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1. Introduction 
 The fuzzy measure, defined on a classical        , 

was introduced by Sugeno [7]. Ralescu and Adams [1] 

generalized the concepts of fuzzy measure and fuzzy 

integral to the case that the value of a fuzzy measure 

can be infinite, and to realize an approach from 

subjective.  

Wang [12,11]and Kruse [4] studied some structural 

characteristics of fuzzy measures and proved several 

theorem about fuzzy measure.  

The notion of fuzzy measure was extended by 

Avallone and Barbieri, Jiang and Suzuki , -, 

Narukawa and Murofushi,  -, Ralscu and Adams , - 

as a set function which was defined on         with 

valus in ,   -. After that, many authors studied the 

fuzzy measure and proved some results about it as Guo 

and Zhang ,  -, Kui , -, Li and Yasuda , -  Lushu and 

Zhaohu , -  Minghu, -. 

In this paper, we mention the definition of completion 

of fuzzy measure with some properties, and prove 

some new relations deal with completeness of fuzzy 

measure. 

 

 

 

Definition (1):[13] 

Let (   ) be a measurable space. A set function 

    ,   ) is called a fuzzy measure if 

1.  ( )    

2.  ( )   ( )             

Definition (2): 

Let (   ) be a fuzzy measurable space,     is said 

to be        set if   ( )   . The fuzzy measure   is 

said to be complete on   if    contains the subset of 

every        sets. 

Definition (3):[12] 

  is called countably weakly null-additive, if for any 

*  +     

 (  )                  (⋃  

 

   

)    

Definition (4):[12] 

  is said to be additive, if  (   )   ( )   ( ) 

whenever       and        
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2. Main results 

Theorem (1):  

Let (     ) be a fuzzy measurable space and   is 

countably weakly null-additive and    *      

       ( )   +.Then    is         

Proof: 

1. Clearly      . 

2. Let             there exists          

such that              and  (  )      (  )  

  . 

              So          . 

3. Let *  + be a sequence of sets in     

n=1,2,…   there exist a sequence *  +  n=1,2,… of 

sets in   such that       and   (  )    . 

⋃  

 

   

 ⋃  

 

   

 

Since   is         

 ⋃  

 

   

   

Since   is countably weakly null-additive  

  (⋃  

 

   

)       

So 

⋃  

 

   

     

Therefore  

              

Theorem (2): 

Let (     ) be a fuzzy measurable space and   is 

additive, define  ̅  {(    )   ⁄               

  }.Then    ̅ iff there exists       such that 

          (  ⁄ )          

 

Proof: 

Let       and            (   )    . 

 So 

  (   )  (   ) 

Since 

  ⁄    ⁄          (  ⁄ )      ⁄       

Therefore 

    ̅  

 

Suppose that     ̅  then  (    )   ⁄     

              . 

                                 (  )

     (  )     

                                

         ⁄         ((    ) (   ⁄ )⁄ ) 

  ((    )  (    ))   (    )   (    ) 

Since 

    ⁄                 (   ⁄ )

        (    )     

So 

  ((    ) (   ⁄ )⁄ )     

 

Corollary (1): 

Let (     ) be a fuzzy measurable space and   is 

additive. Then    ̅                        

     

Proof: 

Suppose that    ̅ . By theorem (2) there exist 

      such that       and  (   )    

    (  ⁄ )       
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Since 

  ⁄    ⁄          (   )         ⁄  

Conversely  

Suppose                      

  (   )  ⁄                     ̅   

Corollary (2): 

Let (     ) be a fuzzy measurable space and   is 

additive. Then    ̅ iff       with     

and      . 

Proof: 

Suppose that    ̅  

                              

             (   )     

   (  ⁄ )⁄        

Since  

  ⁄    ⁄          (   )     

So  

     ⁄    

Conversely  

Suppose that       where      and      

   (   )  ⁄                   

    ̅                                               

 

 

 

 

 

 

 

Theorem (3): 

Let (     ) be a fuzzy measurable space and   is 

additive. Then  ̅ is         

Proof: 

1. Clearly    ̅   

2. Let *  +          be a sequence of sets 

such that     ̅  

                                     

 

⋃  

 

   

 ⋃(     )

 

   

 (⋃  

 

   

)  (⋃  

 

   

) 

Since  

                             

 ⋃    

 

   

  ⋃  

 

   

     

So  

⋃  

 

   

  ̅ 

3. Let        ̅ from Corollary(1) we obtain 

           

          . 

  ⁄  (     ) (     )⁄  

 ((     )    )  ((     )    ) 

 [((     )    )  ((     )  (     ))]  

((     )    )  

 

            (  )           ⁄    ̅   

Therefore  

 ̅               
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 حول انقياس انضبابي انكايم

 نوري فرحاٌ انًياحي       بساو سهًاٌ هاشى

 جايعة انقادسية / كهية عهوو انحاسوب وتكنونوجيا انًعهويات / قسى انرياضيات

, قدمنا بعض الخصائص في كمالية القياس الضبابي وحصلنا على بعض العلاقات بينها في هذا البحثانًستخهص : 
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