Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.2 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 102 - 109

Ali .A/Reyadh .D

On the third natural representation module *M* (n-3,3) of the permutation groups

Ali Abdul Sahib M.Al-Butahi Department of Mathematics and computer applications College of Sciences

Al-Nahrian University alibotahi@gmail.com

Reyadh Delfi Ali Department of Mathematics

College of Education for Pure Science Kerbala University reyadhdelphi@gmail.com

Recived : 2\4\2018

Accepted : 15\4\2018

Available online : 17/5/2018

DOI: 10.29304/jqcm.2018.10.2.386

Abstract:

The main purpose of this work is to propose the third natural representation M (n-3,3)of the symmetric groups over a field **F** and prove that M (n-3,3)is split iff p does not divide $\frac{n(n-1)(n-2)}{6}$.

Revised : 9\4\2018

Keywords: symmetric group, group algebra FS_n , FS_n -module, Spechet module, exact sequence.

Mathematics Classification :20C30.

1. Introduction

1935, W In .Specht introduced tableau correspondence polynomials ,known Specht polynomials, that proved how а given polynomial can be written as а linear combination other of polynomials.(see[Kerber:2004]).This was the results of Specht study on representation theory of symmetric groups, after he faced the problem when the symmetric group acts, in natural way, a tableaux. However, the result of as permutation a standard tableau can be a nonstandard tableau and this nonstandard tableau can be written as a linear combination of Specht polynomials. On the other hand, the representation with partition $\mu = (n - 1, 1)$ for a positive integer n, was first studied by

H.K.Farahat in 1962 [Farahat:1962]. This type of representation is called the natural representation. Seven years later, M.H.Peel introduced in [Peel:1969] and [Peel:1971] the second representation of the symmetric groups and renamed Farahat natural representation by the first natural representation .In Peel's representation, the partition was then $\mu = (n - 1)^{-1}$ for a positive integer n. He also 2,2) represented the r^{th} -Hook representation where the partition $\mu = (n - r, 1^r)$, for any $r \ge 1$. For the author's knowledge, no one has studied the 3rd-natural representation so far . Therefore, this work represent of the symmetric groups over a field **F** and $x_1, x_2, ..., x_n$ defined to be linearly independent commuting variables over F.

2. Preminaries

Definition 1: Let $X = \{x_1, x_2, ..., x_n\}$ be a finite set, then the symmetric group on X is the group whose elements "permutations" can be bijective function from viewed as a $F[x_1, x_2, ..., x_n]$. The $\mathbf{F}[x_1, x_2, ..., x_n]$ onto symmetric group on X is denoted by S_X or S_n . Then \mathbf{FS}_n is called the group algebra of the symmetric group S_n with respect to addition of functions, composition of functions and product of functions by scalars [Joyce:2008].

Definition 2: Let n be a natural number then the sequence $\mu = (\mu_1, \mu_2, ..., \mu_l)$ is called a partition of *n* if $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_l > 0$ and $\mu_1 + \mu_2 + \dots + \mu_l = n$, the set $D_{\mu} =$ $\{(i, j) | i = 1, 2, ..., l; 1 \le j \le \mu_i\}$ is called $\mu - \mu_i$ diagram and any bijective function $t: D_{\mu} \rightarrow$ $\{x_1, x_2, \dots, x_n\}$ is called a μ -tableau. A μ tableau may be thought as an array consisting of *l* rows and μ_1 columns of distinct variables t((i, j)) where the variables appear in the first μ_i positions of the *i*th row and each variable t((i,j)) appears in the *i*th row and the *j*th column ((i, j)-position) of the array t((i, j)) will be denoted by t(i, j) for each $(i, j) \in D_{\mu}$. The set of all μ -tableaux will be denoted by T_{μ} . i.e $T_{\mu} = \{t | t \text{ is } a \mu - tableau\}$. Then the function $h: T_{\mu} \to F[x_1, x_2, ..., x_n]$ which is defined by $h(t) = \prod_{i=1}^{l} \prod_{j=1}^{\mu_i} (t(i,j))^{i-1}$, $\forall t \in T_{\mu}$ is called the row position monomial function of T_{μ} , and for each μ -tableau t, h(t) is called the row position monomial of t. So $M(\mu)$ is the cyclic FS_n -module generated by h(t)over FS_n .[Ellers:2007]

3. The Third Natural Representation of S_n

In the beginning, we determine some denotations which we need them in this paper.

1. Let
$$\sigma_1(n) = \sum_{i=1}^n x_i$$
.
2. Let $\sigma_2(n) = \sum_{1 \le i < j \le n} x_i x_j$.
3. Let $\sigma_3(n) = \sum_{1 \le i < j < k \le n} x_i x_j x_k$.
4. Let $C_l(n) = x_l (\sigma_2(n) - \sum_{j=1 \atop j \ne l}^n x_l x_j); l = \frac{n}{2}$

1,2,...,*n*. Then $\sum_{i=1}^{n} C_{i_i}(n) = \sigma_3(n)$ and $dim_F(F\sigma_1(n)) = dim_F(F\sigma_2(n)) =$

 $dim_F(F\sigma_3(n)) = 1. F\sigma_1(n), F\sigma_2(n)$ and $F\sigma_3(n)$ are all FS_n -modules, since $\tau\sigma_k(n) =$ $\sigma_k(n) \ \forall \ k = 1,2,3.$ Let $u_{ij}(n) = C_i(n) - C_i(n); i, j =$ 5. 1,2, ..., *n* .

We denote \overline{V} to be the FS_n -modules generated by $C_1(n)$ over FS_n and \overline{V}_0 to be the FS_n submodule of \overline{V} generated by $u_{12}(n)$ over S_n .

Definition3.1: The FS_n -module M(n-r,r)defined by M(n-r)

$$r) = FS_n x_1 x_2 \dots x_r$$

 $n \ge r$ is called r^{th} -natural representation module of S_n over F.

Lemma3.2:The set $B(n - 3,3) = \{x_i x_j x_l : 1 \le 1\}$ $i < j < l \le n$ is a F-basis of M(n - 3,3) and $dim_F M(n-3,3) = \binom{n}{3}; n \ge 3.$

Proof: Clear

Theorem3.3: The set

 $l \leq n, (i, j, l) \neq (1, 2, 3)$ is a F-basis of $M_0(n - 1)$ 3,3)and $dim_F M_0(n-3,3) = \binom{n}{3} - 1$; $n \ge 3$. **Proof:** Since $M_0(n-3,3) = \{ \sum_{1 \le i < j \le n} k_{ijl} x_i x_j x_l :$ $\sum_{1 \le i \le l \le n} k_{ijl} = 0 \text{ and } k_{ijl} \in F \}, \text{ we get that } B_0(n - 1)$ $(3,3) \subset M_0(n-3,3)$. To prove $B_0(n-3,3)$ generates $M_0(n-3,3)$ over F. Let $x \in M_0(n-3,3) \Rightarrow x =$ $\sum k_{ijl}$ $x_i x_j x_l$; $\sum_{j \in I : J \in I} k_{jjl} = 0$ $\Rightarrow x = \sum_{1 \le i \le l \le n} k_{ijl} x_i x_j x_l - 0. x_1 x_2 x_3$ $\Rightarrow x = \sum_{1 \le i < j < l \le n} \underbrace{k_{ij}}_{x_i x_j x_l} x_i x_j x_l - \left(\sum_{1 \le i < j < l \le n} \underbrace{k_{ij}}_{x_i x_j x_l}\right) x_1 x_2 x_3$ $\Rightarrow x = \sum_{1 \le i \le i \le l \le n} k_{ijl} x_i x_j x_l - \sum_{1 \le i \le l \le n} k_{ijl} x_1 x_2 x_3$

 $\Rightarrow x = \sum_{\substack{i < i < l < n}} k_{ijl} (x_i x_j x_l - x_1 x_2 x_3) \text{ with the}$ term 123 excluded from the summation since $k_{iil}(x_1x_2x_3 - x_1x_2x_3) = 0$. Hence $B_0(n - 3,3)$

generates $M_0(n-3,3)$ over F .Moreover $B_0(n-3,3)$ is linearly independent since if

$$\sum_{1 \le l < j < l \le n} \mathbf{k}_{ijl} (x_l x_j x_l - x_1 x_2 x_3) = 0 \implies$$

$$\sum_{1 \le l < j < l \le n} \mathbf{k}_{ijl} x_i x_j x_l - \sum_{1 \le l < j < l \le n} \mathbf{k}_{ijl} x_1 x_2 x_3 = 0$$

$$\Rightarrow \sum_{1 \le l < j < l \le n} \mathbf{k}_{ijl} x_l x_j x_l = 0 \text{ ,where } \mathbf{k}_{123} = .$$

 $\sum_{1 \le i < j < l \le n} k_{ijl} \quad \text{with} \quad \sum_{1 \le i < j < l \le n} k_{ijl} = 0 \quad \text{and} \qquad (i, j, l) \neq$

(1,2,3). By lemma (3.2) we have B(n - 3,3) is linearly independent. Thus we get $k_{ijl} =$ $0 \forall i, j, l; 1 \le i < j < l \le n$. Hence $B_0(n - 1)$ 3,3) is a F-basis of $M_0(n-3,3)$ and $dim_F M_0(n-3,3) = \binom{n}{3} - 1$; $n \ge 3$.

Theorem3.4:The set $B = \{C_i(n) | i = 1, 2, ..., n\}$ is a F-basis for $\overline{V}(n) = FS_nC_1(n)$. **Proof:** Let $\tau_i = (x_1 x_i) \in S_n$; $1 < i \le n$. Then $\tau_i(C_1(n)) = C_i(n); i = 1, 2, ..., n.$ Thus $C_i(n) \in \overline{V}(n); i = 1, 2, ..., n$. Hence B $\subset \overline{V}(n)$. Now if $w \in \overline{V}(n) \Longrightarrow w = \sum_{i=1}^{(n-1)!} \sum_{j=1}^{n} k_{ij} \tau_{ij} C_1(n)$ where $\tau_{ij} \in S_n$, $k_{ij} \in F$ and $\tau_{ij}(x_1) = x_j$, which implies that $\tau_{ij}(C_1(n)) =$ $C_i(n)$; j = 1, 2, ..., n. $\begin{aligned} & = \sum_{i=1}^{n} \sum_{j=1}^{n} k_{ij} \tau_{ij} C_1(n) \\ & = \sum_{j=1}^{n} \sum_{i=1}^{n-1} \sum_{j=1}^{n} k_{ij} \tau_{ij} C_1(n) \\ & = \sum_{j=1}^{n} \sum_{i=1}^{(n-1)!} k_{ij} C_j(n) = \sum_{j=1}^{n} d_j C_j(n) \\ & \text{, where} \qquad d_j = \sum_{i=1}^{(n-1)!} k_{ij} \qquad \text{Hence} \\ & \text{generates } \bar{V}(n) = F S_n C_1(n) \text{ over F.} \end{aligned}$ Hence В If $\sum_{i=1}^{n} k_i C_i(n) = 0 \Rightarrow k_1 C_1(n) + k_2 C_2(n) + k_2 C_2(n) = 0$ $\cdots + k_n C_n(n) = 0.$ $\Rightarrow k_1 + k_2 + \dots + k_n = 0$ since $C_l(n) =$ $\sum_{1 \le i < j < l \le n} x_i x_j x_l$. Thus B is a linearly independent. Therefore B is a basis of $\overline{V}(n)$ and $dim_F \overline{V}(n) = n.$

Theorem3.5: $\overline{V}(n) = FS_nC_1(n)$ and M(n-1,1) are isomorphic over FS_n .

Proof: Let $\varphi : M(n-1,1) \to \overline{V}(n)$ be defined as follows:

 $\varphi(x_i) = C_i(n); \quad i = 1, 2, ..., n.$ Then for each $\tau = (x_i x_j) \in S_n$ such that $\tau(x_i) = x_j$ we get that $\varphi(\tau x_i) = \varphi(x_j) = C_j(n) = \tau C_i(n) = \tau \varphi(x_i)$. Hence φ is a FS_n -homomorphism .Also y =

 $\sum_{i=1}^{n} k_i C_i(n) \text{ for any } y \in \overline{V}. \text{ Thus } \text{ for all }$

$$y \in \overline{V}$$
, $\exists w = \sum_{i=1}^{n} k_i x_i \in M(n - 1)$

1,1) such that $\varphi(w) = \varphi(\sum_{i=1}^{n} k_i x_i)$

$$= \sum_{i=1}^{n} \varphi(k_{i}x_{i}) = \sum_{i=1}^{n} k_{i}\varphi(x_{i}) =$$
$$\sum_{i=1}^{n} k_{i}C_{i}(n) = y. \text{ Hence } \varphi \text{ is an epimorphism of } k_{i}C_{i}(n) = y. \text{ Hence } \varphi$$

 $\sum_{i=1} k_i C_i(n) = y. \text{ Hence } \varphi \text{ is an epimorphism.}$ Thus $dim_F ker \varphi = dim_F M(n-1,1) - Q_i M(n-1,1)$

 $dim_F \overline{V} = n - n = 0 \implies ker \varphi = 0$. Then φ is a monomorphism.

Thus φ is a FS_n – isomorphism. Hence M(n-1,1) and \overline{V} are isomorphic over FS_n .

Theorem3.6: If *p* does not divides *n* , then $\overline{V}(n) = \overline{V}_0(n) \oplus F \sigma_3(n)$. **Proof** : From Theorem (3.5) we have a FS_n isomorphism $\varphi: M(n-1,1) \rightarrow \overline{V}(n)$ such that $\varphi(x_i) =$ $C_i(n)$; i = 1, 2, ..., n. And since $M_0(n-1,1) = FS_n(x_2 - x_1) \subset$ M(n-1,1), then $\psi = \varphi|_{M_0(n-1,1)}$ is a FS_n – isomorphism . Thus $\overline{V}_0(n)$ and $M_0(n-1,1)$ are isomorphic over FS_n which is irreducible submodule over FS_n when p does not divides *n* and $\sigma_3(n) \notin \overline{V}_0(n)$ when *p* does not divide *n* since the sum of the coefficients of the $C_i(n)$ in $\sigma_3(n)$ is *n*. Hence $\overline{V}_0(n) \cap F\sigma_3(n) = 0$, $F\sigma_3(n) \subset \overline{V}(n)$ and $\overline{V}_0(n) \subset \overline{V}(n)$.But $dim_F \bar{V}_0(n) + dim_F F \sigma_3(n) = n - 1 + 1 = n =$ $dim_F \overline{V}(n).$

Hence $\overline{V}_0(n) \oplus F\sigma_3(n) = \overline{V}(n)$ when p does not divides n.

Proposition 3.7 : If p does not divides n ,then \overline{V} has the following two composition series

 $0 \subset \overline{V}_0(n) \subset \overline{V}(n)$ and $0 \subset F\sigma_3(n) \subset \overline{V}(n)$. **Proof**: Since *p* does not divides *n*, then by Theorem (3.6) we have $\overline{V} = \overline{V}_0(n) \oplus F\sigma_3$, and $\overline{V}_0(n)$ is irreducible submodule when *p* does not divide *n*. Hence $\frac{\overline{V}}{F\sigma_3(n)} = \frac{\overline{V}_0(n) \oplus F\sigma_3(n)}{F\sigma_3(n)} \simeq \overline{V}_0(n)$. Thus $\frac{\overline{V}}{F\sigma_3(n)}$ is irreducible module when *p* does not divide *n*. Since $dim_F F\sigma_3(n) = 1$. Then $F\sigma_3(n)$ is irreducible submodule over FS_n . But $\frac{\overline{V}}{\overline{V}_0(n)} = \frac{\overline{V}_0(n) \oplus F\sigma_3(n)}{\overline{V}_0(n)} \simeq F\sigma_3(n)$. Therefore $\frac{\overline{V}}{\overline{V}_0(n)}$ is irreducible module over FS_n . Thus we get the following two composition series

 $0 \subset \overline{V}_0(n) \subset \overline{V}$ and $0 \subset F\sigma_3(n) \subset$

Theorem 3.8: The following sequence

$$0 \to M_0(n-3,3) \xrightarrow{l} M(n-3,3) \xrightarrow{f} F$$

 $\to 0 \qquad \dots (1)$

over a field F is split iff p does not divide $\frac{n(n-1)(n-2)}{6}$.

Proof: If *p* does not divide $\frac{n(n-1)(n-2)}{6}$. For any $k \in F$ we have $f(\sum_{1 \le i < j \le l \le n} K_{ijl} x_i x_j x_l) =$

 $\sum_{1 \le i < j < l \le n} k_{ijl} = k \text{ .Hence } f \text{ is on to. Moreover}$

 \bar{V} .

$$kerf = \{ \sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l :$$

$$f \left(\sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l \right) = 0 \} =$$

$$\{ \sum_{1 \le i < j < l \le n} k_{ijl} x_i x_i x_l : \sum_{l \le i < l \le n} k_{ijl} = 0 \} =$$

 $\sum_{1 \le i < j < l \le n} \mathcal{K}_{ijl} = \mathcal{K}_{ijl} = 0 \quad j = 1$ $M_0(n - 3,3) = Im i \text{ .Hence the sequence (1) is an exact sequence.}$

So we can defined a function $h: F \to M(n - 3,3)$ by $h(k) = \frac{6k\sigma_3(n)}{n(n-1)(n-2)}$ which is a FS_n -homomorphism since

 $\frac{6k}{n(n-1)(n-2)} \cdot \frac{n(n-1)(n-2)}{6} = k$.Hence fh = I on F. Thus the sequence(1) is split. Now assume the sequence (1) is split. Then there exist a FS_n -homomorphism $f_1: F \to M(n-3,3)$ s.t. $ff_1 = I$ on F. Let $f_1(1) = \sum_{1 \le i \le l \le k} k_{il} x_i x_j x_l$. Then $\tau f_1(1) =$ $f_1(\tau(1)) = f_1(1)$, where $\tau = (x_r x_s) \in S_n$, $1 \le 1$ $r < s \le n$. Thus $f_1(1) - \tau f_1(1) = 0$. $\Rightarrow 0 = \sum_{1 \le i \le l \le n} k_{ijl} x_i x_j x_l - \sum_{1 \le i \le l \le n} k_{ijl} \tau(x_i x_j x_l)$ $= \sum_{1 \le i < j < l \le n} k_{ijl} (x_i x_j x_l - \tau(x_i x_j x_l))$ $\sum_{r+1 \le j < l \le n} k_{jl} \left(x_r x_j x_l - x_s x_j x_l \right) +$ $\sum_{i=1}^{r-1} \sum_{l=r+1}^{n} k_{irl} (x_i x_r x_l - x_i x_s x_l) +$ $\sum_{ijr} k_{ijr} \left(x_i x_j x_r - x_i x_j x_s \right) =$ $\sum_{j=r+1}^{n-1} (k_{rjl} - k_{sjl}) x_r x_j x_l +$ $\sum_{i=1}^{r-1}\sum_{l=r+1}^{n} (k_{irl} - k_{isl}) x_{l} x_{r} x_{l} +$ $\sum_{1 \leq i \leq i \leq n} (k_{ijr} - k_{isl}) x_i x_j x_r .$

So by equaling the coefficient ,we get $k_{rjl} = k_{sjl} \quad \forall r < j < l \le n$, $k_{irl} = k_{isl} \quad \forall 1 \le i < r \text{ and } r < l \le n$, $l \ne s$ $k_{ijr} = k_{ijs} \quad \forall 1 \le i < j < r$. Hence for each r, s such that $1 \le r < s \le n$ we get $k_{ijl} = k$; $1 \le i < j < l \le n$. Then $f_1(1) =$ $\sum_{1 \le i < j < l \le n} k_{ij} x_i x_j x_l = \sum_{1 \le i < j < l \le n} k x_i x_j x_l = k\sigma_3(n)$. $\because ff_1 = l$ $\therefore 1 = ff_1(1) = f(k\sigma_3(n)) = kf(\sigma_3(n)) =$ $kf(\sum_{1 \le i < j < k \le n} x_i x_j x_k) = k \frac{n(n-1)(n-2)}{6}$. Corollary3.9:M(n-3,3) is a direct sums of

Corollary3.9: M(n-3,3) is a direct sums of $M_0(n-3,3)$ and $F\sigma_3(n)$ when p does not divide $\frac{n(n-1)(n-2)}{6}$.

Proof: Since p does not divide $\frac{n(n-1)(n-2)}{6}$, then the sequence (1) is split .Thus M(n-3,3) decomposable into $kerf = M_0(n - 3,3)$ and $Imf = F\sigma_3(n)$ since for each $k\sigma_3(n) \in F\sigma_3(n)$ we have $f\left(\frac{kn(n-1)(n-2)}{6}\right) = \frac{kn(n-1)(n-2)}{6}\left(\frac{6\sigma_3(n)}{n(n-1)(n-2)}\right) = k\sigma_3(n)$.

Hence $M(n - 3,3) = M_0(n - 3,3) \oplus F\sigma_3(n)$. **Theorem 3.10:** The following sequence

$$\begin{array}{c} 0 \rightarrow ker\bar{d_2} \xrightarrow{i} M_0(n-3,3) \xrightarrow{d_2} M_0(n-2,2) \rightarrow \\ 0 \qquad \dots \dots \dots (2) \end{array}$$

is split iff p does not divide neither (n-2) nor (n-3).

Proof: Since $\bar{d}_2 \left(\frac{1}{2} (x_1 x_i x_k - x_1 x_2 x_i + x_2 x_i x_k - x_1 x_2 x_k) \right) = \frac{1}{2} (x_1 x_i + x_1 x_k + x_i x_k - x_1 x_2 - x_1 x_i - x_2 x_i + x_2 x_i + x_2 x_k + x_i x_k - x_1 x_2 - x_1 x_k - x_2 x_k) = \frac{1}{2} (2 (x_i x_k - x_1 x_2)) = x_i x_k - x_1 x_2$. Which is the generated of $M_0 (n - 3,3)$. Hence \bar{d}_2 is on to map. Moreover $Imi = ker \bar{d}_2$. Thus the sequence (2) is exact. If p does not divide neither (n-2)nor(n-3). Let $\phi: M_0 (n - 2,2) \to M_0 (n - 3,3)$ be defined as follows: $\phi (x_i x_j - x_1 x_2) = \frac{1}{(n-2)(n-3)} \sum_{2 \langle i \langle j \leq n}} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j)$ Then for any $\in S_n$, s.t. $\tau(x_1) = x_1$, $\tau(x_2) = x_2$. $\phi (\tau (x_i x_j - x_1 x_2)) = \phi (\tau(x_i) \tau(x_j) - y_1 x_1 x_2 x_j)$

$$\tau(x_1)\tau(x_2) = \frac{1}{(n-2)(n-3)} \sum_{2 \le i \le j \le n} (x_1 x_{i_1} x_{j_1} - x_1 x_2 x_{i_1} + x_2 x_{i_1} x_{j_1} - x_1 x_2 x_{j_1})$$
 Where $\tau(x_i) = x_{i_1}$ and $\tau(x_j) = x_{j_1}$. Then

$$\varphi\left(\tau(x_{i}x_{j} - x_{1}x_{2})\right) = \frac{1}{(n-2)(n-3)} \sum_{2\langle i \langle j \leq n \rangle} \tau(x_{1}x_{i}x_{j} - x_{1}x_{2}x_{i} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j}) = \frac{1}{(n-2)(n-3)} \tau\sum_{2\langle i \langle j \leq n \rangle} (x_{1}x_{i}x_{j} - x_{1}x_{2}x_{i} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j}) = \tau\varphi(x_{i}x_{j} - x_{1}x_{2}). \text{Hence } \varphi \text{ is a } FS_{n} - \text{homomorphism .Moreover} \\
\overline{d}_{2}\varphi(x_{i}x_{j} - x_{1}x_{2}) = \overline{d}_{2}\left(\frac{1}{(n-2)(n-3)}\sum_{2\langle i \langle j \leq n \rangle} (x_{1}x_{i}x_{j} - x_{1}x_{2}x_{i} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j})\right) = \frac{1}{(n-2)(n-3)}\sum_{2\langle i \langle j \leq n \rangle} \overline{d}_{2}\left(x_{1}x_{i}x_{j} - x_{1}x_{2}x_{i} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j}\right) = \frac{1}{(n-2)(n-3)}\sum_{2\langle i \langle j \leq n \rangle} 2(x_{i}x_{j} - x_{1}x_{2}x_{i} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j}) = \frac{1}{(n-2)(n-3)}\sum_{2\langle i \langle j \leq n \rangle} 2(x_{i}x_{j} - x_{1}x_{2}x_{j}) = \frac{1}{(n-2)(n-3)}\sum_{2\langle i \langle j \leq n \rangle} 2(x_{i}x_{j} - x_{1}x_{2}x_{i}) = x_{1}x_{j} - x_{1}x_{2} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j} = x_{1}x_{j} - x_{1}x_{2} + x_{1}x_{2}x_{i} + x_{2}x_{i}x_{j} - x_{1}x_{2}x_{j}\right) = x_{1}x_{2} - x_{1}x_{2} + x_{1}x_{2} + x_{1}x_{2} + x_{2}x_{1}x_{2} + x_{2}x_{1}x_{2} = x_{1}x_{2} - x_{1}x_{2} + x_{2}x_{1}x_{2} + x_{2}x_{1}x_{2} = x_{1}x_{2} + x_{2}x_{1}x_{2} + x_{2}x_{$$

So $d_2\phi = I$ on $M_0(n - 2, 2)$. Hence the sequence (2) is split if p does not divide neither (n-2) nor (n-3). Thus $M_0(n - 3, 3) = ker \, \bar{d}_2 \oplus L_0$, where $L_0 = \phi (M_0(n - 2, 2))$. Now assume if the sequence (2) is split.

Let $\phi: M_0(n-2,2) \to M_0(n-3,3)$ be a FS_n -homomorphism such that $\bar{d}_2\phi = I$. Thus we can define ϕ as follows $\phi(x_{i_1}x_{j_1} - x_1x_2) =$

$$\sum_{2\langle i\langle j \leq n} k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j) \Rightarrow \bar{d}_2 \phi (x_{i_1} x_{j_1} - x_1 x_2) = \bar{d}_2 (\sum_{2\langle i\langle j \leq n} k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j)) = \sum_{2\langle i\langle j \leq n} \bar{d}_2 (k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j)) = \sum_{2\langle i\langle j \leq n} \bar{d}_2 (k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j)) = \sum_{2\langle i\langle j \leq n} k_{ij} (x_i x_j - x_1 x_2)) = 2(\sum_{2\langle i\langle j \leq n} k_{ij} (x_i x_j - x_1 x_2)) = x_{i_1} x_{j_1} - x_1 x_2)$$

$$\Rightarrow 2\sum_{2\langle i\langle j \leq n} k_{ij} = \begin{cases} 0 & if (i,j) \neq (i_1,j_1) \\ 1 & if (i,j) = (i_1,j_1) \end{cases}$$

Moreover if $\tau = (x_r x_s) \in S_n$; $2 < r < s \le n$ such that $\tau(x_{i_1} x_{j_1}) = x_{i_1} x_{j_1}$. Then $\phi(\tau(x_{i_1} x_{j_1} - x_1 x_2)) = \phi(x_{i_1} x_{j_1} - x_1 x_2) = \tau \phi(x_{i_1} x_{j_1} - x_1 x_2) \Rightarrow \phi(x_{i_1} x_{j_1} - x_1 x_2) - \tau \phi(x_{i_1} x_{j_1} - x_1 x_2) = 0 \Rightarrow \sum_{2 \le i \le j \le n} (k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j)) - \tau(\sum_{2 \le i \le j \le n} (k_{ij} (x_1 x_i x_j - x_1 x_2 x_j - x_1 x_2 x_j))) = 0.$

$$\Rightarrow \sum_{j=r+1}^{n} (k_{rj} - k_{sj}) \qquad x_1 x_r x_j \qquad - \\ \sum_{j=r+1}^{n} (k_{rj} - k_{sj}) x_1 x_2 x_r \qquad + \\ \sum_{j=s}^{n} (k_{rj} - k_{sj}) x_2 x_r x_j \\ + \sum_{2 < l < r} (k_{rj} - k_{sj}) x_1 x_i x_r + \sum_{2 < l < r} (k_r - k_s) x_1 x_i x_r + \\ \sum_{2 < l < r} (k_r - k_s) x_2 x_i x_r - \sum_{2 < l < r} (k_r - k_s) x_1 x_2 x_r = 0 \\ \Rightarrow By equaling the above equitation we get \\ k_{rj} = k_{sj}; r < j \le n \& j \ne s \quad \text{,and} \quad k_{ir} = \\ k_{is}; 2 < l < r. \\ \Rightarrow \qquad k_{rj} = k_{sj} = k_{ir} = k_{is} = k. Thus \\ \text{since } 2 \sum_{2 < (l < j \le n)} k_{ij} = 0 \quad \Rightarrow 2 \sum_{2 < (l < j \le n)} k = 0 \\ \Rightarrow 2 \binom{n-2}{2} k = (n-2)(n-3)k = 0. \text{Then} \\ k = 0 \text{ or } p | (n-2) \text{ or } p | (n-3). \\ \because \qquad 2 \sum_{2 < (l < j \le n)} k_{ij} = 1 \text{ when}(i, j) = (i_1, j_1) \Rightarrow \\ 2 \frac{(n-2)(n-3)}{2} k_1 = 1. \\ \Rightarrow p \nmid (n-2), p \nmid (n-3) \text{ and } k_1 \ne 0. \text{Hence} \\ \text{we} \quad \text{get} \qquad p \nmid (n-2), p \nmid (n-3), k = 0 \\ 0 \text{ and } k_1 \ne 0. \text{ Thus if the sequence is split then} \\ p \text{ does not divide neither } (n-2) \text{ nor } (n-3). \\ \mathbf{Proposition3.11:} \quad S(n-3,3) \quad \text{is a proper submodule of } ker d_2 \text{ over } FS_n. \\ \mathbf{Proof: Since } S(n-3,3) = FS_n(x_2 - x_1)(x_4 - x_3)(x_6 - x_5) \text{ is the generator of } S(n-3,3) \text{ over } FS_n, \text{ and } d_2((x_2 - x_1)(x_4 - x_3)(x_6 - x_5)) = 0. \text{ Hence } S(n-3,3) \subseteq ker d_2. \\ \text{Since } d_2 \text{ is an epimorphism. Hence} \\ dim_F ker d_2 = dim_F M_0(n-2,2) \\ = \frac{n(n-1)(n-2)}{6} \\ - \frac{n(n-1)}{2} \\ = \frac{n(n-1)(n-5)}{6} \\ \text{While } dim_F S(n-3,3) = \frac{n(n-1)}{6}. \text{ Thus } \\ dim_F S(n-3,3) < dim_F ker d_2. \end{cases}$$

Hence S(n-3,3) is a proper submodule of $ker\bar{d}_2$ over FS_n .

Proposition3.12: If $p \neq 2,3$ and p divides (n+1), then we get the following series: $1)0 \subset \overline{V}_0 \subset \overline{V}_0 \oplus S(n-3,3) \subset \overline{V} \oplus S(n-3,3) \subset \overline{V} \oplus ker \overline{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ $2)0 \subset \overline{V}_0 \subset \overline{V}_0 \oplus S(n-3,3) \subset \overline{V}_0 \oplus ker \overline{d}_2 \oplus \overline$

 $\overline{V} \oplus ker \overline{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ $0 \subset \bar{V}_0 \subset \bar{V} \subset \bar{V} \oplus S(n-3,3) \subset$ 3) $\bar{V} \oplus ker\bar{d}_2 \subset M_0(n-3,3) \oplus F\sigma_3.$ $4)0{\subset}\; F\sigma_3 \subset {\bar V} \subset {\bar V} \oplus S(n-3,3) \subset$ $\overline{V} \oplus ker\overline{d}_2 \subset M_0(n-3,3) \oplus F\sigma_3.$ $5)0{\subset}\,F\sigma_3{\subset}F\sigma_3{\oplus}S(n-3,3){\subset}$ $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker\bar{d}_2 \subset$ $M_0(n-3,3) \oplus F \sigma_3$. $6)0{\subset}\; S(n-3,3) {\subset}\; F\sigma_3{\oplus}S(n-3,3) {\subset}$ $\overline{V} \oplus S(n-3,3) \subset \overline{V} \oplus ker \overline{d}_2 \subset$ $M_0(n-3,3) \oplus F \sigma_3$. 7)0⊂ $S(n - 3,3) \subset \overline{V}_0 \oplus S(n - 3,3) \subset$ $\overline{V}_0 \oplus ker \overline{d}_2 \subset \overline{V} \oplus ker \overline{d}_2 \subset M_0(n-3,3) \oplus$ $F\sigma_3$. $8)0 \subset S(n-3,3) \subset \overline{V}_0 \oplus S(n-3,3) \subset$ $\overline{V} \oplus S(n-3,3) \subset \overline{V} \oplus ker \overline{d}_2 \subset$ $M_0(n-3,3) \oplus F\sigma_3.$

 $p \neq 2,3$ and $p \mid (n+1)$. Then *p* does not divide *n* nor (n - p)1) nor (n-2). Since $\sigma_3(n) =$ $x_i x_j x_k$ and the sum of the coefficients is n(n-1)(n-2)then $\sigma_3(n) \notin M_0(n -$ 3,3). *i.e* $F\sigma_3 \cap M_0(n-3,3) = 0$.which implies that $M(n-3,3) = M_0(n-3,3) \oplus$ $F\sigma_3$. Moreover we have $S(n-3,3) \subset$ $F\sigma_3(n) \not\subset ker\bar{d}_2$, thus $kerd_2$ and $F\sigma_3 \cap S(n-3,3) = 0$. Since $p \nmid n$, then by Theorem (3.6) we have $\overline{V}_0(n)$ is an irreducible submodule over FS_n , and $\overline{V} = \overline{V}_0(n) \oplus F\sigma_3$, then $\overline{V} \cap ker\overline{d}_2 = 0$. Thus $\overline{V} \cap S(n-3,3) =$ Owhich implies that $F\sigma_3 \oplus S(n (3,3) \subset \overline{V} \oplus S(n-3,3)$ and $\overline{V}_0(n) \oplus S(n-3,3)$ $(3,3) \subset \overline{V} \oplus S(n-3,3)$. Therefore we get the following series: $1)0 \subset \overline{V}_0 \subset \overline{V}_0 \oplus S(n-3,3) \subset \overline{V} \oplus S(n-3,3)$ $(3,3) \subset \overline{V} \oplus ker \overline{d}_2 \subset M_0(n-3,3) \oplus F\sigma_3.$ $2)0 \subset \bar{V}_0 \subset \bar{V}_0 \oplus S(n-3,3) \subset \bar{V}_0 \oplus ker\bar{d}_2 \subset$ $\overline{V} \oplus ker \overline{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ $0 \subset \overline{V}_0 \subset \overline{V} \subset \overline{V} \oplus S(n-3,3) \subset$ 3) $\overline{V} \oplus kerd_2 \subset M_0(n-3,3) \oplus F\sigma_3.$ $4)0{\subset}\,F\sigma_3{\subset}\,\bar{V}{\subset}\,\bar{V}{\oplus}S(n-3,3){\subset}$ $\overline{V} \oplus ker \overline{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ $5)0 \subset F\sigma_3 \subset F\sigma_3 \oplus S(n-3,3) \subset$ $\overline{V} \oplus S(n-3,3) \subset \overline{V} \oplus ker \overline{d}_2 \subset$ $M_0(n-3,3) \oplus F \sigma_3$.

 $6)0 \subset S(n-3,3) \subset F\sigma_3 \oplus S(n-3,3) \subset$ $\overline{V} \oplus S(n-3,3) \subset \overline{V} \oplus kerd_2 \subset$ $M_0(n-3,3) \oplus F \sigma_3$. 7)0⊂ $S(n - 3,3) \subset \overline{V}_0 \oplus S(n - 3,3) \subset$ $\overline{V}_0 \oplus ker\overline{d}_2 \subset \overline{V} \oplus ker\overline{d}_2 \subset M_0(n-3,3) \oplus$ $F \sigma_3$. $8)0 \subset S(n-3,3) \subset \overline{V}_0 \oplus S(n-3,3) \subset$ $\overline{V} \oplus S(n-3,3) \subset \overline{V} \oplus kerd_2 \subset$ $M_0(n-3,3) \oplus F \sigma_3.$ Theorem 3.13: The following sequence of a FS_n - modules is short exact sequence. $0 \rightarrow ker\bar{d}_2$ $\stackrel{i}{\to} G \stackrel{\bar{d}_2}{\to} S(n-2,2) \to 0$ 3) where $G = FS_n(x_1x_3x_6 - x_1x_4x_6 +$ $x_2 x_4 x_6 - x_2 x_3 x_6$) **Proof:** From the definition of G we get that $G \subset M_0(n-3,3)$ and by Theorem(3.10) we

have $\bar{d}_2: M_0(n-3,3) \to M_0(n-2,2)$ is on to map. Since $S(n-2,2) = FS_n(x_2 - x_1)(x_4 - x_3) \subset M_0(n-2,2)$. Then $(x_2 - x_1)(x_4 - x_3) = x_2x_4 - x_2x_3 - x_1x_4 + x_1x_3$ and $\bar{d}_2((x_1x_3x_6 - x_1x_4x_6 + x_2x_4x_6 - x_2x_3x_6) + (x_1x_3x_5 - x_1x_4x_5 + x_2x_4x_5 - x_2x_3x_5)) = 2(x_2x_4 - x_2x_3 - x_1x_4 + x_1x_3) = 2(x_2 - x_1)(x_4 - x_3)$. Thus $\bar{d}_2 = \bar{d}_2|_G : G \to S(n-2,2)$ is on to map. Moreover the inclusion map *i* is oneto-one map and $ker \bar{d}_2 = Imi$. Hence the sequence (3) is short exact sequence.

Corollary 3.14: The short exact sequence (3) is split when p does not divide (n-4).

Proof: Assume $p \nmid (n-4)$. Let $\varphi: S(n-2,2) \rightarrow G$ be define as follows: $\varphi((x_r - 2,2)) \rightarrow G$

$$x_{s})(x_{t}-x_{l})) = \frac{1}{n-4} \sum_{\substack{k=l \\ k \neq r, s, t, l}}^{n} (x_{r}x_{t}x_{k} - x_{l}) + \sum_{k=1}^{n} (x_{k}x_{k} - x_{k}) + \sum_{k=1}^{n} (x_{k}x_{k} -$$

 $\begin{aligned} x_{r}x_{l}x_{k} - x_{s}x_{t}x_{k} + x_{s}x_{l}x_{k}) & \text{.Then for any} \\ \tau \in S_{n} & \text{we get } \varphi(\tau(x_{r} - x_{s})(x_{t} - x_{l})) = \\ \varphi((\tau x_{r} - \tau x_{s})(\tau x_{t} - \tau x_{l})) = \\ \varphi((x_{r_{1}} - x_{s_{1}})(x_{t_{1}} - x_{l_{1}})) & = \frac{1}{n-4} \\ \sum_{\substack{k_{1}=l \\ k_{1}\neq r_{1}, S_{1}, t_{1}, l_{1}}}^{n} (x_{r_{1}}x_{t_{1}}x_{k_{1}} - x_{r_{1}}x_{l_{1}}x_{k_{1}} - x_{r_{1}}x_{r_{1}}x_{r_{1}}x_{r_{1}} - x_{r_{1}}x_{r_{1}}x_{r_{1}} - x_{r_{1}}x_{r_{1}}x$

$$\sum_{\substack{k_1=1\\k_1\neq r_1,s_1,t_1,l_1}}^n \tau(x_r x_t x_k - x_r x_l x_k - x_s x_t x_k +$$

$$x_{s}x_{l}x_{k}) \qquad = \qquad \frac{1}{n-4} \tau \left(\sum_{\substack{k=1\\k\neq r.s.t.l}}^{n} (x_{r}x_{t}x_{k} - x_{t}x_{k})\right)$$

 $x_r x_l x_k - x_s x_t x_k + x_s x_l x_k) = \tau \varphi ((x_r - x_s)(x_t - x_l))$. Hence φ is a FS_n -homomorphism. Moreover we have

$$\bar{\bar{d}}_2 \varphi \left((x_r - x_s)(x_t - x_l) \right) =$$

$$\bar{\bar{d}}_2 \left(\frac{1}{n-4} \sum_{\substack{k=l \\ k \neq r, s, t, l}}^n (x_r x_t x_k - x_r x_l x_k - x_s x_l x_k) \right)$$

$$= \frac{1}{n-4} \sum_{\substack{k=1\\k\neq r,s,t,l}}^{n} \bar{\bar{d}}_{2}(x_{r}x_{t}x_{k} - x_{r}x_{l}x_{k} -$$

 $\begin{aligned} x_s x_t x_k + x_s x_l x_k) &= \frac{1}{n-4} \left((n-4)(x_r - x_s)(x_t - x_l) \right) = (x_r - x_s)(x_t - x_l) & \text{Thus} \\ \bar{d}_2 \varphi = I \text{ on } S(n-2,2). & \text{Hence the} \\ \text{sequence(3) is split when } p \nmid (n-4). & \text{Moreover } G = \ker \bar{d}_2 \oplus \bar{G}; \ \bar{G} = \varphi(S(n-2,2)). \end{aligned}$

Proposition 3.15: S(n-3,3) is a proper KS_n – submodule of G.

Proof: Since $S(n-3,3) = FS_n(x_2 - x_1)(x_4 - x_3)(x_6 - x_5)$ and $G = FS_n(x_1x_3x_6 - x_1x_4x_6 + x_2x_4x_6 - x_2x_3x_6)$ then

 $\begin{array}{l} y = (x_2 - x_1)(x_4 - x_3)(x_6 - x_5) = \\ (x_1 x_3 x_6 - x_1 x_4 x_6 + x_2 x_4 x_6 - x_2 x_3 x_6) + \\ (x_1 x_4 x_5 - x_1 x_3 x_5 + x_2 x_3 x_5 - x_2 x_4 x_5) \in \\ F \ . \text{ Thus } S(n - 3, 3) \subset G \ . \text{Moreover since} \\ \overline{d}_2 = \overline{d}_2 |_G \ , \text{ then we get } ker \, \overline{d}_2 \subset ker \overline{d}_2 \\ \text{and since } ker d_2 = ker \overline{d}_2. \text{ Hence } ker \, \overline{d}_2 \subset \\ \end{array}$

ker d_2 and by definition of \overline{d}_2 we get $\overline{d}_2(y) = 0$ which implies that $(n - 3,3) \subset$ ker $\overline{d}_2 \subset G$. Hence S(n-3,3) is a proper FS_n – submodule of G.

Theorem 3.16: If $p \neq 2,3$ and p|(n-3) then we have the following series:

 $\begin{array}{l} 1)0 \subset F\sigma_3 \subset F\sigma_3 \oplus S(n-3,3) \subset F\sigma_3 \oplus \\ ker \, \overline{d}_2 \subset F\sigma_3 \oplus G \subset F\sigma_3 \oplus M_0(n-3,3). \\ 2)0 \subset S(n-3,3) \subset F\sigma_3 \oplus S(n-3,3) \subset \\ F\sigma_3 \oplus ker \, \overline{d}_2 \subset F\sigma_3 \oplus G \subset F\sigma_3 \oplus M_0(n-3,3). \end{array}$

Proof: Since $p \mid (n-3)$, then $p \nmid (n-4)$ and by Corollary (3.19) we get $G = ker \, \bar{d}_2 \oplus \bar{G} ; \ \bar{G} = \varphi (S(n-2,2)) \cong$ S(n-2,2) and by Proposition(3.20) we have $S(n-3,3) \subset ker \,\overline{\overline{d}}_2 \subset G$. Since $\sigma_3(n) = \sum_{1 \le i < j < k \le n} x_i x_j x_k$ and the sum of coefficients of $\sigma_3(n)$ is $\frac{n(n-1)(n-2)}{6}$ then $\sigma_3(n) \notin M_0(n-3,3)$ and $\sigma_3(n) \notin G$ which implies that $\sigma_3(n) \notin \ker \overline{d}_2$. *i.e.* $F\sigma_3 \cap G = 0$ and $F\sigma_3 \cap ker \, \bar{d}_2 =$ 0 .Hence $F\sigma_3 \oplus \ker \overline{d}_2 \subset F\sigma_3 \oplus G$. Moreover we have $F\sigma_3 \oplus S(n-3,3) \subset$ $F\sigma_3 \bigoplus ker \bar{d}_2$. Thus we get the following series: 1) $0 \subset F\sigma_3 \subset F\sigma_3 \oplus S(n-3,3) \subset F\sigma_3 \oplus$ $ker \, \bar{d}_2 \subset F \sigma_3 \oplus G \subset F \sigma_3 \oplus M_0(n-3,3).$ $2)0 \subset S(n-3,3) \subset F\sigma_3 \oplus S(n-3,3) \subset$ $F\sigma_3 \oplus ker \ \bar{d}_2 \subset F\sigma_3 \oplus G \subset F\sigma_3 \oplus M_0(n - 1)$ 3,3).

References:

[Ellers:2007]:Harald Ellers, John Murray, Branching rules for Specht modules, Journal of Algebra 307(2007)278-286. [Farahat:1962]:H.K. Farahat, On the Natural Representation of the Symmetric groups, Proc .Glasgow Math.Assoc.5 (1962),121-136. [Joyce:2017]:David Joyce, Clark University, "Introduction to Modern Algebra" Version 1.2.7,5 Dec.2017. [Kerber:2004]:Addbert Kerber, Axel Kohnert , Modular irreducible representation of the Symmetric group as linear Codes. European Journal of Conbinatorics 25 (2004) 1285-1299. [Peel:1969]:M.H .Peel, On the Second Natural Representation of the Symmetric groups. Glasgow Math .Journal vol.10 part1(1969),25-37.

[Peel:1971]:M.H .Peel, Hook Representation of the Symmetric groups ,Glasgow Math .Journal vol.12 part 2(1971),136-149.

في التمثيل الطبيعي الثالث
$$M(n-3,3)$$
 للزمر النتاظرية

رياض دلفي علي قسم الرياضيات كلية التربية للعلوم الصرفة جامعة كربلاء reyadhdelphi@gmail.com

علي عبد الصاحب محمد قسم الرياضيات كلية العلوم جامعة النهرين alibotahi@gmail.com

المستخلص : ان الهدف من هذا العمل هو دراسة التمثيل الطبيعي الثالث للزمر النتاظرية (M(n-3,3) فسمن حقل F وبرهان بان (p M(n-3,3) يمكن ان تجزئ اذا وفقط اذا كان p لا تقسم ممن حقلF