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1. Introduction

Aghajani et al. [1] introduced the
notion of Gp-metric space as a
generalization of b — metric spaces.
Results of G, —metric about fixed
points and its applications can be found
in the research papers of Abed and
Jabbar [1-3], Mustafa Khan, Arshad and
Ahmad [5] and references there in.

42

Another generalization of metric
spaces introduced by Menger [6] called
probabilistic metric space. Many
results on the existence of fixed points
or its application in nonlinear
equations in these spaces have been
studied by many researchers (see e.g.
[7]). the notion of a generalized
probabilistic metric space or a
PGM —space as a generalization of a
PM —space and a G —metric space
have been defined by Zhou et al. [8] .
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And then, Zhuet al. [10] presented
some fixed point theorems in
generalized probabilistic metric spaces.
Here, there are two aims the first one
IS proving the existence of fixed points
and common fixed points for set-
valued (or single valued ) condensing
mappings in  orbitally complete
general b- metric. The second is to
define a measure for probabilistic
subset of a Menger general b- metric
space and employ it to prove a fixed
point theorem for condensing mapping.

In this paper, M is general b —
metric space and

2M =(C: 0 #+ C c M},

CB(M) ={C:p#Cc

M, C is closed and bounded },
KWM) =
{C: ®+CcM,C(Cis compact},

Also, R* will be denote to non-
negative reals, R*=[—oc0,00] , N be
positive integers, A4 be the closure of a
set A and = be set-valued mapping

2. Preliminaries

"Let M be a non-empty set and
A: M 3 > R* be a function satisfying
the following for u, v,w and a in M :

i—A(w,v,w)=0iffu=v=w
ii— Alw,u,v) >0, u#v
iii — Alw,u,v) < A(w,v,w), u#v
iv—A(u,v,w) = A(p{ u,v,w}),

p is permutation
v— A(u,v,w) < b[/l(u, a,a) +
A(a, v, W)],b > 1.
Then the pair (M, A) is called general
b- metric space."[1]

"A general b — metric space M is
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called symmetric if A(u,v,v)=
A(v,u,u). For ug € M ,r>0 the
ball with center u, and radius r is
B.(uo, 1) = {y € M: A(up,v,v) <r}
and the family {B,(w,7):u € M ,r >
0} is a base of a topology [12]. The
diameter of a set CS M is (A) =
SUPgp cecAla,b,c)" . Also, the
definition of generalized b — metric
implies that

Proposition 2.1: [1] "For all
u,v,w,a € M, the following hold

1) Av,w) <

b[A (w,u,v)+ A(u,u,w)]
) A(uw,v,v)<2bA(v,u,u)
(3) A(uv,w) <

b[/l (w,a,w) +

A(a,v,w)] b =>1"

From this Proposition, we have

5) A(uv,w)<bA(uaa)+
b2 A(v,a,a) + b*A(w,a,a)

"A sequence {u,} S M is [1] or [2]
(1) Cauchy sequence if Ve >0
dny € N such that vm,n,i =n,,
AUy, Uy, U;) < €

(2) Convergent to a point u € Mif
ve> 0,3n, € N such thatv n,m >
Ng, A(Up, Uy, U) < €.

A space M is called complete if
every Cauchy sequence is convergent
in M." Throughout this paper (M,A)
denotes general b —metric space.
Proposition 2.2: [1] " Let {u,} be a
sequence in M , then {u,} is Cauchy
iff v >0, 3 nyg €N such that
A(uy, Uy, Uy) <&, Vm,n=ng."
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Proposition 2.3: [4] "{u,} Iis
convergent to u © G(u,u,u)—0
e G(u,,u,u) >0 &

G(uy, Uy, u) = 0as

n,m — oo. The sequence {u,} Iis
Cauchy & G(uy, Uy, uy)—0 as n,
m—o0."

Definition 2.4: Let (M, A) and
(M', A") be general b —metric spaces,
and T: M — M be a function. Then
T is continuous at a point a € Miff
for v. £ > 0, 36 > 0 such that
u,v € Mand G(a,u,v) < § implies
A (T(a), T(w), T(v)) < ¢ . A
function T is continuous on M iff it is
continuous at Va € M .

Definition 2.5: Let T: M — M then

(1) The orbit of a pointu € M is
the set
O(w) = {u,Tu,T*y,.....}, and
let ¢ < Mthe orbit of a set
be T is OT(C): { Tn(U) .
n=01,2.,u€C}.

(2) An orbit of a point z is said to
be bounded if 3 K> 0 such that

A(u,v,w) < K VYu,v,w € 0(2),K
is called a bound of 0(z) .

(3) Mis said to be T — orbitally
bounded if §(0(z))<o
Vz e M.

(4) Mis said to be T — orbitally
complete if every Cauchy
sequence in O(z) converges to
a point in M .

(5) T is a called orbitally
continuous if for any {u,} <
O(u) and u,— u implies
Tu,— Tu,Vu € M.
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(6) The point u € M is called a
fixed point of the set-valued
mapping T : M — 2M if

u € Tu and u is fixed point of a
single mapping T: M- M if
u="Tu .

The orbit of u by two mappings S, T is,
O(w)sr =: {u,Su, TSu,STSu,..},
when T,S are commuting then
O(w)= {T™S™u: mn = 0,1,..}.
Analogous to the general Hausdorff

distance in [11] we define the
following
Defintion 2.6 The function

A: [CB(M)]3 - R* is called general
b — Hausdorff distance if
A(AB,0)

= max{supyesA(x,B,C) ,supyegA(x,C,A),

SuprCA(x' A'B) }'
where,
A(x,B,C) = A(x,B)+ A(B,C)
+ A(x,0),
A(x,B) = inf{A (x,y),y €B },
A(A,B) = inf{A(a,b),a € ADb
€ B}.
Directly, we obtain the following
Lemma 2.7: If A,B € CB(X) and
a € A, thenve > 0,3b € B>

A(a,b,b) < A(A,B,B) + €. And,
if B is compact thenA(a,b,b) <
A(A, B, B).

Let C be a bounded subset of M, the
measure of non—compactness of C is
x(C) =inf{r > 0:C

n

c U C; and 8(C)
i=1
< r}
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Clearly, y satisfies the following:
i- x(@) =0
() =0e
C is relatively compact
0 < x(C) < diam (C)

Iv- C € D= () < x(D)
V- x({C+D) < x() +
x (D) B
vi- - x(€) = x(C)
vii- -y (UG) = max{x (C)}

A set-valued mapping T: M = 2™
is called - condensing if for any
bounded set CcM, T(C) is bounded
and y (T(C))<x (), x(C)>0.

The space of all
distribution functions is
AT = {s:R* > [0,1]:sisleft —
continuous, non decreasing on R, s(0)
0, s(+w) = 1}and
D+={s € A+: 7 s(+x) = 1}.

Here,

7 s(ag) = 7 s(ap) =limgo; s (a).
The space A% is partially ordered by
ordering

s < riff(a) < r(a),Va e R.

The maximal element for A+ is the
probability distribution function

probability

h(@ ={3 7250 ()

1, ifa>0
Definition 2.8: A mapping A4:
[0,1]2 — [0,1] is a continuous t —
norm if A satisfies the following
(i) 4 is commutative and associative;
(i) 4 is continuous;
(ii)A (a,1) = a,Va € [0,1];
(iv) 4 (a,b) < A (c,d), whenever

a < candc < d,
a,b,c,d € [0,1].

Definition 2.9: A Menger probabilistic
b — metric space (briefly,b — Menger
space) is a triple (M, A, A) , where,
@+ M A is a continuous t —norm
and A: M x M x M — D%such that, if
Ay, denotes the value of A at the
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triple  (x,y,z) , the following
conditions hold for all x,y,z,a € M
andvt,s > 0
1) Ay, () =1, iff x =y =
z
(2) Ayy,(t) <liffx # y;
(3) Ax,y,z(t): Ay,z,x (t) = Az,x,y (t)

@) Apy(t + 5) = 4 (Ayaa(®)
Aa,y,z(s))l .

Definition 2.10: A b — Menger space
is called symmetric if A,,,(t) =

Ayxx(t),Vx,y € M.

Definition 2.11: Let (M, A,4) be a
b — Menger space.
i- A sequence {x,} in M is
said to be

-Convergent to x eM if Ve >
0,1 >0, IN€Nsuchthat Ay, ,
(¢) > 1 — Awheneverm,n > N.

-Cauchy sequence if, Ve > 0 and A >
0,3N € N such that Ay . . (&) >

1 — Awhenevern,m,l > N.
ii- M is complete if every
Cauchy sequence in M

converges to a point in M.
The strong A=
neighborhood of x is

N ={qgeMmM: A (D)D) >
1 -2}
and neighborhood system for M is the

unionU,ey N, where N, = {N,
1) : 1 >0}
iv- The (¢,4) — topology in

M is introduced by the
family of neighborhoods
given by

Uy (6'/1) :{U; Tu,v,v (6) >1- /1}-
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If t—norm A4 is continuous then M
is a metrizable topology space, with
respect to (¢, 1) — topology.

V- The probabilistic
diameter of a subset A of

M is
Dc(t) = SUPs <t infp ,4,qEA

Tpaq (5),t € RY,
and the set (C is probabilistic
bounded if and only  if
supter+Dc(t) = 1.
Analogously with Measure of non-
compact set, we give
Definition 2.12: LetM be a b—
Menger space and Cc M be a
probabilistic bounded, the function
Xc: R ->[01]isxc,=sup{e>0,
there is a finite family { C;} j¢ in M
such that C = Uje; C; and Dc;(u) 2
€,Vjel}.
They ¢ function has the following

properties:

i- Xa®) = Du(t) , v

te R*

ii-  + Ac Bc M
= Xxa(t) =2 xp() ,
ViteR
X AuB ®) =
{xa®),xs®) },
V ot e Rfyult) =
Xz, teR"
Xa=he A is
precompact :
where h(x) as in (1)

Definition 2.13: Let ¢ M, K is
probabilistic bounded , T: K —» 2™
and T(K) is probabilistic bounded
subset of M3 VB c K and

Xre) ) <xp (), Vt>0

implies that B is pre-compact then T
is called a condensing mapping on K
w.rt. x.
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3. Fixed Points b —
metric spaces
Let @ denoted the class of all function
@:RT - R* which satisfying the
following conditions:

(1) ¢ is continuous ,

(2) ¢ is non- decreasing,

(3) p(t)<t.Vt>0 ,and

@ X" <o, vt ER"
Thus ¢"(0) = 0 for each n and
limo @™(t)= 0Vt > 0.

in general

Directly, we have the following
Lemma
Lemma 3.1: If {u,} is a bounded

sequence in M with constant bound
K satisfying
A(un’un+1’um) < qon (k)! Vm>ne
N,
where  ¢@: R* - R* satisfying
Yo @(t) <oV t € R*then {u,} is
Cauchy.
Theorem 3.2: Let M be a general
b — metric space and T: M 3 K(M)
be a set-valued mapping. if M is T —
orbitally complete and
A(Tx,Ty,z) <p(A(x,y,z) ) ...

(2) Vx,y,z e M withx ¢ T(x),y €&
T(y)

for all x,y,zeM with x ¢
T(x),y € T(y) , where ¢ €.
Then T has a fixed point.

Proof: Let x, € M, define {x,} by
Xp+1 € Tx, ,n =20

The proof is divided into three steps:
we must prove that

- A (xna Xn+1) Xm) < q)n( L)

3
for any m>n :
L = limm—)OO Z?;O me—i (pi (q)!
q= max{ A (XO, X1, xo), A
(x0, X1, x1) }.

- {x,}in(2) isbounded .

- limyLex, = u € Tu
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For first step, from (2)
A(xnvxn+1’x‘m) < A( Tx‘n—l,Txn )
Xm)
= @ ( (xn—lvxn’xm) )’ (4)
n=172,..

By induction,

A (xnyxn+1lxm) = (,0( A(xn—la Xns xm) )
<OX(A(Xn-2, Xn-1, Xm))--..<P™ (A(X,
X1, Xm)) .. (5

By using Proposition (2.1) , definition
of general b — metric and (5) we get
A(x01 X1, xm) < b A (-XOI Xm—1
Xm-1) + b? A (X1, X1, Xm—1) +
b?A (xm, xm—l,xm—l)

< bA(xy X1, Xm—1) +
b2e™ 1 (A(xg,X1,%0) )  tb?

@™ H(A(xo, %1, %1) )

Since q = max{(xy, x1. Xo),
A(Xo, X1, x1)}, then

A (XOI X1, xm) = Zﬁo me_l (pl (q)

<L <o
Substituting into (5) yield (3). For
second step, for any integers s >

m > n, there exists p and r such
that

AQxn, X X5) = Axy Xn+p) Xntr)

By similar argument, we have A (x,,
Xm Xs) < oo. This showing the second
step. Moreover,

Lemma (3.1) implies that {x,} is
Cauchy, hence convergenttou € M.
For third step

Alxpi1, Tu, x,) < A(Txy, Tu xy)

<@ (A(xy, u xn))
= (u,Tu,u)= 0,asn—->o , and
hence u € Tu.

As a special case of the above
theorem, we give
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Corollary 3.3: Let M, A and T be in
Theorem (3.2) such that
A(Tu,Tv,w) <

A4 (wv,w) u,v,w €
M withu ¢ T(uw) , u é
T(uw) (6)

where 0 < A<1. Then T has a fixed
point.

For x — condensing, we need the
following lemma:

Lemma 3.4: Let M, A and M = 2M
be y —condensing mapping. If M an
T — orbitally bounded and complete
Thenmis compact, vu € M.

Proof: Let ue M and M = {u,} ,
where u,, =T™u . Then

M= {u}u{Tu,T?u,...}
= {uju T(M)
If M is not pre-compact,
theny (M) = x (T(M)) < x (M),
which is a contradiction.

Therefore, M = O(u) is compact,
since M is complete.

Theorem 3.5: Let T: M 3 CB(M)
be an orbitally continuous y —
condensing mapping on a
T — orbitally bounded complete
general b — metric space M . If
A(Tx, Ty ,z)< A(x,y,2), ... (7)
Vx,y,z €M, x &€ T(x),y & T(y)
then T has a fixed point .

Proof: Suppose that x, in M , then by
Lemma(3.4) M = 0(x,) is compact.
Since T is continuous on M then
A (Tx,Ty,z)and A(x,y,z) are
bounded.

Define the well-defined

S: M3*>R* by S(xyz) =

A(Tx, Ty ,z)
T Vx,y,z € M
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By the continuity of T, S is
continuous. The compact of product
sets is compact implies that M3 is
compact. So, S attains its maximum at
(u,v,w) € M3. Call the value C from
(3.1) , 0<C < 1. By definition of S

we get
A(Tx, Ty ,z)

A%y ,z)
Sx,y,z) < S(u,v,w)=2C

for all x,y,ze M with x ¢
T(x),y € T(y), Now, the result
follows from Corollary (3.3). This
completes the proof.

Define
6(x,y,z) = 6(0(x) U O(y) U

0 (2) _
6(x,y,z) = 6( O(x) U O(y) U

0(2))

Theorem 3.6: : Let T, : M — M are
commuting orbitally continuous y —
condensing mappings , i = 1,2, 3, such
that

A (Tix, Ty, Tsz ) < 8(x,y,2)
Vx,y,z€ Mand Tix # T,y # T3z
(8)
If M is orbitally bounded and
complete. Then 3Ilue M,T;(u) =
u, vi.

Proof: Let O5(x) = { T¥ T T} :
k,m,n =0,1,2 ...} be the orbit of x
by T;, T, , T5 .

Since, x (Or, (X))= max {x(x) ,
x( O, (Ty X))} = x (Ty (O, (%))
and T; is condensing =07, (X) pre-
compact. Similarly for 05 (x);

X (03(x)) = max{x (Or, (x)) , x
(Or, (Or, (x) ) : X
(Or, (Or, (Or, (x)))} -
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Therefore, the condition of
condensing= 05 (x) is totally
bounded, = pre-compact.

Now, if My= O03(x) , so, M, is

compact . Clearly T; (M,) c M, .
i = 1,2,3. Now, let

Mi :n?lo=1 Tin(Mi—l) !i = 11 213
Thus M; is T; —invariant,i = 1,2,3.
The finite intersection property assures
that M;is non-empty compact subsets,
i =1,23.

Suppose u € M, , there exist x,€
T (M,) such that Ty(x,) = u,
n=12..

Thus a subsequence, say also (x;)
convergesto v € M, .
Since {xp41, Xpiz2 5 -} © T{(My)

and T/'(M,) € My=> v € T{"(M,),
n=1,.2,..

We have v € M; and T;(v) =u
=>T,(M;) =M, .

The properties of M, and T, = T,
(M) = My , Ty (M3) = Ms.
Similarly, T; (M,) = M, , T; (M3) =
Ms ,
i=1,23.
Now, We claim that M5 singleton, and
M; = {x} , then x is the singleton
fixed point of Ty, T,, T5 .
If not, 6 (M3) > 0, the compactness of
M; = 3a,b,c € Mz, a#b+*c
3 §(M3) = A (a,b,c) . This implies
that
a €Ty (a1), b €T, (by), ¢ €T3(ca),
for a,, by, c;€ M5, hence, by ( 8), we
get
Or, (a;) U Or, (b1) U Or, (¢1) € M;
=M,,
0<8(Ms)=A(a,b,c)<6(0r, (ar)
U Or, (b)) VU Or, (¢1)) = 6(M3)
which is a contradiction. So x is
unique.
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Note that, it is possible to modify Alp,p,Tw,) =A(Tp,Tp,Twy,)
Theorem (3.6) for finite commuting
continuous  condensing  mappings. < A (»,Tp,
Also, the composition of two compact wy) ...(11)
(moreover, y — condensing) mappings
Is compact Taking the limit as n — oo implies
(x — condensing), implies that that T is continuous at p.
Corollary 3.7: Let M be as theorem The following example shows that the

(3.6)and T : M — M be an orbitally

4 ) condensing conditions in (8) and (9)
continuous compact mapping such that

A (T"u, TSv, T'w) < 8(u,v,w) ... are essential.
9) Example  3.9: Let M =N,
Yu,v,,w € M with # Tu |, Am.n.k) =
v+ Tv,w= Tw and r,s,and t 0, m=n=k
are fixed positive integers . Then T r+1 . s
— n<m, k,r is any positive real number

has a unique fixed point in M.

_ Then(M ,A) is complete general
Proof: Fix T, =T" , T, =T°% , T3 = _ ) )

Tl(n) = TZ (n) = T3 (n) =n++ 1, vn
Corollary 3.8: Let MandT be as _ ) L
Corollary (3.7) such that which have no fixed point in M.

A(u,v,w), A(u, Tv madily, one checks that Ty, T,, T5 satisfy

A(Tu,Tv, T Aw,T A(u,T
(Tu,Tv,Tw)<maxyA(v,Tv,w), A(u, vc’gﬁ%ﬁ ions (8), (9) except the

A(v,Tu,w)

... (10) condensing property, since. §(M)=
Yu,v,w € M with u# Tu,v # S(M\{1}) =T
Tv,orw # Tw . Then T has a
unique  fixed point  pinM. Theorem 3.10: LetT: M - M
Moreover T is continuous at p. be a y— condensing orbitally

) ) S continuous mapping and Mbe a
Proof: The inequality (10) implies complete bounded general b —

that A(Tu,Tv, Tw)<
6(u,v,w)and the existence and
uniqueness of a fixed point p

metric space. Let € M. If (9) holds
on O(a) , then T has a unique

follow from corollary (3.7). For fixed point p € O0O(a), and
continuity, let {w,} c M with w,, # limy, e Tyx = p,Vx € 0(a).

p f or each n and lim,_, w, = p.

From (10)
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Proof: Lemma (3.4)
and hypotheses = T is compact.
Now apply corollary (3.7).

Corollary 3.11: LetM as in

Theorem (3.9)and T : M — M be
a  continuous  y —condensing
mapping satisfying (10) for all
xX,y,z € M withx # Tx ,y #
Ty,orz # Tz . Then T has a
unique fixed pointp € M.

Theorem 3.12: LetT: M -» M
be a mapping on a

general b —metric  space M

Suppose that 3a € M3 0(a) is
bounded and complete. Suppose
thatT  is continuous and y —

condensing on O(a) and satisfies

(7) vx,y,z € O(x) , and x #
Tx ,y+ Ty, z +# Tz . Then T

has a fixed pointin O(a) .

Proof: If3n € N 3 T"(a) =T"*!
(a)=> T has a fixed point in 0(a)
(since Lemma (3.4) implies that
O(x) is compact). Assume that
T"(a) # T"*! (a), Vn.Let ube
an accumulation point  of
O(a) andu # Tu,ThenT satisfies
condition (7) Vx,y,z € 0(a).
Therefore, by Corollary (3.7) , T
has a unique fixed point p €

0(a) This contradicts the
assumption that u # Tu. Hence
u = Tu, for some accumulation

pointu € O(a) .
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4. Fixed Points in b—
Spaces

Consider

W =

{og : R > Rt wis continuousl

Menger

®(0) = 0,
w(a+b)= @+ o),

a b eRt )
If A fis an Archimedean t - norm with
the additive generator f and A4 is t —
norm 3 4 = A then by
Ay 020, (4 9) = sup {w;u 20,
w1(u) < foAp,q,q((‘)Z(u))p'q € M ;

®W1,0; € 0}

a metric on b— Menger space
(M, A, 4) is defined and
Ay, w,w,induces the (e, 1) - topology.

Theorem 4.1 : Let (M, A,4) bea b —
Menger space T: M = CB(M)be a
closed mapping and @ # K ¢ M be a
probabilistic bounded such that T( K)
is probabilistic bounded. If M is
symmetric and:
a) there exist w;, w, € &
and f:[0,1] -

[0, b]is a decreasing function, b > 0 3

infxeK infyeTx Sup {u; u =
0,w1(u) < f°Ax,y,y((1)2(u))} = 0.
b) T is x — condensing on K.

Then T has a fixed point.

Proof: The condition (a) follows that

vn € N,3x, € Kandy, € Tx,,
Q) sup{w; u>0,w; (u) <

foluy, yn,yn(@2(W) ) } <

27",
and then,
@ w27 > f°Axn,yn,yn
(02(277) )
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We shall prove that (2) implies that
Ve >0, limy Ay, 4. 5, (€ =1
=>Ve >0and A € (0,1) ,3ny (6, 4) €
Nso that Ay , , (6)>1—1 |,
vn = ny(e, A) . Since w; is continuous
and w1(0) = 0, Iny(b) € N = wy,
2™ < b, Vn = ny(b)=> for n >
ny(b) , from (2) it follows that,
fH w27 ] <
Ay, yn,yn(UQZ(z_n) )
Letn, (¢,4) € N such that
@W1(27") < f(1-1), 02(27") <€,
n >nq (6,1).
then
Axn,yn,yn(e) = Axn,yn,yn((‘)Z(Z_n) )
> f ou(2™) ] > 1-4
For everyn > ny(€,4,b) = max
{ny(b), n; (¢,4) }, which means that
limy e Ay, y, 5, (€) = 1.
From (b), we obtain that {x,,; n € N}
is compact =there exists {x,, }xen @
convergent sub-sequence. If z =
limy_ 0 X, = limy_e Y, = 2. Since
Y, € Txnk =z € Tz, by closeness of
T.
For u > 0, we need to prove that
X {xn;nEN}(u) =X {yn;neN}(u))'
Let € € (0, u) andy ¢, ;nem(u —
€) > 0. Itis enough to prove that

X {Yn:nEN}(u’ - 6)
SX{xn;nEN}(u) .
Let 7 < X (y,;neny(u — €)>there
exists Ay, 4y, ..., Anc M such that
nin € N} = Ul 4; , Da(u —
€) = rVje{l2..,n}.
Thus, infyye ajAxyy (u—¢€) >r
andso Ay, (U-€)>T1 ,Vx,y €A4;.
Let pe (0,r) and g € (0,1) such

that 1>2u,w>1—q =
A(u,A(r,w))
>Tr-p.
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Sinced (1,4 (r,1)) = land the
mapping (u,w) -
A (u,4 (r,w)) iscontinuous such a

number q exists. Forj € {1,2,...,n},
Bj = { z ; Az,y,y(% )
>1-gq,forsomey €4;}.

If n; (6,q) € N issuch that

Axn'.'Vn,Yn(ZE)>1_q ) vn = nq
(,9)

then, {x,; n=ny (6,q) } S
U, B, .

We shall prove that
SUPs <u infx Y EBj Ax,y,y (S) =
r-p.
If x € Bjand y € B;, then there
exists x* € T; and y* € A so that
Ax,x*,x*(% ) >1-q , Ay,y*,y*(i )
>1-q.
Since A+ x+ y+ (U — €) =1 we have
that
Ax,y,y (u 'E)EA (/lx,x”“,x~ (Z) )
A (Aye yryr(u-€) :
€

Ax*,y Y (Z)))
=4 (Ax,x*,x* ( Z ) ) A(T‘ )
Ax*,y Y (Z))) >r-P
which implies

SUPs <y infx,yij Ax,y,y (s) =
r- P.

and so
X{xp;n=nq(eq9)} (u) = T- p.
Since
X{xn;neN}(u) = X{xp;nz=nq(eq)}
(u),

we obtain that y(, ;neny(u =T).

then X{YninEN}(u = X{xn;neN}(u):
Yu>0. Similarly, Xixn;neny()
< X{yn;neN}(u)-

So, we proved that

X{yn;neN}(u) :X{xn;nEN}(u) )
Yu>0.
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