Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.1 Year 2016

Page 1 - 4

Noori. F/ Bassam. S

On a Completion of Fuzzy Measure

Noori F. Al- Mayahi Bassam S. Hashem

Department of Mathematics

College of Computer Science and Mathematics

University of Al-Qadisiya

Nfam60@yahoo.com , bassam_asl@yahoo.com

Recived : 8\11\2015	Revised : //	Accepted : 30\12\2015
----------------------------	---------------------	-----------------------

Abstract: In this paper, we introduce some properties in completeness of fuzzy measure and we get some relations between them.

Keywords: Fuzzy measure, null set, countably weakly null-additive fuzzy measure, additive fuzzy measure.

Mathematics subject classification : 64S40

1. Introduction

The fuzzy measure, defined on a classical σ – *field*, was introduced by Sugeno [7]. Ralescu and Adams [1] generalized the concepts of fuzzy measure and fuzzy integral to the case that the value of a fuzzy measure can be infinite, and to realize an approach from subjective.

Wang [12,11] and Kruse [4] studied some structural characteristics of fuzzy measures and proved several theorem about fuzzy measure.

The notion of fuzzy measure was extended by Avallone and Barbieri, Jiang and Suzuki [9], Narukawa and Murofushi[10], Ralscu and Adams [1] as a set function which was defined on $\sigma - field$ with valus in $[0, \infty]$. After that, many authors studied the fuzzy measure and proved some results about it as Guo and Zhang [10], Kui [6], Li and Yasuda [3], Lushu and Zhaohu [5], Minghu[2].

In this paper, we mention the definition of completion of fuzzy measure with some properties, and prove some new relations deal with completeness of fuzzy measure.

Definition (1):[13]

Let (Ω, \mathcal{F}) be a measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is called a fuzzy measure if

1.
$$\mu(\emptyset) = 0$$

2. $\mu(A) \le \mu(B)$, where $A \subseteq B$

Definition (2):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, $A \in \mathcal{F}$ is said to be $\mu - null$ set if $\mu(A) = 0$. The fuzzy measure μ is said to be complete on \mathcal{F} if \mathcal{F} contains the subset of every $\mu - null$ sets.

Definition (3):[12]

 μ is called countably weakly null-additive, if for any $\{A_n\} \subset \mathcal{F}$,

$$\mu(A_n) = 0$$
, for all $n \ge 1 \Longrightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$

Definition (4):[12]

 μ is said to be additive, if $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$.

Noori. F/ Bassam. S

2. Main results

Theorem (1):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measurable space and μ is countably weakly null-additive and $\delta_{\mu} = \{E: E \subset A \in \mathcal{F} \text{ and } \mu(A) = 0\}$. Then δ_{μ} is $\sigma - ring$.

Proof:

1. Clearly $\emptyset \in \delta_{\mu}$.

2. Let $E_1, E_2 \in \delta_\mu \Longrightarrow$ there exists $A_1, A_2 \in \mathcal{F}$ such that $E_1 \subset A_1, E_2 \subset A_2$ and $\mu(A_1) = 0, \mu(A_2) = 0$.

 $E_1 \; / \; E_2 \subset E_1 \subset A_1 \in \mathcal{F}$ So $E_1 \; / \; E_2 \in \delta_\mu$.

3. Let $\{E_n\}$ be a sequence of sets in δ_{μ} n=1,2,... \Rightarrow there exist a sequence $\{A_n\}$ n=1,2,... of sets in \mathcal{F} such that E_n / A_n and $\mu(A_n) = 0$.

$$\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} A_n$$

Since \mathcal{F} is σ – *field*

$$\Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$$

Since μ is countably weakly null-additive

$$\Longrightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

So

$$\bigcup_{n=1}^{\infty} E_n \in \delta_{\mu}$$

Therefore

$$\delta_{\mu}$$
 is $\sigma - ring$

Theorem (2):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measurable space and μ is additive, define $\overline{\mathcal{F}} = \{(E \cup E_1)/E_2 : E \in \mathcal{F}, E_1, E_2 \in \delta_{\mu}\}$. Then $A \in \overline{\mathcal{F}}$ iff there exists $M, N \in \mathcal{F}$ such that $M \subset A \subset N$ and $\mu(N/M) = 0$.

Proof:

Let $M, N \in \mathcal{F}$ and $M \subset A \subset N$ and $\mu(N / M) = 0$.

So

$$A = (N \cup \emptyset) / (N / A)$$

Since

$$N/A \subset N/M \in \mathcal{F}$$
 and $\mu(N/M) = 0 \Longrightarrow N/A \in \delta_{\mu}$.

Therefore

$$A\in \bar{\mathcal{F}}.$$

Suppose that $A \in \overline{\mathcal{F}}$, then $= (E \cup E_1)/E_2$, $E \in \mathcal{F}$, E_1 , $E_2 \in \delta_{\mu}$.

$$\Rightarrow \text{ there exist } A_1, A_2 \in \mathcal{F} \text{ such that } \mu(A_1)$$
$$= 0, \mu(A_2) = 0$$

and $E_1 \subset A_1$, $E_2 \subset A_2$, $E \ / \ A_2 \subset A \subset E \cup A_1$

$$E \cup A_1$$
, $E/A_2 \in \mathcal{F}$ and $\mu((E \cup A_1)/(E/A_2))$

$$= \mu ((A_1 / E) \cup (A_2 \cap E)) = \mu (A_1 / E) + \mu (A_2 \cap E)$$

Since

$$A_1/E \subset A_1$$
 and $A_2 \cap E \subset A_2 \Longrightarrow \mu(A_1/E)$
= 0 and $\mu(A_2 \cap E) = 0$

So

$$\mu((E \cup A_1)/(E/A_2)) = 0.$$

Corollary (1):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measurable space and μ is additive. Then $A \in \overline{\mathcal{F}}$ iff $A = E \cup M$, $E \in \mathcal{F}$ and $M \in \delta_{\mu}$.

Proof:

Suppose that $A \in \overline{\mathcal{F}}$. By theorem (2) there exist $M, N \in \mathcal{F}$ such that $N \subset A \subset M$ and $\mu(M / N) = 0$

$$A=N\cup (A/N)$$
 , $N\in \mathcal{F}$

Noori. F/ Bassam. S

Since

$$A/N \subset M/N \in \mathcal{F}$$
 and $\mu(M/N) = 0 \Longrightarrow A/N \in \delta_{\mu}$

Conversely

Suppose $A = E \cup M$, $E \in \mathcal{F}$ and $M \in \delta_{\mu}$

 $A = (E \cup M) / \emptyset \qquad , \emptyset \in \delta_{\mu} \Longrightarrow A \in \bar{\mathcal{F}}$

Corollary (2):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measurable space and μ is additive. Then $A \in \overline{\mathcal{F}}$ iff A = E / D with $E \in \mathcal{F}$ and $D \in \delta_{\mu}$.

Proof:

Suppose that $A \in \overline{\mathcal{F}}$

$$\Rightarrow \text{ there exist } M, N \in \mathcal{F} \text{ such that}$$
$$N \subset A \subset M \text{ and } \mu(M / N) = 0$$
$$A = M/(M/A) \ , M \in \mathcal{F}$$

Since

$$M/A \subset M/N \in \mathcal{F}$$
 and $\mu(M/N) = 0$

So

$$M/A \in \delta_{\mu}$$
.

Conversely

Suppose that
$$A = E / D$$
 where $E \in \mathcal{F}$ and $D \in \delta_{\mu}$

$$\Rightarrow A = (E \cup \emptyset)/D \qquad D, \emptyset \in \delta_{\mu}$$
$$\Rightarrow A \in \overline{\mathcal{F}}$$

Theorem (3):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measurable space and μ is additive. Then $\overline{\mathcal{F}}$ is $\sigma - ring$.

Proof:

1. Clearly $\phi \in \overline{\mathcal{F}}$.

2. Let $\{A_n\}$ n = 1, 2, ... be a sequence of sets such that $A_n \in \overline{\mathcal{F}}$

$$\implies A_n = M_n \cup N_n$$
 where $M_n \in \mathcal{F}$ and $N_n \in \delta_{\mu}$.

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (M_n \cup N_n) = \left(\bigcup_{n=1}^{\infty} M_n\right) \cup \left(\bigcup_{n=1}^{\infty} N_n\right)$$

Since

$$\begin{aligned} \mathcal{F} \text{ is } \sigma - field \text{ and } \delta_{\mu} \text{ is } \sigma - ring \\ \implies \bigcup_{n=1}^{\infty} M_n \in \mathcal{F} \text{ , } \bigcup_{n=1}^{\infty} N_n \in \delta_{\mu} \end{aligned}$$

So

$$\bigcup_{n=1}^\infty A_n\in \bar{\mathcal{F}}$$

3. Let $A, B \in \overline{\mathcal{F}}$ from Corollary(1) we obtain $A = M_1 \cup N_1$

$$B = M_2 \cup N_2 .$$

$$A/B = (M_1 \cup N_1)/(M_2 \cup N_2)$$

$$= ((M_1 / M_2) / N_2) \cup ((N_1 / M_2) / N_2)$$

$$= [((M_1 / M_2) / E_2) \cup ((E_2 / N_2) \cap (M_1 / M_2))] \cup ((N_1 / M_2) / N_2)$$

$$N_2 \subset E_2 \in \mathcal{F}$$
 , $\mu(E_2) = 0$ $A/B \in \overline{\mathcal{F}}$

Therefore

$$\overline{\mathcal{F}}$$
 is $\sigma - ring$.

Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.1 Year 2016

References

[1]D.Ralescu, G.Adams, "The fuzzy integral", J.Math. Anal. Appl. 75(1980)562-570.

[2] H. Minghu, W. Xizhao and W. Congxin, Fundamental convergence of sequence of measureable functions on fuzzy measure space, Fuzzy Sets and Systems, 95(1998), 77-81.

[3] Jun Li, Radko Mesiar and Endre Pap, "Atoms of weakly null-additive monotone measures and integrals", Information Sciences 257 (2014) 183–192.

[4] Kruse, R., On the construction of fuzzy measures. *Fuzzy Sets and Systems*, 8(1982), 323-327.

[5] L. Lushu and S. Zhaohu, The fuzzy set-valued measures generated by fuzzy random variables, Fuzzy Set and Systems, 97(1998), 203-209.

[6] L. Y. Kui, "The completion of fuzzy measure and it's applications", Fuzzy sets and Systems 146(2001)137-145. [7] M. Sugeno, Theory of fuzzy integrals and it's applications", Ph. D. Dissertation, Tokyo Institute of Technology, 1974.

[9] Q. Jiang, H. Suzuki, Lebesgue and Saks decompositions of σ -finite fuzzy measure, Fussy Set and Systems, 75(1995) 181-201.

[10] Wang Zhenyuan and George J. Klir,"Fuzzy measure theory", Springer 978-1-4419-3225-9, 1992.

[11] Wang Zhenyuan, Asymptotic structural characteristics of fuzzy measure and their applications, Fuzzy Sets and Systems 16 (1985) 277-290.

[12] Wang Zhenyuan, The autocontinuity of set function and the fuzzy integral, 1 Math.Anal.Appl. 99 (1984) 195-218.

[13] Naomi Kochi and Zhenyuan Wang, An Algebraic Method to the Identication of Fuzzy Measures Based on Choquet Integrals, University of Nebraska at Omaha Kerrigan Research Minigrants Program

حول القياس الضبابي الكامل

نوري فرحان المياحي بسام سلمان هاشم

جامعة القادسية / كلية علوم الحاسوب وتكنولوجيا المعلومات / قسم الرياضيات

المستخلص : في هذا البحث ، قدمنا بعض الخصائص في كمالية القياس الضبابي وحصلنا على بعض العلاقات بينها