open set) if for every $x \in A$, there exists an open set U in X and a compact set $K \in C(X, \mathcal{T})$ such that $x \in U$ -K⊆A, the complement of coc-open set is called cocclosed set. The family of all coc-open subsets of a space (X, \mathcal{T}) will be denoted \mathcal{T}^{K} and the family {U – $K : U \in \mathcal{T}$ and $K \in C(X, \mathcal{T})$ } of coc – open sets will denoted by $B^{K}(\mathcal{T})$ [S.Al Ghour and S. Samarah, 2012].

Definition (2.1): A subset A of a topological space

 (X, \mathcal{T}) is called co-compact open set (notation : coc-

Theorem(2.2) S.Al Ghour and S. Samarah, **2012]** : Let X be a topological space. Then the collection \mathcal{T}^{K} form a topology on X.

Example(2.3): It is clear that every coc – open set is open set and every coc - closed set is closed, but the converse is not true in general, see the following example. Let $X = \{a, b\}$ and $T = \{\emptyset, X\}$, then $\mathcal{T}^{K} = \{\{a\}, \{b\}, \emptyset, X\}.$

Proposition(2.4)[Farah HausainJasim,2014]:Let X be a topological space and Y any non -empty closed set in X. If B is a coc-open set in X, then $B \cap Y$ a coc-open set in Y.

only if X and Y are homeomorphic and $d(\mathbb{R}) = n$ for each positive integer n. The domain of dimension function is topological space and the codomain is the set{-1,0,1,...}. In [A.P.Pears ,1975], The dimension functions ind, Ind, dim, Actually the dimension S - indX, S - IndX, S - dimX by using functions. S - open sets were studied in [Raad Aziz Hussain AL-Abdulla,1992], also the dimension functions, bindX, b - IndX, b - dimX, by using b - open sets werestudied in [Sama Kadhim Gabar,2010], also the dimension functions, f - indX, f - IndX, f - dimX, by f – open using sets were studied in [NedaaHasanHajee,2011]. and the dimension functions, N - ind, N - Ind, N - dim are by using N - opensets[Enas Ridha Ali,2014] also the dimension functions S_{β} – ind, S_{β} – Ind, S_{β} – dim, by using S_{β} – open sets[Sanaa Noor Mohammed, 2015]. In this paper actually the dimension function ,coc-ind , coc-Ind and coc-dim by using coc-open sets. Finally some relations between them are studied and some results relating to these concepts are proved.

Keywords: coc – open,coc – ind X, coc – Ind X,and coc – dim X.

Mathematics subject classification : 54XX

The "Dimension function" in Dimension theory is

function defined on the class of topological spaces such

that d(X) is an integer or ∞ . Then d(X) = d(Y) if and

1. Introduction:

Abstract :

On Coc – **Dimension Theory**

Raad Aziz Hussain Raad-64@hotmail.com

Wrood Hasan Hweidee wroodhasan1212@gmail.com

2. Preliminaries

Department of Mathematics College of Computer science and Information Technology University of AL-Qadisiya

In this paper we introduce and define a new type on coc-dimension theory. The concept of *indX*, *IndX*, *dimX*, for a

topological space X have been studied. In this work, these concepts will be extended by using coc - open sets.

Recived : 27\7\2015 Revised : 10\1\2016 Accepted : 17\1\2016

Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.1 Year 2016

Page 5 - 13

Raad. A/Wrood. H

Raad. A/Wrood. H

Corollary(2.5)[Farah HausainJasim,2014]:Let X be a topological space and Y any non –empty closed set in X. If B is a coc-closed set in X, then $B \cap Y$ a coc-closed set in Y.

Definition (2.6)[Farah Hausain Jasim, 2014]: Intersection of all coc - closed sets containing F is called the coc - closure of F is denoted by \overline{F}^{coc} .

Theorem(2.7)[Farah Hausain Jasim, 2014]: For any subset F of a topological space X, the following statements are true .

- 1- \overline{F}^{coc} is the intersection of all coc closed sets in X containing F.
- 2- $\overline{F}^{\text{coc}}$ is the smallest $\cos closed$ set in X containing F.
- 3- *F* iscoc *closed* if and only if $F = \overline{F}^{\text{coc}}$.
- 4- If F and E are any subsets of a topological space X and $F \subseteq E$, then $\overline{F}^{\text{coc}} \subseteq \overline{E}^{\text{coc}}$.

Definitions(2.8)[Farah Hausain Jasim, 2014]:

Let X be a topological space, Then :

1- $A^{\circ coc} = \bigcup \{ B : B \text{ is coc-open in } X \text{ and } B \subseteq A \}.$

2- The coc – neighborhood of B is any subset of X which contains an coc-open set containing B. The coc – neighborhood of a subset {x} is also called coc-neighborho- od of the point x.

3- Let A subset of X. For each x in X is said to be cocboudary point of A if and only if each coc – neighborhood U_x of x, we have $U_x \cap A \neq \emptyset, U_x \cap A^C \neq \emptyset$. The set of all coc – boundary points of A is denoted by $b_{coc}(A)$.

Proposition (2.9)[Farah Hausain Jasim, 2014]: Let A be any subset of a topological space X. If a point x is in the coc- interior of A, then there exists a coc-open set U of X containing x such that $U \subseteq A$.

Remark(2.10):

i. $b_{coc}(A) = \overline{A}^{coc} \cap (A^{\circ}_{coc})^{c}$.

ii. Let A be a subset of a topological space X, then $b_{coc}(A) = \emptyset$ if and only if A is both coc-open and cocclosed set.

Definition (2.11)[Farah Hausain Jasim, 2014]: A space X is called $coc - T_1$ space if and only if, for each $x \neq y$ in X, there exist coc - open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Proposition (2.12)[S.Al Ghour and S. Samarah, 2012]:If a space X is \mathcal{T}_2 – space, then $\mathcal{T}^K = \mathcal{T}$.

Proposition (2.13)[Farah Hausain Jasim, 2014]:Let X be a topological space. Then Xiscoc $-\mathcal{T}_1$ space if and only if $\{x\}$ is coc - closed set for each $x \in X$.

Definition(2.14)[Farah Hausain Jasim, 2014]: A space X is called coc - regular space if and if for each x in X and a closed set F such that $x \notin F$, there exist disjoint coc-open sets U, V such that $x \in U, F \subseteq V$.

Definition (2.15): A space X is said to be coc^* -regular space if and only if ,for each $x \in X$ and F is an coc-closed sub such that $x \notin F$, there exist U,V disjoint open sets in X such that $x \in U$ and $F \subseteq V$.

Proposition(2.16)[**N.J.Pervin, 1964**]: A space X is regular space if and only if for every $x \in X$ and each open set U in X such that $x \in U$ there exist an open set w such that $x \in W \subseteq \overline{W} \subseteq U$.

Proposition(2.17)[Farah Hausain Jasim, 2014]: A space X is coc- regular space if and only if for every $x \in X$ and each open set U in X such that $x \in U$ there exist a coc- open set W such that $x \in W \subseteq \overline{W}^{coc} \subseteq U$.

Proposition(2.18): A topological space X is coc*regular topological space if and only if, for every $x \in X$ and each coc-open set U in X such that $x \in U$ then there exists an open set*W* such that $x \in W \subseteq \overline{W} \subseteq U$.

Proof: Assume that X is coc*-regular topological space and let $x \in X$ and U is a coc-open set in X such that $x \in U$.then U^c is an coc-closed in X, $x \notin U^c$. Since X is a coc*- regular topological space then there exist disjoint open sets W and V such that $x \in W$ and $U^c \subseteq V$.then it is means $x \in W \subseteq \overline{W} \subseteq \overline{V^c} = V^c \subseteq U$.

Raad. A/Wrood. H

Conversely; Let $x \in X$ and C be a coc-closed set such that $x \in C^c$ thus there exists an open set W such that $x \in W \subseteq \overline{W} \subseteq C^c$. Then $x \in W$, $C \subseteq (\overline{W})^c$, then we get to W, $(\overline{W})^c$ is an open sets, $W \cap (\overline{W})^c =$ Ø.Hence X is coc*-regular topological space.

Definition (2.19)[Farah Hausain Jasim, 2014]:A space X is said to be coc - normal space if and only if for every disjoint coc- closed sets F1, F2 there exist disjoint *coc* – open sets V_1 , V_2 such that $F_1 \subset V_1$, $F_2 \subset V_2$. Definition (2.20)[Farah Hausain Jasim, 2014]: A space X is said to be coc' – normal space if and only if for every disjoint coc-closed sets F1, F2 there exist disjoint open sets V_1, V_2 such that $F_1 \subset V_1, F_2 \subset V_2$.

Example(2.21): This example show that coc-normal space is not normal space in general. Let x = $\{a, b, c, d\}, \mathcal{T} = \{X, \emptyset, \{a, b, d\}, \{a, b, c\}\}, \mathcal{T}^{K}$ = $\{\emptyset, X, \{a, b\},\$

} It is clear that X is coc- normal space and not normal space, since there exists disjoint closed sets $\{d\}, \{c\}$ but not there exist disjoint open sets contain them.

Proposition (2.22)[Farah Hausain Jasim, 2014]:A topological space X is coc-normal topological space if and only if for every closed set $F \subseteq X$ and each open set U in X such that $F \subseteq U$ then there exists an coc open set W such that $F \subset W \subset \overline{W}^{coc} \subset U$.

Proposition (2.23)[Farah Hausain Jasim, 2014]:A topological space X is coc' - normal topological space if and only if for every coc - closed set $F \subseteq X$ and each coc - open set U in X such that $F \subseteq U$ then there exists an coc – open set W such that $F \subset W \subset \overline{W}^{coc} \subset$ U.

3. On small Coc- Inductive Dimension Function

Definition (3.1): The *coc* – small inductive dimension of a space X, coc - ind X, is defined inductively as

follows. topological space X, coc - ind X = -1, and only if, X is empty. If n is a non-negative integer,

then $coc - ind X \le n$ means that for each point $x \in X$ and each open set G such that $x \in G$ there exists an coc - open set U such that $x \in U \subseteq G$ and coc - openind $b(U) \le n - 1$. We put coc - indX = n if it is true that $coc - indX \le n$, but it is not true that $coc - indX \le n - 1$. If there exists no integer *n* for which $coc - ind X \le n$, then we put $coc - ind X = \infty$.

Definition (3.2): The *coc* * – small inductive dimension of a space X, coc * -ind X, is defined inductively as follows. topological space X, coc ind X = -1, and only if, X is empty. If n is a nonnegative integer, then coc^* -ind $X \leq n$ means that for each point $x \in X$ and each open set G such that $x \in G$ there exists an coc – open set U such that $x \in U \subseteq G$ and $coc - ind b_{coc}(U) \leq n - 1$.

 $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\} \{d, b, c\}, \{a\}, \{b\}, \{d\}, \{c\}$ We put coc * -indX = n if it is true that coc * -indX = n if $-indX \le n$, but it is not true that $coc * -indX \le n - 1$. If there exists no integer *n* for which $coc * -ind X \le n$, then we put $coc * -indX = \infty$.

> **Theorem (3.4):** Let X be a topological space, if coc - indX = 0 then X is regular space.

> **Proof:** Let $x \in X$ and G an open set such that $x \in G$, since coc - indX = 0, then there exists an coc - openset *V* such that $x \in V \subseteq G$ and coc - ind b(V) = -1. Thus $b(V) = \emptyset$, hence V is an open and closed set. Therefore $x \in V \subseteq \overline{V} \subseteq G$ by proposition (2.16),hence X is regular space.

> **Theorem (3.5):** Let X be a topological space, if coc * -indX = 0, then X is coc -regular space.

> **Proof:** Let $x \in X$ and G an open set such that $x \in G$, since coc * -indX = 0, then there exists an coc - open set V such that $x \in V \subseteq G$ and coc - openind $b_{coc}(V) = -1$. Thus $b_{coc}(V) = \emptyset$ by Remark (2.9. ii.), henceV is an coc-open and coc-closed set. Therefore $x \in V \subseteq \overline{V}^{coc} \subseteq G$ by proposition (2.18), hence *X* is *coc* –regular space.

Raad. A/Wrood. H

Proposition(3.6):Let X be a topological space, if coc - indX is exists then $coc - indX \le indX$.

Proof: By induction on *n*. If n = -1, then indX = -11 and $X = \emptyset$, so that coc - indX = -1. Suppose the statements is true for n - 1. Now, suppose that $indX \le n$, to prove $coc - indX \le n$, let $x \in X$ and *G* is an open set in X such that $x \in G$ since $indX \le n$, then there exist anopen set *V* in X such that $x \in V \subseteq G$ and $ind b(V) \le n-1$ and since each open set is coc-open set. Then *V* is a coc-open set such that $x \in V \subseteq G$ and $coc - ind b(V) \le n-1$. Hence coc-ind $X \le n$.

Theorem (3.7): Let X be a topological space, then coc - indX = 0 if and only if indX = 0.

Proof: By proposition (3.6) if indX = 0, then $coc - indX \le 0$ and since $X \ne \emptyset$

then coc - indX = 0. Now let coc - ind X = 0, let $x \in X$ and *G* an open set in *X* such that $x \in G$, since indX = 0 then there exists a coc-open set *V* such that $x \in V \subseteq G$ and coc-indb(V) = -1, then $b(V) = \emptyset$, hence indb(V) = -1, thus ind $X \le 0$, but $X \neq \emptyset$.

Therefore ind X = 0. The following example a space X with

 $\operatorname{coc-ind} X = \operatorname{ind} X = 0.$

Example (3.8): Let $X = \{a, b\}$ and $T = \{\emptyset, X\}$ be a topology on X, then $\mathcal{T}^{K} = \{\{a\}, \{b\}, \emptyset, X\}$, and coc-ind X = ind X = 0.

Theorem (3.9) : If A is a clopen (closed and open) subspace of a space X , then coc-ind $A \le \text{coc-ind } X$.

Proof : By induction on *n*. It is clear if n = -1. Suppose that it is true for n-1. Let coc-ind $X \le n$, to prove that coc-ind $A \le n$, let $x \in A$ and G an open set in A such that $x \in G$, thus there exist V an open set in X such that $V = G \cap A$, then $x \in V$ and since coc-ind $X \le n$, then there exist W a coc-open set in X, such that $x \in W \subseteq V$ and coc-ind $b(W) \le n-1$., let $U = W \cap A$, then U coc-open set in A (since A closed in X). $b_A(U) \le b(U) \cap A$ = $\overline{U} \cap U^{\circ c} \cap A \subseteq \overline{W} \cap A \cap U^{\circ c} = \overline{W} \cap A \cap (W \cap A)^{\circ c}$ = $\overline{W} \cap A \cap (W^{\circ c} \cup A^c) = b(W) \cap A \le b(W)$. We to prove that $b_A(U)$ is closed set in b(W), since $b_A(U)$ a closed set in A and A closed set in X, then $b_A(U)a$ closed set in X. Now; $\overline{b_A(U)}^{b(W)} = \overline{b_A(U)} \cap b(W) = b_A(U) \cap b(W) = b_A(U)$.

Since coc-ind $b(W) \leq \ n{-}1$, then $\ \ coc-ind \ b(U) \leq \ n{-}1$, therefore coc-ind $A \leq \ n$.

Proposition (2.24): A topological space X is coc * –normal topological space if and only if for every coc – closed set $F \subseteq X$ and each coc – open set U in X such that $F \subseteq U$ then there exists an open set W such that $F \subset W \subset \overline{W} \subset U$.

Proof: Assume that X is coc*-normal space and let F is coc-closed set in X and ea- ch U is a coc-open in X such that $F \subseteq U$, then F, U^c are a disjoint coc-closed sets in X. Since X is a coc*- normal space, then there exist disjoint

open sets W and V such that $F \subseteq W$ and $U^c \subseteq V$. then it is means $F \subseteq W \subseteq \overline{W} \subseteq \overline{V^c} = V^c \subseteq U$.

Conversely; Let F and C a disjoint coc-closed sets in X ,then C^c is coc-open set such that $F \subseteq C^c$. Thus there exists an open set W such that $F \subseteq W \subseteq \overline{W} \subseteq C^c$.Then $F \subseteq W$, $C \subseteq (\overline{W})^c$, then we get to W, $(\overline{W})^c$ is an open sets, $W \cap (\overline{W})^c = \emptyset$. Hence X is coc*normal space.

4. On Large coc – Inductive Dimension Function

Definition(4.1): The coc-large inductive dimension of a space *X*, coc-Ind *X*, is defined large inductively as follows. A space *X* satisfies coc- Ind X = -1 if and only if *X* is empty. If *n* is a non-negative integer, then coc-Ind $X \le n$ means that for each closed set *F* and each open set *G* of *X* such that $F \subset G$ there exists acoc-open set *U* such that $F \subset U \subset G$ and Ind $b(U) \le n-1$. We put coc-Ind X = n, its true that coc- Ind $X \le n$, but it is not true that coc-Ind $X \le n - 1$. If there exists no integer *n* for which Ind $X \le n$ then we put *coc*-Ind $X = \infty$.

Raad. A/Wrood. H

Definition (4.2): Thecoc * - large inductive dimension of a space *X*, coc-Ind*X*, is defined large inductively as follows: A space *X* satisfies coc*-Ind*X* = -1 if and only if *X* isempty. If *n* is a non-negative integer, thencoc * -Ind*X* $\leq n$ means that for each closedset *F* and each open set *G* of *X* such that $F \subset G$ there exists open set *U* such that $F \subset U \subset G$ and coc-Ind $b_{coc}(U) \leq$ *n*-1. We put coc * -Ind*X* = *n* if it is true that coc * -Ind*X* $\leq n$, but it is not true that coc-Ind X $\leq n$ -1. If there exists no integer *n* for which coc-Ind*X* $\leq n$ then we put coc-Ind*X* = ∞ .

Proposition(4.3):Let X be a topological space, if coc-IndX = 0, then X is normal.

Proof: Let *F* be a closed set in *X* and *G* is an open set such that $F \subseteq G$. Since *coc*-IndX = 0, then there exist *coc*-open *W* such that *coc*-Ind b(W) = -1, hence *W* is open and closed set therefore $F \subseteq W \subseteq \overline{W} \subseteq U$, then *X* is normal.

Proposition(4.4):Let *X* be a topological space, if coc * -Ind X = 0, then X coc-normal space.

Proof: Let *F* be a closed set in *X* and *U* is a open set such that $F \subseteq U$. Since \cos^* - $\operatorname{Ind} X = 0$, then there exist *coc*-open *W* such that *coc*- $\operatorname{Ind} b_{coc}(W) = -1$, hence *W* is *coc*-open and *coc*-closed set therefore $F \subseteq W \subseteq \overline{W}^{coc} \subseteq U$ by proposition (2.23) *X* is *coc* – normal space.

Proposition(4.5):Let X be a topological space.coc – IndX is exists, then coc-IndX \leq IndX.

Proof: By induction on n. It is clear that n = -1. Suppose that it is true for n-1. Now, suppose that $IndX \le n$, to prove that coc-Ind $X \le n$, let F be a closed set in X and G is an open set in X such that $F \subseteq G$, since $IndX \le n$, then there is open set U in X such that $F \subseteq U \subseteq G$ and $Ind b(U) \le n - 1$, since each open set is coc-open set. Then U is coc-open set such that $F \subseteq U \subseteq G$ and coc-Ind $b(U) \le n - 1$. Hence coc-Ind $X \le n$. **Theorem (4.6):** Let X be a topological space, then IndX = 0, if and only if coc - IndX = 0.

Proof: By proposition (4.5) If IndX = 0, then coc-Ind $X \le 0$, and since $X \ne \emptyset$, then coc-IndX = 0. Now, Let coc-Ind X = 0 and Let F is closed set in X and each open set G in X such that $F \subseteq G$. Since coc-Ind X = 0, then there exists a coc-open set U in X such that $F \subseteq U \subseteq G$ and coc-Ind $b(U) \le -1$. Then $b(U) = \emptyset$, therefore U is both open and closed set, then U open such that $F \subseteq U \subseteq G$, and Ind b(U) = -1, hence Ind $X \le 0$ and since $X \ne \emptyset$, then Ind X = 0.

Theorem (4.7): If A is a clopen (closed and open) subspace of a space X, then coc-Ind A \leq coc-Ind X.

Proof : By induction on *n*. It is clear if n = -1. Suppose that it is true for n-1. Let coc-ind $X \le n$, to prove that coc-

Ind $A \leq n$, let F is closed set in A and G an open set in A such that $F \subseteq G$, thus there exists V an open set in X such that $V = G \cap A$, then $F \subseteq V$ and since coc-Ind X $\leq n$, then there exist W a coc-open set in X, such that F $\subseteq W \subseteq V$ and coc-Ind b(W) $\leq n$ -1, let $U = W \cap A$, then U coc-open set in A (since A closed in X). $b_A(U) \subseteq b(U) \cap A = \overline{U} \cap U^{\circ c} \cap A \subseteq \overline{W} \cap A \cap U^{\circ c} = \overline{W} \cap A \cap (W \cap A)^{\circ c} = \overline{W} \cap A \cap (W^{\circ c} \cup A^c) = b(W) \cap A \subseteq b(W)$. We to prove that $b_A(U)$ is closed set in b(W), since $b_A(U)$ a closed set in A and A closed set in X, then $b_A(U)$ a closed set in X. Now; $\overline{b_A(U)}^{b(W)} = \overline{b_A(U)} \cap b(W) = b_A(U)$. Since coc-Ind b(W) $\leq n$ -1, then coc-Ind b(U) $\leq n$ -1, therefore coc-Ind A $\leq n$.

5. On Coc- Covering Dimensiaton Function

Definition(5.1) [**A.P. Pears, 1975]:** Let X be a set and \mathcal{A} a family of subsets of X, by an order of the family \mathcal{A} we mean the largest integer n such that the family \mathcal{A} contains n + 1 sets with a non- empty intersection, if no such integer exists, we say that the family \mathcal{A} has order ∞ . The order of a family \mathcal{A} is denoted by ord \mathcal{A} .

Raad. A/Wrood. H

Definition(5.2) [Stephen Willard, 1970]: If \mathcal{U} and \mathcal{V} are covers of X, we say \mathcal{U} refines \mathcal{V} , iff each $U \in \mathcal{U}$ is contained in some $V \in \mathcal{V}$.

Definition (5.3): The coc-covering dimension (cocdim*X*) of a topological *X* is the least integer *n* such that every finiteopen covering of *X* has open refinement of order not exceeding *n* or ∞ if there is no such integer. Thus coc-dim*X* = -1 if and only if *X* is empty, and coc-dim *X* \leq *n* if each finite open covering of *X* has coc- open refinement of order not exceeding *n* that coc-

dim $X \le n - 1$. Finally coc-dim $X = \infty$ if for every integer *n* it is false that coc-dim $X \le n$.

Definition (5.4): The coc'-covering dimension (*coc'* – dim*X*) of a topological space *X* is the least integer *n* such that every finite coc-open covering of *X* has coc-open refinement of order not exceeding *n* or ∞ if there is no such integer. Thus *coc'*-dim*X* = -1 if and only if *X* is empty, and coc'-dim*X* ≤ *n* if each finite open cover- ing of *X* has coc-open refinement of order not exceeding *n*. We have coc'-dim*X* = *n* if it is true that coc'-dim*X* ≤ *n* , but it is not true that coc'-dim*X* ≤ *n* - 1. Finally coc'-dim*X* = ∞ if for every integer *n* it is false thatcoc'-dim*X* ≤ *n*.

proposition(5.5) : Let X a topological space, then coc-dim $X \le dim X$.

proof: Suppose that dim $X \le n$. Let a finite open cover of X, then there exist \mathcal{V} an open refinement of order $\le n$. Since every open set is coc-open set, then \mathcal{U} has \mathcal{V} a coc-open refinement of order $\le n$, therefore coc-dim $X \le n$.

proposition(5.6) :Let X a topological space , then $\operatorname{coc-} \dim X \leq \operatorname{coc'} - \dim X$.

proof : suppose that coc'-dim $X \le n$. Let \mathcal{U} a finite open cover of X, then \mathcal{U} a finite coc-open cover of X, then \mathcal{U} a coc-open cover. Since coc'-dim $X \le n$, then there exists \mathcal{V} a coc-open refinement of order $\le n$.

Hence has \mathcal{V} a coc-open refinement of order $\leq n$, therefore coc-dim X $\leq n$.

Lemma (5.7) : If (X, \mathcal{T}) is a CC space , then coc-dim X = coc'-dim X = dim X.

Proof :By[**S.Al Ghour and S. Samarah, 2012**] the statement are equivalent :(i) (X , \mathcal{T}) is a CC space . (ii) $\mathcal{T} = \mathcal{T}^{K}$.

Lemma(5.8): If(X, \mathcal{T}) is a coc \mathcal{T}_2 -space, then coc-dim X = coc'-dim X = dim X.

Proof : By **[S.Al Ghour and S. Samarah, 2012]** if (X, \mathcal{T}) is a $\operatorname{coc}\mathcal{T}_2$ –space, then $\mathcal{T} = \mathcal{T}^K$.

Definition (5.9) : A coc-base for the topology of a space X is a set β of coc-open sets such that for every point $x \in X$ and every neighborhood N of x , there exists B such

that $x \in B \subseteq N$. Equivalently β is a coc-base if each open set is a union of some members of β .

Definition(5.10): A coc*-base for the topology of a space X is a set β of coc-open sets such that for every point $x \in X$ and every coc-neighborhood N of x , there exists B such that $x \in B \subseteq N$. Equivalently β is a coc*-base if each open set is a union of some members of β .

Theorem(5.11):Let X be a topological space. If X has a coc-base of sets which are both coc-open and coc-closed, then coc-dimX = 0 for an T_1 – space, the converse is true.

Proof: Suppose that *X* has coc-base of sets which are both coc-open and coc-closed. Let $\{U_i\}_{i=1}^k$ be a finite open cover of *X*, it has a coc-open and coc-closed

refinement \mathcal{W} , if $w \in \mathcal{W}$, then $w \subset U_i$ for some *i*. Let each $w \in \mathcal{W}$ be associated with one of the U_i sets containing it and let U_i be the union of these members of \mathcal{W} , thus associated with U_i . Thus $V_i = W_j \setminus \bigcup_{r < j} W_r$ is coc-open set and hence $\{V_i\}_{i=1}^k$ forms disjoint cocopen refinement of $\{U_i\}_{i=1}^k$, then coc-dimX = 0

Raad. A/Wrood. H

Conversely; Suppose that *X* is $coc-\mathcal{T}_1$ space such that coc-dim X = 0. Let $x \in X$ and *G* be an open set in *X* such that $x \in G$. Then $\{x\}$ is closed set, then $\{G, X-\{x\}\}$ is finite open cover of *X*. Since coc-dim X = 0, then there exists coc-open refinement $\{V, W\}$ of order 0 such that $V \cap W = \emptyset$, $V \cup W = X$, $V \subset G$ and $W \subset X-\{x\}$. Then *V* is coc-open and coc-closed set in *X* such that $x \in W^c \subseteq V \subseteq G$ and hence *X* has coc-base of coc-open and coc-closed.

Remark(5.14) [A.P. Pears, 1975]: Let X be a topological space with dim X = 0. Then X is normal space.

Theorem (5.15): Let *X* be a topological space. If $\operatorname{coc-dim} X = 0$, then *X* is coc-normal space.

Proof: Let F_1 and F_2 are disjoint closed sets of X. Then $\{X-F_1, X-F_2\}$ is open cover of X. Since cocdim X = 0, then it is has coc-open refinement of order 0, hence So that coc-open sets H and G such that $H \cap G = \emptyset$, $H \cup G = X$, therefore $H \subset X-F_1$ and $G \subset X-F_2$. Thus $F_1 \subset H^c = G$, $F_2 \subset G^c = H$ and since $H \cap G = \emptyset$, then is X is coc-normal space.

Theorem (5.16): Let X be a topological space. If coc'dim X = 0, then X is coc'-normal space.

Proof: Let F_1 and F_2 are disjoint coc-closed sets of X. Then $\{X-F_1, X-F_2\}$ is coc-open covering of X. Since coc'-dim X = 0, then it is has coc-open refinement of order 0, hence there exists coc-open sets H and G such that $H \cap G = \emptyset$, $H \cup G = X$, so that $H \subset X-F_1$ and $G \subset X-F_2$. Thus $F_1 \subset H^c = G$, $F_2 \subset G^c = H$ and since $H \cap G = \emptyset$, then is X is coc'-normal space.

Theorem (5.18): If A closed subset of a topological space X, then coc-dim $A \le \operatorname{coc-dim} X$.

Proof: Suppose that dim $X \le n$, let $\{U_1, U_2, ..., U_k\}$ be an open cover of A, then for each i, $U_i = A \cap V_i$, where V_i is an open set in X. The finite open covering

 $\{V_1, V_2, ..., V_k, X \cdot A\}$ of X has coc-open refinement Win X of order $\leq n$. Let $\mathcal{V} = \{ W \cap A : W \in \mathcal{W} \}$, by proposition(2.4), then \mathcal{V} is coc-open refinement of $\{U_1, U_2, \dots, U_k\}$ of order $\leq n$. Thus coc-dim $A \leq n$.

6. Relation between the dimensions Coc-ind and Coc-Ind

Theorem (6.1): Let X be a topological space, if X is regular, then *coc*-ind $X \le coc$ -Ind X.

Proof: By induction on n, if n = -, then the statement is true.

Suppose that the statement is true for n - 1.

Now ; Suppose that *coc*-Ind $X \le n$, to prove *coc*-ind $X \le n$. Let $x \in X$ and G be an open set such that $x \in G$. Since X is regular space, then there exists an open set U such that $x \in U \subseteq \overline{U} \subseteq G$ by proposition (2.17). Also since coc-Ind $X \le n$ and \overline{U} is closed, $\overline{U} \subseteq G$ then there exists a coc- open set V such that $\overline{U} \subseteq V \subseteq G$ and coc-Ind $b(V) \le n - 1$, then *coc*-ind $b(V) \le n - 1$ and *coc*-Ind X.

Proposition (6.3): Let X be a topological space, if $X \mathcal{T}_1 - space$, then coc^* -ind $X \le coc^*$ -IndX.

Proof: By induction on n, if n = -1, then the statement is true.

Suppose that the statement is true for n - 1.

Now, Suppose that coc^* -Ind $X \le n$, to prove coc^* -ind $X \le n$. Let $x \in X$ and each open set $G \subseteq$ X of the point x, since X is \mathcal{T}_1 – space, then {x} is closed set and $\{x\} \subseteq G$. s Since coc^* -Ind $X \le n$, then there exists an coc -open set V in X such that $\{x\} \subseteq$ $V \subseteq G$ and

 coc^* -Ind $b_{coc}(V) \le n - 1$. Hence coc^* -ind $b_{coc}(V) \le n - 1$ and $x \in V \subseteq G$. Thus coc^* -ind $X \le n$.

Raad. A/Wrood. H

Proposition (6.4): Let *X* be a topological space, if *X* is coc-regular space, then coc^* -ind $X \le coc^*$ -Ind *X*. **Proof:** By the same away in proposition(6.1).

References:

[1] Ra'ad Aziz Hussain AL-Abdulla "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science, (1992).

[2] Atallah Themer AL-Ani "On Compactifiction, Mapping and Dimension Theory" Ph.D. Dissertation university of London, Queen Elizabeth college, (1974).

[**3**] S.Al Ghour and S. Samara "Cocompact Open Sets and Continuity ", Abstract and Applied analysis,Volume 2012 ,Article ID 548612 ,9 Pages , 2012. .

[4] Enas Ridha Ali" On Dimension Theory by Using
N-Open Set", M.Sc. thesis University of AL –
Qadisiyacollege of mathematics and computer science,
(2014).

[**5**] Bourkaki. N, Elements of Mathematics "General Topology" Chapter 1-4 Springer verlog , Berlin, Heidelberg, New York, London, Paris, Tokyo, 2nd Edition, (1989).

[**6**] Sama Kadhim Gaber "On b-Dimension Theory" M.Sc.thesis university AL – Qadisiyacollege of mathematics and computer science, (2010).

[**7**] R. Engelking "GeneralTopology", Sigma Seres in pure mathematics, VI,6 ISBN 3-88538-006-4,(1989).

[**8**] Nedaa Hasan Hajee "On Dimension Theory by Using Feebly Open Set", M.Sc. thesis university AL – Qadisiyacollege of mathematics and computer science, (2011).

[9] Farah Hausain Jasim "On Compactness Via Coc-Open sets ", M.Sc. thesis University of AL – Qadisiyacollege of mathematics and computer science, (2014).

[**10**] Sanaa Noor Mohamid " on S_{β} – Dimension Theory " M.Sc. thesis university AL – Qadisiyacollege of mathematics and computer science, (2015).

[**11**] A.P.Pears "On Dimension Theory of General Spaces" Cambridge university press, (1975).

[**12**] S. Willard "General Topology" University of Albera, (1970).

Raad. A/Wrood. H

حول نظرية البعد باستخدام المجموعات المفتوحة من النمط - coc رعد عزيز حسين العبد الله ورود حسن هويدي شروم جامعة القادسية / كلية علوم الحاسوب وتكنولوجيا المعلومات / قسم الرياضيات

المستخلص:

في هذا البحث نقدم ونعرف نوع جديد وعام حول نظرية البعد من النمط - coc لقد درسنا المفاهيم ind ,Ind,dim وسوف نعرف في هذا البحث تلك المفاهيم باستخدام المجمو عات المفتوحة من النمط - coc وايجاد بعض العلاقات فيما بينها .