Z_n .

Corollary(2.2)

Let $(X, \mathcal{G}, *)$ be a(F.M.S) .Under the same assumptions of theorem(2.1) but

$$\mathcal{G} \begin{bmatrix} Z_1 \left(\left(Z_2 \left(\dots \dots \left(Z_{n(x_1, x_2, \dots, x_n)} \right) \dots \dots \right) \right) \right), \\ Z_1 \left(\left(Z_2 \left(\dots \dots \left(Z_{n(y_1, y_2, \dots, y_n)} \right) \dots \dots \right) \right) \right), kt \end{bmatrix} \\
\geq G[x, y, t] * G[x, y_2, t] * \dots * G[x, y_n, t] * \dots * G[x, y_n, t] \\$$

 $\geq G[x_1, y_1, t] * G[x_2, y_2, t] * \dots * G[x_n, y_n, t]$ where $k \in (0,1)$, t > 0 and $x_i, y_i \in F, \forall i = 1,2, \dots, n$. Then there exists a unique (G.n) tupled fixed point of compose the mappings Z_1, Z_2, \dots, Z_n .

Corollary(2.3)

Let (F, \mathcal{G}, \aleph) be a (F. M. S)Under the same assumptions of theorem(2.1) but

$$M \begin{bmatrix} Z_1\left(\left(Z_2\left(\dots,\left(Z_{n(x_1,x_2,\dots,x_n)}\right)\dots,\right)\right),\\ Z_1\left(\left(Z_2\left(\dots,\left(Z_{n(y_1,y_2,\dots,y_n)}\right)\dots,\right)\right),\Delta(t)\right)\\ \geq G[x_1,y_1,t]^{a_1}\aleph$$

 $\begin{array}{l} \mathcal{G}[x_2, y_2, t]^{a_2} \aleph & \dots & \aleph & \mathcal{G}[x_n, y_n, t]^{a_n} \\ \text{where } \sum_{i=1}^n a_i \leq 1, t > 0 \quad \text{and} \quad x_i, y_i \in F \quad \forall i = 1, 2, \dots, n. \text{Then there exists a} \\ \text{unique } (G.n) - \text{tupled fixed point of compose} \\ \text{the mappings} \quad Z_1, Z_2, \dots, Z_n. \end{array}$

Corollary(2.4)

Let (F, \mathcal{G}, \aleph) be a (F. M. S).Under the same assumptions of theorem(2.1) but

$$\mathcal{G} \begin{bmatrix} Z_1\left(\left(Z_2\left(\dots,\left(Z_{n(x_1,x_2,\dots,x_n)}\right)\dots,\right)\right),\\ Z_1\left(\left(Z_2\left(\dots,\left(Z_{n(y_1,y_2,\dots,y_n)}\right)\dots,\right)\right)\right),kt \end{bmatrix} \\ \geq \mathcal{G}[x_1,y_1,t]^{a_1} \aleph \mathcal{G}[x_2,y_2,t]^{a_2} \aleph \dots \dots \aleph \mathcal{G}[x_n,y_n,t]^{a_n} \\ \text{where } \sum_{i=1}^n a_i \leq 1, k \in (0,1), \text{ and } x_i, y_i \in F, \forall i = 1,2,\dots,n. \\ \text{Then there exists a unique} \\ (G.n) - \text{tupled fixed of compose the} \\ \text{mappings } Z_1, Z_2, \dots, Z_n. \end{cases}$$

Theorem (2.5)

Let (F, \mathcal{G}, \aleph) be a fuzzy metric space and A, B are two families of mappings such that $A = \{Z_1, Z_2, \dots, Z_n: X^n \to X\}, B =$ $\{E_1, E_2, \dots, E_n: F \to F\}$. Suppose that $\Delta \in {}^{\circ}C$ satisfying

$$\begin{aligned} \mathcal{G}[Z_{1}\left(Z_{2}\left(\dots,\left(Z_{n(x_{1},x_{2},\dots,x_{n})}\right)\dots,\right)), \\ Z_{1}\left(Z_{2}\left(\dots,\left(Z_{n(y_{1},y_{2},\dots,y_{n})}\right)\dots,\right)\right), \Delta_{(t)}] \\ &\geq \mathcal{G}\begin{bmatrix}E_{1}\left(E_{2}\left(\dots,\left(E_{n(x_{1})}\right)\dots,\right)\right), \\ E_{1}\left(E_{2}\left(\dots,\left(E_{n(y_{1})}\right)\dots,\right)\right), t\end{bmatrix} \\ \mathcal{G}\begin{bmatrix}E_{1}\left(E_{2}\left(\dots,\left(E_{n(x_{2})}\right)\dots,\right)\right), \\ E_{1}\left(E_{2}\left(\dots,\left(E_{n(y_{2})}\right)\dots,\right)\right), t\end{bmatrix} \\ \mathcal{G}\begin{bmatrix}E_{1}\left(E_{2}\left(\dots,\left(E_{n(x_{n})}\right)\dots,\right)\right), \\ E_{1}\left(E_{2}\left(\dots,\left(E_{n(y_{n})}\right)\dots,\right)\right), t\end{bmatrix} \\ \mathcal{G}\begin{bmatrix}E_{1}\left(E_{2}\left(\dots,\left(E_{n(y_{n})}\right)\dots,\right)\right), t\end{bmatrix} \\ \mathcal{G}\begin{bmatrix}E_{1}\left(E_{2}\left(\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\right) \\ \mathcal{G}\begin{bmatrix}E_{1}\left(E_{2}\left(\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\right) \\ \mathcal{G}\begin{bmatrix}E_{1}\left(E_{1}\left(E_{1}\left(\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\left(E_{n(y_{n})}\left(E_{n(y_{n})}\right)\dots,\left(E_{n(y_{n})}\left(E_{n(y_{n})}\left(E_{n(y_{$$

where t > 0 and $x_i, y_i \in F \quad \forall i = 1, 2, ..., n$ If $E_1\left(E_2\left(\dots, (E_{n(X)}), \dots, \right)\right)$ is complete subspace of F containing $Z_1(Z_2(\dots, (Z), \dots,))$. Then there exists a unique (G, n) – tupled coincidence fixed point of compose the mappings of A and B.

Proof: Suppose that, $x_0^1, x_0^2, \dots, x_1^n \in F$, since $E_1(E_2(\dots,(E_{n(X)})\dots))$ containing $Z_1(Z_2(\dots,(Z_{n(X^n)})\dots)))$, that there exists $x_1^1, x_1^2, \dots, x_n^n \in F$ such that $E_1(E_2(....(E_{n(x_1^{1})})....))$ $= Z_1 \left(Z_2 \left(\dots \dots \left(Z_{n(x_0^{-1}, x_0^{-2}, \dots, x_0^{-n})} \right) \dots \right) \right)$ $E_1\left(E_2\left(\ldots\ldots\left(E_{n(x_1^2)}\right)\ldots\ldots\right)\right)$ $= Z_1 \left(Z_2 \left(\dots \dots \left(Z_{n(x_0^2, x_0^3, \dots, x_0^n, x_0^{-1})} \right) \dots \right) \right)$ $E_1(E_2(....(E_{n(x_1^{n_1})})....))$ $= Z_1 \left(Z_2 \left(\dots \dots \left(Z_{n(x_0^{n_1}, x_0^{n_1}, \dots, x_0^{n-1})} \right) \dots \right) \right)$ Also, $E_1(E_2(....(E_{n(x_2^1)})....)) =$ $Z_1 \left(Z_2 \left(\dots \dots \left(Z_{n(x_1^{1}, x_1^{2}, \dots, x_1^{n})} \right) \dots \right) \right)$ $E_1\left(E_2\left(\ldots\ldots\left(E_{n(x_2^2)}\right)\ldots\ldots\right)\right)$ $= Z_1 \left(Z_2 \left(\dots \dots \left(Z_{n(x_1^2, x_1^3, \dots, x_1^n, x_1^{-1})} \right) \dots \right) \right)$ $E_1(E_2(....(E_{n(x_2^n)})....))$ $= Z_1 \left(Z_2 \left(\dots \dots \left(Z_{n(x_1^{n}, x_1^{1}, \dots, x_1^{n-1})} \right) \dots \right) \right)$ In general, we can construct the sequences, $< E_1\left(E_2\left(\dots\dots\left(E_{n(x_k^{-1})}\right)\dots\dots\right)\right)>,$ $< E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_k^2)} \right) \dots \right) \right) >, \dots, \text{ and } <$ $E_1\left(E_2\left(\dots,\left(E_{n(x_k^n)}\right)\dots\right)\right) > \text{ as follows}$ $E_1\left(E_2\left(\ldots\left(E_{n(x_k^1)}\right)\ldots\right)\right)$ $= Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^{1}, x_{k-1}^{2}, \dots, x_{k-1}^{n})} \right) \dots \right) \right)$ $E_1\left(E_2\left(\ldots\left(E_{n(x_k^2)}\right)\ldots\right)\right)$ $= Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_{k-1}^2, x_{k-1}^3, \dots, x_1^n, x_{k-1}^{-1})} \right) \dots \right) \right)$ $E_1\left(E_2\left(\ldots\left(E_{n(x_k^n)}\right)\ldots\right)\right)$ $= Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_{k-1}, x_{k-1}, x_{k-1}, \dots, x_{k-1}, n-1)} \right) \dots \right) \right)$ Now, we want to show that the above sequences are Cauchy sequences in (F, M, \aleph) ,

since \aleph is t – norm of H – type, this implies $\forall \Lambda > 0 \exists \mu > 0$ such that $(1 - \mu) \aleph (1 - \mu) \aleph \dots \aleph (1 - \mu) \ge 1 - \Lambda$, $\forall n \in N$. on other hand. For all $x, y \in X$, M(x, y, .) is continuous and $\lim_{t \to \infty} (x, y, t) =$ 1 then there exists $t_{\circ} > 0$ such that.

$$\begin{split} \mathcal{G} \begin{bmatrix} E_{1}\left(E_{2}\left(\dots & (E_{n(x_{0}^{-1})})\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})})\dots\right)\right), t_{0} \end{bmatrix} \geq 1 - \mu \\ \mathcal{G} \begin{bmatrix} E_{1}\left(E_{2}\left(\dots & (E_{n(x_{0}^{-2})})\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots & (E_{n(x_{0}^{-1})})\dots\right)\right), t_{0} \end{bmatrix} \geq 1 - \mu \\ \vdots \\ (2.4) \\ \mathcal{G} \begin{bmatrix} E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})})\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})})\dots\right)\right), t_{0} \end{bmatrix} \end{bmatrix} = 1 - \mu \\ By using (2.3), we get \\ \mathcal{G} \begin{bmatrix} E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), \Delta_{(t_{0})}\right) \\ E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), \Delta_{(t_{0})}\right) \end{bmatrix} \\ \mathbb{F} \left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), \Delta_{(t_{0})}\right) \\ \mathbb{F} \left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), \Delta_{(t_{0})}\right) \\ \mathbb{F} \left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \end{bmatrix} \\ \mathcal{F} \begin{bmatrix} E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \\ \mathbb{F} \left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \\ \mathbb{F} \left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \end{bmatrix} \\ \mathcal{F} \left(E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \right) \\ \mathcal{F} \left(E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \end{bmatrix} \\ \mathcal{F} \left(E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots)\right), t_{0}\right) \right) \\ \mathcal{F} \left(E_{1}\left(E_{2}\left(\dots & (E_{n(x_{1}^{-1})\dots}\right), t_{0}$$

we continue this process in the same way

$$\begin{aligned}
\mathcal{G} \begin{bmatrix} E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1}^{n}) \right) \dots \right) \right), \\
E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_2^{n})} \right) \dots \right) \right), \Delta_{(t_0)} \end{bmatrix} = \\
\mathcal{G} \begin{bmatrix} Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_0}^{n}, x_0^{1}, \dots, x_0^{n-1}) \right) \dots \right) \right), \\
Z_1 \left(Z_2 \left(\dots \left(Z_{n(x_1}^{n}, x_1^{1}, \dots, x_1^{n-1}) \right) \dots \right) \right), t_0 \end{bmatrix} \\
\approx \mathcal{G} \begin{bmatrix} E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_0}^{n}) \right) \dots \right) \right), \\
E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1}^{n}) \right) \dots \right) \right), t_0 \end{bmatrix} \\
\mathcal{G} \begin{bmatrix} E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1^{n-1})} \right) \dots \right) \right), t_0 \\
E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1^{n-1})} \right) \dots \right) \right), t_0 \end{bmatrix} \\
\mathcal{G} \begin{bmatrix} E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1^{n-1})} \right) \dots \right) \right), t_0 \\
\mathcal{G} \begin{bmatrix} E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1^{n-1})} \right) \dots \right) \right), t_0 \\
\mathcal{G} \begin{bmatrix} E_1 \left(E_2 \left(\dots \dots \left(E_{n(x_1^{n-1})} \right) \dots \right) \right), t_0 \end{bmatrix} \\
\mathcal{A}_{\mathcal{S}_{$$

As the same way and by using above inequalities,

$$\begin{split} & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{-1})} \right) \dots \right) \right), \\ E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{3}^{-1})} \right) \dots \right) \right), \Delta^{2}(t_{0}) \end{bmatrix} \\ & = \\ & \mathcal{G} \begin{bmatrix} Z_{1} \left(Z_{2} \left(\dots \left(Z_{n(x_{2}^{-1}, x_{2}^{2}, \dots, x_{1}^{n})} \right) \dots \right) \right), \\ Z_{1} \left(Z_{2} \left(\dots \left(Z_{n(x_{2}^{-1}, x_{2}^{2}, \dots, x_{2}^{n})} \right) \dots \right) \right), \Delta^{2}(t_{0}) \end{bmatrix} \\ & \geq \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{-1})} \right) \dots \right) \right), \\ E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{-1})} \right) \dots \right) \right), \Delta(t_{0}) \end{bmatrix} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{-1})} \right) \dots \right) \right), \\ E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{-1})} \right) \dots \right) \right), \Delta(t_{0}) \end{bmatrix} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{-1})} \right) \dots \right) \right), \\ E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{-1})} \right) \dots \right) \right), \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{-1})} \right) \dots \right) \right), \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{-1})} \right) \dots \right) \right), \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{-1})} \right) \dots \right) \right), \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{-1})} \right) \dots \right) \right), \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \end{pmatrix} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \end{pmatrix} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \end{pmatrix} \\ & \mathbb{K} \dots \mathbb{K} \end{pmatrix} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \dots \mathbb{K} \\ & \mathbb{K} \end{pmatrix} \\ & \mathbb{K} \dots \mathbb{K} \end{pmatrix} \\ & \mathbb{K} \dots \mathbb{K}$$

$$\begin{split} & \mathcal{G} \left[\begin{array}{c} Z_{1} \left(Z_{2} \left(\dots \left(Z_{n(x_{1}^{2},x_{1}^{3},\dots,x_{1}^{n},x_{1}^{1}) \right) \dots \right) \right), \Delta^{2}(\iota_{0} \\ Z_{1} \left(Z_{2} \left(\dots \left(Z_{n(x_{2}^{2},x_{2}^{3},\dots,x_{2}^{n},x_{1}^{1}) \right) \dots \right) \right), \Delta^{2}(\iota_{0} \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{2}) \right) \dots \right) \right), \Delta_{(t_{0})} \right] \\ E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{3}) \right) \dots \right) \right), \Delta_{(t_{0})} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{n}) \right) \dots \right) \right), \Delta_{(t_{0})} \right] \\ E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{n}) \right) \dots \right) \right), \Delta_{(t_{0})} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \right) \dots \right) \right), \Delta_{(t_{0})} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \right) \dots \right) \right), \Delta_{(t_{0})} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \right) \dots \right) \right), \tau_{0} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \right) \dots \right) \right), \tau_{0} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \dots \right) \right), \tau_{0} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \dots \right) \right), \tau_{0} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n}) \dots \right) \right), \tau_{0} \right] \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \right) \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \right) \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \right) \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\begin{array}{c} E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\begin{array}(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\begin{array}(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\begin{array}(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right) \right), \tau_{0} \\ & \mathcal{G} \left[\left(E_{1} \left(E_{2} \left(\dots \left(E_{n(x_{2}^{n}) \dots \right)$$

х

Zena .H

Similarly

$$\begin{split} \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{k}^{n})} \right) \dots \right) \right), \sum_{k=n_{0}}^{\infty} \Delta^{k}_{(t_{0})} \end{bmatrix} \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{m}^{n})} \right) \dots \right) \right), \sum_{k=n_{0}}^{\infty} \Delta^{k+1}_{(t_{0})} \end{bmatrix} \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{m}^{n})} \right) \dots \right) \right), \sum_{k=n_{0}}^{m-1} \Delta^{k+1}_{(t_{0})} \end{bmatrix} \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{k+1}^{n})} \right) \dots \right) \right), \Delta^{k}_{(t_{0})} \end{bmatrix} \\ &\qquad \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{k+2}^{n})} \right) \dots \right) \right), \Delta^{k}_{(t_{0})} \end{bmatrix} \\ &\qquad \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{m-1}^{n})} \right) \dots \right) \right), X^{k+1}_{(t_{0})} \end{bmatrix} \\ &\qquad \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{m}^{n})} \right) \dots \right) \right), X^{k+1}_{(t_{0})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{0}^{n})} \right) \dots \right) \right), Q^{m-1}_{(t_{0})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ &\geq \mathcal{G} \begin{bmatrix} E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \dots \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ Z^{m-1} \left(E_{1} \left(E_{2} \left(\dots \dots \left(E_{n(x_{1}^{n})} \right) \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ Z^{m-1} \left(E_{1} \left(E_{1} \left(E_{1} \left(\dots \left(E_{n(x_{1}^{n})} \right) \right) \right), Z^{m-1}_{(t_{0}^{n})} \end{bmatrix} \\ &\qquad \vdots \\ Z^{m-1} \left(E_{1} \left(E_{1} \left(E_{1} \left(\dots \left(E_{n(x_{1}^{n})} \right) \right) \right) \right) \\ &\qquad \vdots \\ Z^{m-1} \left(E_{1} \left(E_{1}$$

$$\begin{split} & \mathcal{G}\left[\begin{bmatrix} E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{0}^{-1})}\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})}\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{0}^{-1})}\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{0}^{-1})}\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{0}^{-1})}\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})}\right)\dots\right)\right), \\ \\ \mathcal{G}\left[E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})}\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})}\right)\dots\right)\right), \\ \mathcal{G}_{1}\right]^{l} \\ \\ \mathcal{G}\left[E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})\right)\dots\right)\right), \\ E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})\right)\dots\right)\right), \\ \mathcal{G}_{1}\right]^{l} \\ \mathcal{G}\left[E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})\right)\dots\right)\right), \\ \mathcal{G}_{1}\right]^{l} \\ \mathcal{G}\left[E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1}\right)\dots\right)\right), \\ \mathcal{G}_{1}\right]^{l} \\ \mathcal{G}\left[E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1})\right)\dots\right)\right), \\ \mathcal{G}_{1}\right]^{l} \\ \mathcal{G}\left[E_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1}\right)\dots\right)\right), \\ \mathcal{G}_{1}\left(E_{2}\left(\dots\dots\left(E_{n(x_{1}^{-1}\right)\dots\right)\right), \\ \mathcal{G}_{1}\left(E$$

and

and For

$$\begin{split} \lim_{k \to \infty} & E_1 \left(E_2 \left(\dots \left(E_{n(x_k-1}^n, \dots, x_{k-1}^n - \dots \right) \right) \right) \to E \left(E_2 \left(\dots G_{p(n_k)}^{1} \left(E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, \dots, x_{k-1}^n) \right) \dots \right) \right) \right) \to E \left(E_2 \left(\dots G_{p(n_k)}^{1} \left(E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) \right) \to E \left(E_2 \left(\dots G_{p(n_k)}^{1} \left(E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) \right) \to E \left(E_2 \left(\dots G_{p(n_k)}^{1} \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) \right) \to E \left(E_2 \left((\dots G_{p(n_k)}^{1} \left(E_{n(n_k)} \left((E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) \right) \to E \left(E_2 \left((\dots G_{p(n_k)}^{1} \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) \right) \to E \left(E_2 \left((\dots, (E_{n(n_k)}) \dots \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}) \dots \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right) \right) \right) = x_1 = E_1 \left(E_2 \left((\dots, (E_{n(n_k)}, \dots, m_{k-1}^n) \dots \right$$

[10].I.Beg and M. Abbas," Common Fixed Point of Banach Operators Pair on Fuzzy Normed Space," fixed point theory 12(2),285_292,(2011).

[11].X .Zhu, J .Xiao ,"Note on Coupled Fixed Point Theorems For Contractions in Fuzzy Metric Spaces ,"Nonlinear Anal,74(2011),5475 5479.1,3,3.3. [12].X.Hu,"Common Coupled Fixed Point Theorems For Contractive Mappings in Fuzzy Metric Spaces," fixed point theory Appl.2011 Article ID 363716(2011).

[13].A.George,P.Veeeramain.On Some Result in Fuzzy Metric Space, Fuzzy sets and systems,64(1994)396_399.

حول نظريات النقطة الصامدة الثلاثية نوع (G. n) في فضاءات مترية ضبابية

زينة حسين معيبد جامعة بغداد/كلية التربية للعلوم الصرفة/ ابن الهيثم قسم الرياضيات

المستخلص:

الهدف من هذا البحث هو لتقديم مفهومين جديدين هما النقطة الصامدة الثلاثية والنقطة المتطابقة الثلاثية نوع(G.n) ولدراسة الوجود للنقطة الصامدة (المتطابقة) الثلاثية لاي نوع من التطبيقات. ايضا سننشئ نظريات التقارب الى نقطة صامدة (متطابقة) ثلاثية نوع(G.n) وحيدة في الفضاءات المترية الضبابية الكاملة.