Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.2 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 102 - 109 Ali .A/**Reyadh .D**

On the third natural representation module *M* **(n-3***,***3) of the permutation groups**

 Ali Abdul Sahib M.Al-Butahi Reyadh Delfi Ali Department of Mathematics and Department of Mathematics computer applications College of Sciences College of Education for

 Pure Science Al-Nahrian University Kerbala University alibotahi@gmail.com reyadhdelphi@gmail.com

Recived : 2\4\2018 Revised : 9\4\2018 Accepted : 15\4\2018

Available online : 17/5/2018

DOI: 10.29304/jqcm.2018.10.2.386

Abstract:

 The main purpose of this work is to propose the third natural representation M (n-3,3)of the symmetric groups over a field **F** and prove that M (n-3,3) is split iff p does not divide $\frac{n(n-1)(n-2)}{6}$.

Keywords: symmetric group, group algebra FS_n , FS_n –module, Spechet module, exact sequence.

Mathematics Classification :20C30.

1. Introduction

In 1935, W .Specht introduced tableau correspondence polynomials ,known Specht polynomials, that proved how a given polynomial can be written as a linear combination of other polynomials.(see[Kerber:2004]).This was the results of Specht study on representation theory of symmetric groups, after he faced the problem when the symmetric group acts, in natural way, as a tableaux. However, the result of permutation a standard tableau can be a nonstandard tableau and this nonstandard tableau can be written as a linear combination of Specht polynomials. On the other hand, the representation with partition $\mu = (n - 1, 1)$ for a positive integer n, was first studied by

H.K.Farahat in 1962 [Farahat:1962]. This type of representation is called the natural representation. Seven years later, M.H.Peel introduced in [Peel:1969] and [Peel:1971] the second representation of the symmetric groups and renamed Farahat natural representation by the first natural representation .In Peel's representation, the partition was then $\mu = (n -$ 2,2) for a positive integer n. He also represented the rth -Hook representation where the partition $\mu = (n - r, 1^r)$, for any $r \ge 1$. For the author's knowledge, no one has studied the 3rd -natural representation so far . Therefore, this work represent of the symmetric groups over a field **F** and $x_1, x_2, ..., x_n$ defined to be linearly independent commuting variables over **F**.

2. Preminaries

Definition 1: Let $X = \{x_1, x_2, ..., x_n\}$ be a finite set, then the symmetric group on X is the group whose elements "permutations" can be viewed as a bijective function from $\mathbf{F}[x_1, x_2,$ onto $[x_2, ..., x_n]$. The symmetric group on X is denoted by S_X or S_n . Then FS_n is called the group algebra of the symmetric group S_n with respect to addition of functions, composition of functions and product of functions by scalars [Joyce:2008].

Definition 2: Let n be a natural number then the sequence $(\mu_2, ..., \mu_l)$ is called a partition of *n* if $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_l > 0$ and $\mu_1 + \mu_2 + \cdots + \mu_l = n$, the set $D_\mu =$ $\{(i, j) | i = 1, 2, ..., l; 1 \le j \le \mu_i\}$ is called diagram and any bijective function $t: D_u \to$ $\{x_1, x_2, ..., x_n\}$ is called a μ -tableau. A μ tableau may be thought as an array consisting of l rows and μ_1 columns of distinct variables $t((i, j))$ where the variables appear in the first μ_i positions of the i^{th} row and each variable $t((i, j))$ appears in the *i*th row and the *j*th column $((i, j)$ -position) of the array. $t((i, j))$ will be denoted by $t(i, j)$ for each $(i, j) \in D_{\mu}$. The set of all μ -tableaux will be denoted by T_{μ} . i.e $T_u = \{t | t \text{ is a } \mu - \text{tableau}\}.$ Then the function $h: T_u \to F[x_1, x_2, ..., x_n]$ which is defined by $h(t) = \prod_{i=1}^{l} \prod_{i=1}^{\mu_i}$ $\prod_{i=1}^{l} \prod_{j=1}^{\mu_i} (t(i,j))^{i-1}$, \forall $t \in T_\mu$ is called the row position monomial function of T_u , and for each μ -tableau t, $h(t)$ is called the row position monomial of t.So $M(\mu)$ is the cyclic FS_n -module generated by $h(t)$ over FS_n .[Ellers:2007]

3.The Third Natural Representation of

In the beginning, we determine some denotations which we need them in this paper.

1. Let
$$
\sigma_1(n) = \sum_{i=1}^n x_i
$$
.
\n2. Let $\sigma_2(n) = \sum_{1 \le i < j \le n} x_i x_j$.
\n3. Let $\sigma_3(n) = \sum_{1 \le i < j < k \le n} x_i x_j x_k$.
\n4. Let $C_l(n) = x_l (\sigma_2(n) - \sum_{j=1 \atop j \ne l}^{n} x_l x_j); l =$

1,2, ..., *n* . Then $\sum_{i=1}^{n}$ $\sum_{i=1} C_i$ $(n) = \sigma_3(n)$ and $dim_F(F\sigma_1(n)) = dim_F(F\sigma_2(n)) =$

 $dim_F(F\sigma_3(n)) = 1$. $F\sigma_1(n), F\sigma_2(n)$ and $F\sigma_3(n)$ are all FS_n -modules, since $\tau \sigma_k$ $\sigma_k($ 5. Let $u_{ij}(n) = C_i(n) - C_j(n)$ $1, 2, ..., n$.

We denote \overline{V} to be the FS_n -modules generated by $C_1(n)$ over FS_n and \bar{V}_0 to be the FS_n submodule of \overline{V} generated by $u_{12}(n)$ over S_n .

Definition3.1: The FS_n -module $M(n-r,r)$ defined by
 $M(n - r, r) = FS_n x_1 x_2 ... x_r$;

$$
r) = FS_n x_1
$$

 $n \geq r$ is called rth - natural representation module of over F.

Lemma3.2:The set $B(n-3,3) = \{x_i x_i x_i\}$ $i < j < l \leq n$ is a F-basis of $M(n-3,3)$ and $dim_F M(n-3,3) = {n \choose 2}$ $\binom{n}{3}$;

Proof: Clear

Theorem3.3: The set

 $B_0(n-3,3) = \{x_ix_ix_i - x_1x_2x_3\}$ $l \leq n, (i, j, l) \neq (1, 2, 3)$ is a F-basis of M_0 3,3) and $dim_F M_0(n-3,3) = {n \choose 2}$ $\binom{n}{3}$ – **Proof:** Since $M_0(n-3,3) = \left\{ \sum_{1 \le i < j < l \le n} k_{ij} \right\}$ $x_i x_i x_l$: $\sum_{1\leq i < j < l \leq n} k_{ij}$ =0 and $k_{ijl} \in F$ }, we get that B_0 (3,3) $\subset M_0(n-3,3)$. To prove $B_0(n-3,3)$ generates $M_0(n-3,3)$ over F. Let $x \in M_0(n-3,3) \implies x = \sum$ $\sum_{1 \le i < j < l \le n} k_{ij}$ $x_i x_j x_l$; $\sum_{1 \le i < j < l \le n} k_{ij}$ $_{=}0$ \Rightarrow $x = \sum_{1 \le i < j < l \le n} k_{ijl} x$ \Rightarrow $x = \sum_{1 \le i < j \le l \le n} k_{ijl} x_i x_j x_l - (\sum_{1 \le i < j \le l \le n} k_{ijl})$ \Rightarrow $x = \sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l - \sum_{1 \le i < j < l \le n} k_{ijl} x_l$

 \Rightarrow $x = \sum_{1 \le i < j < l \le n} k_{ijl} (x_i x_j x_l - x_1 x_2 x_3)$ with the term 123 excluded from the summation since $k_{i}x_1(x_1x_2x_3 - x_1x_2x_3) = 0$. Hence B_0 generates $M_0(n-3,3)$ over F .Moreover $B_0(n-3,3)$ is linearly independent since if

$$
\sum_{1 \le i < j < l \le n} \n\sum_{\substack{1 \le i < j < l \le n}} \n\binom{x_i x_j x_l - x_1 x_2 x_3 = 0 \quad \Rightarrow \quad}
$$
\n
$$
\sum_{1 \le i < j < l \le n} \n\sum_{\substack{1 \le i < j < l \le n}} \n\binom{x_i x_j x_l - \sum_{1 \le i < j < l \le n} \n\binom{x_i}{j} x_1 x_2 x_3 = 0
$$
\n
$$
\sum_{1 \le i < j < l \le n} \n\sum_{\substack{1 \le i < j < l \le n}} \n\binom{x_i x_j x_l - x_1 x_2 x_3}{k} = 0 \quad \text{where} \quad k_{123} = 0
$$

 $\sum_{1\leq i < j < l \leq n} k_{ij}$ with $\sum_{1 \le i < j < l \le n} k_{ij}$ =0 and (1,2,3). By lemma (3.2) we have $B(n - 3,3)$ is

linearly independent. Thus we get k_{ijl} = 0 $\forall i, j, l$; $1 \leq i \leq j \leq l \leq n$. Hence B_0 (3,3) is a F-basis of $M_0(n-3,3)$ and $dim_F M_0(n-3,3) = {n \choose 2}$ $\binom{n}{3}$ – 1 ; n ≥ 3 .■

Theorem3.4:The set $B = \{C_i(n) | i = 1, 2, ..., n\}$ is a F-basis for $\overline{V}(n) = FS_nC_1(n)$. **Proof:** Let $\tau_i = (x_1 x_i) \in S_n$; $1 < i \leq n$. Then $\tau_i(C_1(n)) = C_i($ Thus $C_i(n) \in \overline{V}(n)$; $i = 1, 2, ..., n$. Hence B $\subset \overline{V}(n)$. Now if $w \in \overline{V}(n) \Longrightarrow w = \sum_{i=1}^{(n-1)!} \sum_{j=1}^{n} k_{ij} \tau_{ij} C_1(n)$ i where $\tau_{ij} \in S_n$, $k_{ij} \in F$ and $\tau_{ii}(x_1) = x_i$, which implies that $\tau_{ii}(C_1)$ C_i \Rightarrow $w = \sum_{i=1}^{(n-1)!} \sum_{j=1}^{n} k_{ij} \tau_{ij} C_1$ i $=\sum_{i=1}^n (\sum_{i=1}^{(n-1)!} k)$ $\sum_{j=1}^n (\sum_{i=1}^{(n-1)!} k_{ij}) C_j(n) = \sum_{j=1}^n d_j$ where $d_j = \sum_{i=1}^{(n-1)!} k_{ij}$ Hence B generates $\overline{V}(n) = FS_nC_1(n)$ over F. If $\sum_{i=1}^{n} k_i C_i(n) = 0 \Rightarrow k_1 C_1(n) + k_2 C_2(n)$ $\cdots + k_n C_n(n) = 0.$ $\Rightarrow k_1 + k_2 + \dots + k_n = 0$ since $C_l(n) =$ $\sum_{1 \leq i < j < l \leq n} x_i x_j x_l$. Thus B is a linearly independent. Therefore B is a basis of $\bar{V}(n)$ and $dim_F \overline{V}(n) = n.$

\blacksquare

Theorem3.5: $\overline{V}(n) = FS_nC_1(n)$ and $M(n -$ 1,1) are isomorphic over FS_n .

Proof: Let $\varphi : M(n-1,1) \to \overline{V}(n)$ be defined as follows:

 $\varphi(x_i) = C_i(n);$ $i = 1, 2, ..., n$. Then for each $\tau = (x_i x_i) \in S_n$ such that $\tau(x_i) = x_i$ we get that $\varphi(\tau x_i) = \varphi(x_i) =$ $= \tau C_i(n) =$ $\tau \varphi(x_i)$. Hence φ is a FS_n homomorphism . Also $y =$

 $\sum_{i=1}^n$ $\sum_{i=1}^{n} k_i C_i(n)$ for any $y \in \overline{V}$. Thus for all

$$
y \in \overline{V}, \ \exists \ w = \sum_{i=1}^n \ k_i x_i \in M(n -
$$

1,1) such that $\sum_{i=1}^n$ $\sum_{i=1}$ k

$$
= \sum_{i=1}^n \varphi(k_i x_i) = \sum_{i=1}^n k_i \varphi(x_i) =
$$

 $\sum_{i=1}^n$ $\sum_{i=1} k_i C_i(n) = y$. Hence φ is an epimorphism.

Thus Thus $\dim_F \text{ker}\varphi = \dim_F M(n-1,1) - \dim_F \overline{V} = n - n = 0 \implies \text{ker}\varphi = 0$. Then φ is a monomorphism .

Thus φ is a FS_n – isomorphism. Hence $M(n-1,1)$ and \overline{V} are isomorphic over FS_n .

Theorem3.6: If p does not divides n , then $\bar{V}(n) = \bar{V}_0(n) \oplus F \sigma_3(n)$.

Proof : From Theorem (3.5) we have a FS_n – isomorphism φ : $M(n-1,1) \rightarrow \overline{V}(n)$ such that $\varphi(x_i) =$ C_i And since $M_0(n-1,1) = FS_n(x)$ $M(n-1,1)$, then $\psi = \varphi|_{M_0(n-1,1)}$ is a isomorphism .Thus $\overline{V}_0(n)$ and $M_0(n-1,1)$ are isomorphic over FS_n which is irreducible submodule over FS_n when p does not divides *n* and $\sigma_3(n) \notin \overline{V}_0(n)$ when *p* does not divide *n* since the sum of the coefficients of the $C_i(n)$ in $\sigma_3(n)$ is *n*. Hence $\overline{V}_0(n) \cap F \sigma_3(n) = 0$, $F\sigma_3(n) \subset \bar{V}(n)$ and $\bar{V}_0(n) \subset \bar{V}(n)$.But $dim_F\bar{V}_0$ $dim_F \overline{V}(n)$.

Hence $\bar{V}_0(n) \oplus F \sigma_3(n) = \bar{V}(n)$ when p does not divides n .

Proposition 3.7 : If p does not divides n, then \overline{V} has the following two composition series

 $0 \subset \overline{V}_0(n) \subset \overline{V}(n)$ and $0 \subset F\sigma_3(n) \subset \overline{V}(n)$. **Proof** : Since p does not divides n , then by Theorem (3.6) we have $\overline{V} = \overline{V}_0(n) \oplus F \sigma_3$, and $\overline{V}_0(n)$ is irreducible submodule when *p* does not divide *n* .Hence $\frac{\overline{V}}{F \sigma_3(n)} = \frac{\overline{V}_0}{F}$ $\frac{\overline{n}(\theta)}{\overline{F}\sigma_3(n)} \simeq \overline{V}_0(n)$. Thus \bar{V} $\frac{v}{F\sigma_3(n)}$ is irreducible module when *p* does not divide *n*. Since $dim_F F \sigma_3(n) = 1$. Then $F \sigma_3(n)$ is irreducible submodule over FS_n . But $\frac{\bar{v}}{\bar{v}_0(n)}$ = \bar{V}_0 $\frac{\partial \bigoplus F \sigma_3(n)}{\overline{v}_0(n)} \simeq F \sigma_3(n)$. Therefore $\frac{\overline{v}}{\overline{v}_0(n)}$ is irreducible module over FS_n . Thus we get the following two composition series

 $0 \subset \overline{V}_0(n) \subset \overline{V}$ and \bar{V} .

Theorem 3.8:The following sequence

$$
0 \to M_0(n-3,3) \xrightarrow{i} M(n-3,3) \xrightarrow{f} l
$$

\n
$$
\to 0 \qquad \dots (1)
$$

over a field F is split iff p does not divide $\frac{n(n-1)(n-2)}{2}$.

6 **Proof:** If *p* does not divide $\frac{n(n-1)(n-2)}{6}$. For any $k \in F$ we have $f\left(\sum_{1 \le i < j < l \le n} k_{ij} x\right)$

 $\sum_{1 \le i < j < l \le n} k_{ijl} = k$. Hence *f* is on to. Moreover

$$
ker f = \{ \sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l : \nf \left(\sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l \right) = 0 \} = \n\{ \sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l : \sum_{1 \le i < j < l \le n} k_{ijl} = 0 \} =
$$

 $M_0(n-3,3)$ = Im i .Hence the sequence (1) is

an exact sequence. So we can defined a function $h: F \to M(n -$ 3,3) by $h(k) = \frac{6}{\pi k}$ $\frac{\ln \log_3(n)}{n(n-1)(n-2)}$ which is a FS_n – homomorphism since

$$
\sum_{\tau \in S_n} r\tau h(k) = \sum_{\tau \in S_n} r\tau \left(\frac{6k\sigma_3(n)}{n(n-1)(n-2)}\right) =
$$
\n
$$
\sum_{\tau \in S_n} \frac{6rk\sigma_3(n)}{n(n-1)(n-2)} = \sum_{\tau \in S_n} \frac{6rk\sigma_3(n)}{n(n-1)(n-2)}
$$
\n
$$
= \sum_{\tau \in S_n} r h(k) = h(\sum_{\tau \in S_n} r k) =
$$
\n
$$
h(\sum_{\tau \in S_n} r\tau(k)) \text{ And since}
$$
\n
$$
fh(k) = f\left(\frac{6k\sigma_3(n)}{n(n-1)(n-2)}\right) =
$$
\n
$$
\frac{6k}{n(n-1)(n-2)} f\left(\sum_{1 \le i < j < l \le m} k_{ij} x_i x_j x_l\right) =
$$
\n
$$
\frac{6k}{n(n-1)(n-2)} f\left(\sum_{1 \le i < j < l \le m} k_{ij} x_i x_j x_l\right) =
$$
\n
$$
\frac{6k}{n(n-1)(n-2)} h \text{ If } \tau \in S_n
$$

 $\frac{6k}{n(n-1)(n-2)} \cdot \frac{n}{n}$ $\frac{f_1(n-2)}{6} = k$.Hence $fh = I$ on F. Thus the sequence(1) is split. Now assume the sequence (1) is split. Then there exist a FS_n -homomorphism $f_1: F \to M(n-3,3)$ s.t. $ff_1 = I$ on F. Let $f_1(1) = \sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l$. Then $\tau f_1(n)$ $f_1(\tau(1)) = f_1(1)$, where $\tau = (x_r x_s)$ $r < s \leq n$. Thus $f_1(1) - \tau f_1(1) = 0$. \Rightarrow 0 = $\sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l - \sum_{1 \le i < j < l \le n} k_{ijl}$ $= \sum_{1 \le i < j < l \le n} k_{ijl}$ $=$ $\sum_{r+1 < j < l \le n} k_{ijl} (x_r x_j x_l - x_s x_j x_l) +$ \neq $j, l \neq s$, $\sum^{r-1}\sum^n$ $=$ $l=r+$
 $l\neq s$ 1 $1 l = r + 1$ *r i n* $\sum_{l=r+1 \atop l\neq s}$ $k_{\scriptscriptstyle kl}$ $(x_i x_{\rm r} x_l - x_i x_{\rm s} x_l)$ $\sum_{1 \le i < j \le r} k_{ijr} (x_i x_j x_r - x_i x_j x_s) =$ \sum^{n-1} $\overset{= r +}{\leq}$ $\int_{0}^{1}(k)$ - $\sum_{r+1}^{n-1} ($ $\sum_{j=r+1}^{n} (k_{_{rjl}} - k_{_{sjl}})$ $\sum^{r-1}\sum^n$ $=1$ $l=r+$
 $l\neq s$ $\sum_{n=1}^{n} \sum_{n=1}^{n} (k_{n} \sum_{i=1}^{r-1}\sum_{l=r+1}^{n} (k_{_{irl}}-k_{_{kl}})$ *i n* $\sum_{l=r+1 \atop l \neq s}^{n} (k_{_{l}r l} - k_{_{kl}l})$ x $\sum_{1 \le i < j < r} (k_{ijr} - k_{isi}) x_i x_j x_r$.

So by equaling the coefficient ,we get $k_{rjl} = k_{sil}$ $\forall r < j < l \leq n$, $k_{irl} = k_{isl}$ \forall 1 \leq i \lt r and $r \lt l \leq n$, $l \neq s$ $k_{ijr} = k_{ijs} \ \forall \ 1 \leq i < j < r$. Hence for each r, s such that $1 \le r < s \le$ n we get $k_{i i l} = k$; $1 \le i < j < l \le n$ Then f_1 $\sum_{1 \le i < j < l \le n} k_{ijl} x_i x_j x_l = \sum_{1 \le i < j < l \le n} k x_i x_j x_l = k \sigma_3(n).$ $\therefore ff_1 = I$ $f: 1 = ff_1(1) = f(k\sigma_3(n)) = kf(\sigma_3(n))$ $kf(\sum_{1\leq i < j < k \leq n} x_i x_j x_k) = k^{\frac{n}{2}}$ $\frac{f(t)(n-2)}{6}$.Hence p does not divide $\frac{n(n-1)(n-2)}{6}$. **Corollary3.9:** $M(n-3,3)$ is a direct sums of $M_0(n-3,3)$ and $F\sigma_3(n)$ when p does not

divide $\frac{n(n-1)(n-2)}{6}$. **Proof:** Since p does not divide $\frac{n(n-1)(n-2)}{6}$, then the sequence (1) is split .Thus $M(n-3,3)$ decomposable into $ker f = M_0(n -$ 3,3) and $Imf = F\sigma_3(n)$ since for each $k\sigma_3(n) \in F\sigma_3(n)$ we have $f(\frac{k}{n})$ $\frac{1}{6}$ = $\left($ \boldsymbol{k} $rac{1}{6}\frac{(n-2)}{n(n-1)}$ $\frac{\omega_3(n)}{n(n-1)(n-2)}$ = $k\sigma_3(n)$. Hence $M(n - 3,3) = M_0(n - 3,3) \oplus F \sigma_3(n)$.

Theorem 3.10: The following sequence

$$
0 \rightarrow ker\bar{d}_2 \stackrel{i}{\rightarrow} M_0(n-3,3) \stackrel{\bar{d}_2}{\rightarrow} M_0(n-2,2) \rightarrow 0 \qquad \qquad (2)
$$

is split iff p does not divide neither (n-2) nor (n-3).

Proof: Since $\bar{d}_2 \left(\frac{1}{2}\right)$ $(x_1x_2x_k)\bigg) = \frac{1}{2}$ $x_1x_1 - x_2x_1 + x_2x_1 + x_2x_2 + x_1x_2 - x_1x_2$ $x_1 x_k - x_2 x_k = \frac{1}{2} (2(x_i x_k - x_1 x_2)) =$ $x_1 x_2$. Which is the generated of 3,3) .Hence \bar{d}_2 is on to map. Moreover $\ker \bar{d}_2$. Thus the sequence (2) is exact. If p does not divide neither $(n-2)$ nor $(n-3)$. Let $\phi: M_0(n-2,2) \rightarrow M_0(n-3,3)$ be defined as follows: $\phi(x_i x_i - x_1 x_2) = \frac{1}{(x_i - x_i)^2}$ $\frac{1}{(n-2)(n-3)} \sum_{2 \langle i \rangle j \leq n}$ $x_1x_2x_i + x_2x_ix_j - x_1x_2x_j$ Then for any $\in S_n$, s. t. $\tau(x_1) = x_1$, $\tau(x_2)$ x_2 . $\phi\left(\tau(x,x_i-x_ix_i)\right) = \phi\left(\tau(x_i)\tau(x_i)\right)$

$$
\tau(x_1)\tau(x_2) = \frac{1}{(n-2)(n-3)} \sum_{2 \le i \le j \le n} (x_1x_{i_1}x_{j_1} - x_1x_2x_{i_1}x_{j_1} + x_2x_{i_2}x_{j_2})
$$
Where $\tau(x_i) =$

 x_{i_1} and $\tau(x_i) = x_{i_1}$. Then

$$
\phi\left(\tau(x_{i}x_{j}-x_{1}x_{2})\right)=\frac{1}{(n-2)(n-3)}\sum_{2(i,j\leq n}\tau(x_{1}x_{i}x_{j}-x_{1}x_{2}x_{i}+x_{2}x_{i}x_{j}-x_{1}x_{2}x_{j})=\frac{1}{(n-2)(n-3)}\tau\sum_{2(i,j\leq n}\left(x_{1}x_{i}x_{j}-x_{1}x_{2}x_{i}+x_{2}x_{i}x_{j}-x_{1}x_{2}x_{j}\right)=\tau\phi\left(x_{i}x_{j}-x_{1}x_{2}\right)
$$
 Hence ϕ
is a FS_{n} -homomorphism .Moreover
 $\bar{d}_{2}\phi\left(x_{i}x_{j}-x_{1}x_{2}\right)=\bar{d}_{2}\left(\frac{1}{(n-2)(n-3)}\sum_{2(i,j\leq n)}\left(x_{1}x_{i}x_{j}-x_{1}x_{2}x_{i}+x_{2}x_{i}x_{j}-x_{1}x_{2}x_{j}\right)\right)=\frac{1}{(n-2)(n-3)}\sum_{2(i,j\leq n}\bar{d}_{2}\left(x_{1}x_{i}x_{j}-x_{1}x_{2}x_{i}+x_{2}x_{i}x_{j}-x_{1}x_{2}x_{j}\right)=\frac{1}{(n-2)(n-3)}\sum_{2(i,j\leq n)}2\left(x_{i}x_{j}-x_{1}x_{2}\right)$
$$
x_{1}x_{2}=\frac{1}{(n-2)(n-3)}\frac{(n-2)(n-3)}{2}\left(2\left(x_{i}x_{j}-x_{1}x_{2}\right)\right)=x_{i}x_{j}-x_{1}x_{2}
$$

So $\bar{d}_2 \phi = I$ on $M_0(n-2,2)$. Hence the sequence (2) is split if p does not divide neither $(n-2)$ nor $(n-3)$. Thus $M_0(n-3,3) =$ $\ker \bar{d}_2 \oplus L_0$, where $L_0 = \phi(M_0(n-2.2))$. Now assume if the sequence (2) is split.

Let $\phi: M_0(n-2,2) \to M_0(n-3,3)$ be a FS_n –homomorphism such that $\bar{d}_2 \phi = I$. Thus we can define ϕ as follows $\phi(x_i, x_i, -x_1x_2) =$

$$
\sum_{2 \langle i \rangle \leq n} k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j) \Rightarrow d_2 \phi (x_{i_1} x_{j_1} - x_1 x_2) =
$$
\n
$$
\bar{d}_2 (\sum_{2 \langle i \rangle \leq n} k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j) = \sum_{2 \langle i \rangle \leq n} \bar{d}_2 (k_{ij} (x_1 x_i x_j - x_1 x_2 x_i + x_2 x_i x_j - x_1 x_2 x_j) = \sum_{2 \langle i \rangle \leq n} k_{ij} (2(x_i x_j - x_1 x_2))
$$
\n
$$
= 2(\sum_{2 \langle i \rangle \leq n} k_{ij} (x_i x_j - x_1 x_2)) = x_{i_1} x_{j_1} - x_1 x_2.
$$
\n
$$
\Rightarrow 2 \sum_{2 \langle i \rangle \leq n} k_{ij} =
$$
\n
$$
\begin{cases}\n0 & \text{if } (i, j) \neq (i_1, j_1) \\
1 & \text{if } (i, j) = (i_1, j_1)\n\end{cases}
$$

Moreover if $\tau = (x_r x_s)$ such that $\tau(x_i, x_{i_1}) = x_{i_1} x_{i_1}$. Then $\phi(\tau(x_i, x_{i_1}))$ $(x_1 x_2)$) = $\phi(x_{i_1} x_{i_2} - x_1 x_2) = \tau \phi(x_{i_1} x_2)$ $(x_1 x_2) \implies \phi(x_{i_1} x_{i_1} - x_1 x_2) - \tau \phi(x_{i_1} x_2)$ $f(x_1x_2) = 0 \implies \sum_{2 \langle i \langle j \leq n \rangle} \left(k_{ij} \left(x \right) \right)$ $\left(x_2 x_i x_j - x_1 x_2 x_j\right)\right) - \tau \left(\sum_{2\langle i,j \leq n \rangle} \left(k_{ij}\left(x_j\right)\right)\right)$ $x_1x_2x_i + x_2x_ix_j - x_1x_2x_j)=0.$

 $\sum_{k=1}^{n} (k_{n} \Rightarrow$ $\sum_{i=1}^{n}$ $\sum_{j=r+1}^{s} (k_{rj} - k_{sj})$ $(k_{ri} - k_{si})$ x - $=r+$
 $\neq s$ $\sum_{i=1}^{n} (k_{ni} \sum_{j=r+1}^{s} (k_{rj} - k_{sj})$ $\sum\limits_{i=1}^{n}$ $(k_{ii} - k_{si}) x$ $+$ $=r+$
 $\neq s$ $\sum_{k=1}^{n} (k_{n} \sum$ $\sum_{j=r+1}^{s} (k_{rj} - k_{sr})$ $(k_{ii} - k_{si}) x$ $= r +$
 $\neq s$ $+ \sum_{2 \le i \le r} (k_{i} - k_{i}) x_1 x_i x_r + \sum_{2 \le i \le r} (k_{i} - k_{i}) x_1 x_i x_r +$ $\sum_{i \leq k} (k_i - k_i) x_2 x_i x_r - \sum_{i \leq k} (k_i - k_i) x_1 x_2 x_r = 0$ \Rightarrow By equaling the above equitation we get $k_{rj} = k_{sj}$; $r < j \le n \& j \ne s$,and $k_{ir} =$ k_{is} ; 2 < $i < r$. $k_{rj} = k_{sj} = k_{ir} = k_{is} = k$. Thus since $2 \sum_{2 \langle i \rangle \le n} k_{ij} = 0 \implies 2 \sum_{2 \langle i \rangle \le n} k$ \Rightarrow 2(ⁿ $\binom{-2}{2}k = (n-2)(n-3)k = 0.$ Then $k = 0$ or $p|(n-2)$ or $p|(n-3)$. $\sum_{2 \langle i,j \rangle \leq n} k_{ij} = 1$ when $(i, j) = (i_1, j_1)$ $\ddot{\cdot}$ $2^{\frac{6}{5}}$ $\frac{1}{2}k_1 = 1.$ \Rightarrow p \nmid $(n-2)$, p \nmid $(n-3)$ and $k_1 \neq 0$. Hence we get $p \nmid (n-2)$, $p \nmid (n-3)$, $k =$ 0 and $k_1 \neq 0$. Thus if the sequence is split then *p* does not divide neither (n-2) nor (n-3). **Proposition3.11:** $S(n-3,3)$ is a proper submodule of $\text{ker} \bar{d}_2$ over FS_n . **Proof:** Since $S(n-3,3) = FS_n(x_2 - x_1)$ $(x_3)(x_6-x_5)$ $(x_2 - x_1)(x_4 - x_3)(x_6 - x_5)$ is the generator of $S(n-3,3)$ over FS_n , and $\bar{d}_2((x_2-x_1))$ $x_3(x_6 - x_5) = 0$. Hence $S(n - 3,3) \subseteq \text{ker} \overline{d}_2$. Since \bar{d}_2 is an epimorphism. Hence $dim_F ker\bar{d}_2 = dim_F M_0$ $-dim_F M_0$ $\frac{n}{2}$ $\overline{6}$ $\frac{n}{2}$ \overline{c} $=\frac{n}{2}$ $\begin{matrix}6 & n\end{matrix}$

While $\frac{1}{6}$. Thus $dim_F S(n-3,3) < dim_F ker\overline{d}_2$.

Hence $S(n-3,3)$ is a proper submodule of $\ker \bar{d}_2$ over FS_n .

Proposition3.12: If $p \neq 2,3$ and p divides $(n+1)$, then we get the following series: 1)0 $\subset \overline{V}_0 \subset \overline{V}_0 \oplus S(n-3,3) \subset \overline{V} \oplus$ 3,3) $\subset \overline{V} \oplus \ker \overline{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3$. 2)0⊂ \bar{V}_0 ⊂ $\bar{V}_0 \oplus S(n-3,3)$ ⊂ $\bar{V}_0 \oplus \ker \bar{d}_2$ $\bar{V} \oplus \ker \bar{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ 3) $0 \subset \overline{V}_0 \subset \overline{V} \subset \overline{V} \oplus$ $\bar{V} \oplus \ker \bar{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ 4)0⊂ $F\sigma_3 \subset \overline{V} \subset \overline{V} \oplus S(n-3,3)$ ⊂ $\bar{V} \oplus \ker \bar{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ 5)0⊂ $F\sigma_3$ ⊂ $F\sigma_3\oplus S(n-3,3)$ ⊂ $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker \bar{d}_2$ $M_0(n-3,3) \oplus F \sigma_3$. 6)0⊂ $S(n-3,3)$ ⊂ $F\sigma_3 \bigoplus S(n-3,3)$ ⊂ $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker \bar{d}_2$ $M_0(n-3,3) \oplus F \sigma_3$. 7)0⊂ $S(n-3,3) \subset \overline{V}_0$ $\bar{V}_0 \oplus \ker \bar{d}_2 \subset \bar{V} \oplus \ker \bar{d}_2 \subset M_0$ $F\sigma_3$. 8)0⊂ $S(n-3,3) \subset \overline{V}_0$ $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker \bar{d}_2$ $M_0(n-3,3) \oplus F\sigma_3$. **Proof:** If $p \neq 2,3$ and $p \mid (n+1)$. Then p does not divide n nor $(n -$ 1) nor $(n-2)$. Since $\sigma_3(n) = \sum$ $1 \le i < j < k \le n$ $x_i x_i x_k$ and the sum of the coefficients is $\frac{n(n-1)(n-2)}{2}$ 6 , then $(n) \notin M_0$ 3,3). *i. e* $F\sigma_3 \cap M_0(n-3,3) = 0$. which implies that $M(n-3,3) = M_0($ $F\sigma_3$. Moreover we have $\vec{ker d}_2$ and $(n) \not\subset \text{ker} \overline{d}_2$, thus $F\sigma_3 \cap S(n-3,3) = 0$. Since $p \nmid n$, then by Theorem (3.6) we have $\overline{V}_0(n)$ is an irreducible submodule over FS_n , and $\overline{V} = \overline{V}_0(n) \oplus F\sigma_3$, then $\bar{V} \cap \text{ker} \bar{d}_2 = 0$. Thus $\bar{V} \cap$ Owhich implies that $F\sigma_3\bigoplus S(n-)$ 3,3) $\subset \overline{V} \oplus S(n-3,3)$ and \overline{V}_0 $(3,3) \subset \overline{V} \oplus S(n-3,3)$. Therefore we get the following series: 1)0 $\subset \overline{V}_0 \subset \overline{V}_0 \oplus S(n-3,3) \subset \overline{V} \oplus$ 3,3) $\subset \overline{V} \oplus \ker \overline{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3$. 2)0⊂ \bar{V}_0 ⊂ $\bar{V}_0 \oplus S(n-3,3)$ ⊂ $\bar{V}_0 \oplus \text{ker } \bar{d}_2$ $\bar{V} \oplus \ker \bar{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ 3) $0 \subset \overline{V}_0 \subset \overline{V} \subset \overline{V} \oplus$ $\bar{V} \oplus \ker \bar{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ 4)0⊂ $F\sigma_3 \subset \overline{V} \subset \overline{V} \oplus S(n-3,3)$ ⊂ $\bar{V} \oplus \ker \bar{d}_2 \subset M_0(n-3,3) \oplus F \sigma_3.$ 5)0⊂ $F\sigma_3$ ⊂ $F\sigma_3 \oplus S(n-3,3)$ ⊂ $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker \bar{d}_2$ $M_0(n-3,3) \oplus F \sigma_3$.

 $M_0(n-3,3) \oplus F \sigma_3$. 7)0⊂ $S(n-3,3) \subset \overline{V}_0$ $\bar{V}_0 \bigoplus \ker \bar{d}_2 \subset \bar{V} \bigoplus \ker \bar{d}_2 \subset M_0$ F . 8) $0 \subset S(n-3,3) \subset \overline{V}_0$ $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker \bar{d}_2$ $M_0(n-3,3) \oplus F \sigma_3$. **Theorem 3.13:** The following sequence of a FS_n - modules is short exact sequence. $0 \to ker\bar{d}_2$ $\stackrel{i}{\rightarrow} G \stackrel{\bar{d}_2}{\rightarrow} S(n-2,2) \rightarrow 0$ 3) where $G = FS_n(x_1x_3x_6 - x_1x_4x_6 +$ $x_2x_4x_6 - x_2x_3x_6$ **Proof:** From the definition of *G* we get that $G \subset M_0(n-3,3)$ and by Theorem(3.10) we have \bar{d}_2 : $M_0(n-3,3) \to M_0(n-2,2)$ is on to map. Since $S(n-2,2) = FS_n(x_2$ $x_1(x_4 - x_3) \subset M_0(n - 2.2)$. Then $(x_2 - x_1)(x_4 - x_3)$ $x_1x_4 + x_1x_3$ and $\bar{d}_2($ $x_2x_3x_6$ $(x_2x_3x_5)$ = x_1x_3) = 2($x_2 - x_1$)($x_4 - x_3$). Thus $\bar{d}_2 = d_2|_G : G \to S(n-2,2)$ is on to map. Moreover the inclusion map *i* is oneto-one map and $\ker \bar{d}_2 = Imi$. Hence the sequence (3) is short exact sequence. **Corollary 3.14:** The short exact sequence (3) is split when p does not divide (n-4). **Proof:** Assume $p \nmid (n-4)$. Let $\varphi: S(n \varphi$ (2,2) \rightarrow G be define as follows: φ ($(x_r (x_s)(x_t - x_l) = \frac{1}{n-4} \sum_{l=1}^{n}$ $\frac{1}{1}$ *n k* =1
k≠r,s,t,i $\overline{(}$ $x_r x_l x_k - x_s x_t x_k + x_s x_l x_k$). Then for any $\tau \in S_n$ we get $\varphi \big(\tau (x_r - x_s)(x_t - x_l) \big) =$ $\varphi((\tau x_r - \tau x_s)(\tau x_t - \tau x_l)) =$ $\varphi\left((x_{r_1} - x_{s_1})(x_{t_1} - x_{t_1}) \right)$ = $\mathbf{1}$ \boldsymbol{n} \sum \neq *n* $k_1 \neq r_1, s_1, t_1, l$ *k* $1'$ 1 $1'$ $1'$ $1'$ $1'$ $1'$ 1 $, \mathbf{g}, \mathbf{f},$ 1 $(x_{r_1}x_{t_1}x_{k_1}-x_{r_1}x_{l_1}x_{l_2})$ $x_{s_1}x_{t_1}x_{k_1} + x_{s_1}x_{l_1}x_{k_1} = \frac{1}{k_1}$ \boldsymbol{n}

6)0 \subset $S(n-3,3)$ \subset $F\sigma_3 \bigoplus S(n-3,3)$ \subset

 $\bar{V} \oplus S(n-3,3) \subset \bar{V} \oplus ker \bar{d}_2$

$$
\sum_{\substack{k_1=1\\k_1^* \neq r_1s_1t_1t_1}}^n \tau(x_r x_t x_k - x_r x_l x_k - x_s x_t x_k + C
$$

$$
x_{s}x_{l}x_{k} = \frac{1}{n-4} \tau \left(\sum_{\substack{k=1 \\ k \neq r, s, t, l}}^{n} (x_{r}x_{t}x_{k} - x_{l}x_{k}) \right)
$$

 $x_r x_l x_k - x_s x_t x_k + x_s x_l x_k) = \tau \varphi \big((x_r (x_s)(x_t - x_l)$. Hence φ is a FS_n homomorphism. Moreover we have

$$
\bar{d}_2 \varphi ((x_r - x_s)(x_t - x_l)) =
$$
\n
$$
\bar{d}_2 \left(\frac{1}{n-4} \sum_{\substack{k=1 \\ k \neq r, s, t, l}}^n (x_r x_t x_k - x_r x_l x_k - x_s x_t x_{k-1}) \right)
$$
\n
$$
= \frac{1}{n-4} \sum_{\substack{k=1 \\ k \neq r, s, t, l}}^n \bar{d}_2 (x_r x_t x_k - x_r x_l x_k - x_r x_l x_{k-1})
$$

 $x_s x_t x_k + x_s x_l x_k = \frac{1}{k}$ $\frac{1}{n-4}$ (1) $(x_s)(x_t - x_l) = (x_r - x_s)(x_t - x_l)$ Thus $\bar{d}_2 \varphi = I$ on $S(n-2,2)$. Hence the $sequence(3)$ is split when 4). Moreover $G = \ker \overline{d}_2 \oplus \overline{G}$; $\overline{G} =$ $\varphi(S(n-2,2))$.

Proposition 3.15: $S(n-3,3)$ is a proper KS_n – submodule of G.

Proof: Since $x_1(x_4 - x_3)(x_6 - x_5)$ and $FS_n(x_1x_3x_6 - x_1x_4x_6 + x_2x_4x_6 - x_2x_3x_6)$ then

 $y=(x_2-x_1)(x_4-x_3)(x_6-x_5)$ $(x_1x_3x_6 - x_1x_4x_6 + x_2x_4x_6 - x_2x_3x_6)$ $(x_1x_4x_5 - x_1x_3x_5 + x_2x_3x_5 - x_2x_4x_5)$ F. Thus $S(n-3,3) \subset G$. Moreover since $\bar{d}_2 = \bar{d}_2|_G$, then we get ker $\bar{d}_2 \subset \text{ker} \bar{d}_2$ and since $\text{ker} d_2 = \text{ker} \overline{d}_2$. Hence $\text{ker} \overline{d}_2$ $\text{ker } d_2$ and by definition of \bar{d}_2 we get $\bar{d}_2(y) = 0$ which implies that $ker \overline{d}_2 \subset G$. Hence S(n-3,3) is a proper FS_n – submodule of G.

Theorem 3.16: If $p \neq 2,3$ and $p|(n-3)$ then we have the following series:

1)0⊂ $F\sigma_3$ ⊂ $F\sigma_3 \oplus S(n-3,3)$ ⊂ $F\sigma_3 \oplus$ $ker\overline{d}_2 \subset F\sigma_3\oplus G \subset F\sigma_3\oplus M_0(n-3,3).$ 2)0⊂ $S(n-3,3)$ ⊂ $F\sigma_3 \oplus S(n-3,3)$ ⊂ F $\sigma_3\oplus\,$ ker ${\bar{\bar{d}}}_2$ $3,3$).

Proof: Since $p|(n-3)$, then $p \nmid (n-4)$ and by Corollary (3.19) we get $G = \ker \bar{d}_2 \oplus \bar{G}$; $\bar{G} = \varphi(S(n-2,2)) \cong$ $S(n-2,2)$ and by Proposition(3.20) we have $S(n-3,3) \subset \ker \bar{d}_2 \subset G$. Since $\sigma_3(n) = \sum_{1 \le i < j \le k \le n}$ $x_i x_i x_k$ and the sum of coefficients of $\sigma_3(n)$ is $\frac{n(n-1)(n-2)}{6}$ then $\sigma_3(n) \notin M_0(n-3,3)$ and $\sigma_3(n)$ which implies that $\sigma_3(n) \notin \ker \overline{d}_2$. $F\sigma_3 \cap G = 0$ and $F\sigma_3 \cap \ker \bar{d}_2$ 0 Hence $F\sigma_3 \oplus \ker \overline{d}_2 \subset F\sigma_3 \oplus G$. Moreover we have $F\sigma_3 \bigoplus S(n-3,3) \subset$ $F\sigma_3 \bigoplus \text{ ker } \overline{d}_2$. Thus we get the following series: 1)0⊂ $F\sigma_3$ ⊂ $F\sigma_3 \oplus S(n-3,3)$ ⊂ $F\sigma_3 \oplus$ $\ker \bar{d}_2 \subset F \sigma_3 \oplus G \subset F \sigma_3 \oplus M_0 (n-3,3).$ 2)0⊂ $S(n-3,3)$ ⊂ $F\sigma_3 \oplus S(n-3,3)$ ⊂ $F\sigma_3\oplus\,$ ker ${\bar{\bar{d}}}_2$ $3,3$).

References:

[Ellers:2007]:Harald Ellers, John Murray, Branching rules for Specht modules, Journal of Algebra 307(2007)278-286. [Farahat:1962]:H.K. Farahat, On the Natural Representation of the Symmetric groups, Proc .Glasgow Math.Assoc.5 (1962),121-136. [Joyce:*20*71*]*:David Joyce, Clark University, "Introduction to Modern Algebra" Version 7*.*2*.*1*,5* Dec.2017. [Kerber:2004]:Addbert Kerber, Axel Kohnert , Modular irreducible representation of the Symmetric group as linear Codes. European Journal of Conbinatorics 25 (2004) 1285-1299. [Peel:1969]:M.H .Peel, On the Second Natural Representation of the Symmetric groups. Glasgow Math .Journal vol.10 part1(1969),25-37.

[Peel:1971]:M.H .Peel, Hook Representation of the Symmetric groups ,Glasgow Math .Journal vol.12 part 2(1971),136-149.

$$
M(n-3,3)
$$
لُتُتُنِلٌ ($n-3,3$) سُلَّنِدِ

 قسن الرياضيات قسن الرياضيات كلية العلوم كلية التربية للعلوم الصرفة جاهعة النهرين جاهعة كربالء reyadhdelphi@gmail.com alibotahi@gmail.com

 علي عبذ الصاحب هحوذ رياض دلفي علي

الوستخلص : $M(n-3,3)$ ان المهدّف من هذا العمل هو دراسة التمثيل الطبيعي الثالث للزمرالنتاظرية ضمن حقل F وبرهان بان(3,3 n m يمكن ان تجزئ اذا وفقط اذا كان p لا تقسم $n(n-1)(n-2)/6$