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Abstraction 

In this research, we are trying to solve Simplex methods which are used for successively improving solution and finding 

the optimal solution, by using different types of methods Linear, the concept of linear separation is widely used in the 

study of machine learning, through this study we will find the optimal method to solve by comparing the time 

consumed by both Quadric and Fisher methods. 
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Introduction  

The creation of computers and the associated 

accelerated development of mathematical theories, 

including mathematical cybernetics and discrete 

mathematics, as well as information technologies, 

made it possible to set and solve on the computer new 

tasks that until recently were exclusively within the 

competence of man. One of such fundamental 

problems is the solution of multidimensional problems 

of linear separation of convex polyhedra. 

The concept of linear separation is widely used in the 

study of machine learning. It is also used for the 

preparation of support vector methods, by means of 

which problems of complex systems are solved. In this 

study, some methods for testing the linear separation 

between two classes of data will be presented[10]. 

In general form, this problem can be formulated as 

follows: two subsets (two classes) X and Y of R ^ d are 

considered. They are linearly separable if there exists a 

hyperplane P of R ^ d and if the elements of X and Y 

lie on opposite sides of each other. 

i.e. 

  (   )    *                +  

                  

                  

  (   ) 

 

 

 

 

 

 

 

                 

              X                                   Y   

    

 

 

 

figure.1. 

Squares and circles represent the two 

classes. (X and Y) 

In Figure 1 (a) is represented by the linearly separable 

case, as in Figure 1 (b) is not separable case. 

 

Purpose and objectives of the study 

The purpose of this study is to develop a software 

package that numerically realizes and compare the 

solution of the problem of linear separation of convex 

polyhedral by various computational means: 

1) By solving the linear programming problem by the 

simplex method; 

2) By reducing to the problem of quadratic 

programming; 

3) Through the application of the Fisher’s method. 

To achieve this goal, it was necessary to solve the 

following tasks: 

-describe a general approach to solving the problem of 

linear separability of two classes on the basis of the 

listed methods; 

- Design and implement a software package for solving 

the separation problem, using the developed methods 

and algorithms. Conduct computational experiments to 

analyze the effectiveness of the proposed approaches. 
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Theoretical and practical value 

The theoretical value of the study is that it gives a 

formal description of methods for solving the 

separation problem. 

The practical value of the study lies in the fact that the 

proposed methods are implemented in the form of a 

software complex for the computer, which allows to 

effectively solve the problems of linear separability, in 

particular, used for dimension equal to 2, for the 

implementation of visual graphical interpretation. 
 

In conclusion, summarizes the main results of the 

study, brief conclusions have presented the work. 

 

1.1. The solution of the linear programming 

problem, Simplex - method. 

When solving problems of linear programming, one of 

the most popular methods is the simplex method. The 

simplex method is a method of successively improving 

the solution and finding the optimal solution[1]. 

 at the beginning if there is any admissible basic 

solution corresponding to one of the corner points of 

the solution polyhedron, and then this solution is 

purposefully improved by moving to a new basic 

solution at the neighboring corner point at which the 

value of the objective function does not decrease  to the  

maximum , until an optimal solution is obtained. This 

method is universal, with the help of which it is 

possible to solve any linear programming problem.[2] 

The simplex method is intended to solve linear 

programming problems in canonical form. Depending 

on the nature of the limits, linear programming 

problems can be solved with a natural and artificial 

basis. 

If the limits are given by inequalities of the type "≤", 

then the problem is solved with a natural basis if the 

limits are given by inequalities of the type  "≥" or the 

equalities "=", then the solution is conducted with an 

artificial basis. 

There are three ways to solve the task : 

1) The model is solvable. 

2) The model is inadmissible. 

3) The model is unlimited. 

In this study, we use the simplex method to solve the 

problems of linear separability between two classes. 

Algorithms for solving the objective function are 

presented in Tables I and II. The first algorithm makes 

it possible to find the values of q and p, shows the 

obtaining of the optimal solution, or vice versa, shows 

that the problem does not have a solution 

 

 

Table I. Algorithm of the objective function 

- Data: an array A of size M × N is given, containing 

the constraints of linear expressions, where the rotation 

column and rows are represented as p and q. 

- Result: the solution is, if the limits of the linear 

expression are solvable, and otherwise there is no 

solution. 

 

 

Table II. Procedure of turning (p, q) 

Data: the string p and the column q of the array M × N 

are given, containing the linear expression constraints 

that are used to perform the rotation 

 

 

These algorithms can be used to solve the jective 

function. 

We illustrate the simplex method, showing Linear 

programming through some task Z[7]. 

Task Z: Let X = {(1,1)} and     *(   ) (   ) (   )+ 

be the initial data for two classes that define the 

problem  . We check       ? 
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Adj: is the operation of adding a value, in this case, we 

add 1 if the point belongs to class 1, otherwise -1 and 

the coordinates of points from 2 classes change the 

sign.  

   (   )  

    (   )*     ) (      ) (       ) (       )+  

So, to find out X || Y, we need to find a set of values 

for weights     +   +t, and threshold t, so that it 

minimizes one of the indicated inequalities. 

On Condition 

{
 

 

 
          

    
       
       

  (1.1) 

Since the Simplex method limits the values of variables 

that are ≥ 0, and the weight value can be either positive 

or negative, we transform each of our original 

variables as a difference of two variables. That is, we 

reduce it to the canonical form: 

{

 
                   

                   

                

 

  (1.2)     

Since the simplex method does not take a strict 

inequality, we change our sign > 0 by ≥ 1. 

Using the above transformations, our new set of 

constraints becomes: 

{
 
 
 

 
 
 

 
(       

       
)  (      

       
)  (     

      
)   

(      
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(        
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       )   

 
 

 

Applying the simplex method next, we obtain an 

admissible solution which gives the following result:  

 

                              
           

   

      
           

   

     
              

 

[8] Thus, we can conclude that task Z is solved. Now 

we can define the values for the variables:    

       t= –3. These variables form a hyperplane 

that separates the two classes. 

 

 

 

 

 

 

 

 

 
The disadvantage of the Simplex method is that the 

best solution is not guaranteed in advance, it is 

impossible to say how many steps it takes to achieve 

the optimal solution. The complexity of this method 

depends on the rotation rule used, which was indicated 

in Table II. 

1.2. The solution of the quadratic programming 

problem 

The process of programming this method consists of 

solving Quadratic programming. It occurs in the use of 

the support vector method (SVM). The support vector 

method is a set of algorithms used for classification 

problems and regression analysis. Belongs to the 

family of linear classifiers. A special property of the 

support vector method is a continuous decrease in the 

empirical classification error and an increase in the 

gap, so the method is also known as the classifier 

method with the maximum gap. 

The main idea of the method is the translation of the 

initial vectors into a space of higher dimension and the 

search for a separating hyperplane with the maximum 

gap in this space. Two parallel hyperplanes are 

constructed on both sides of the hyperplane that 

separates our classes. The separating hyperplane is a 

hyperplane that maximizes the distance to two parallel 

hyperplanes. The algorithm works under the 

assumption that the greater the difference or the 

distance between these parallel hyperplanes, the 

smaller will be the average classifier error. 

 The hyperplane separating the two classes is defined 

as follows: 

{
 
 

 
   ⃗⃗ ⃗⃗  ⃗  ⃗⃗⃗            

  ⃗⃗ ⃗⃗  ⃗  ⃗⃗⃗                 

   

  (1.4) 

Initial data from us                          

*    +   

We find the inverse matrix by the Gauss method, for 

the convenience of the definition we denote    

        
    , then we use the equation A*X=E, 

where: X is the inverse matrix of the matrix A, and E is 

the identity matrix,  

We reduce the matrix A to triangular matrix using the 

Gauss algorithm―Direct motion‖. 

In parallel, we perform similar operations with the unit 

matrix E. 
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We finally represent the obtained equation in its 

expanded form (fig 1.2) 

The method of support vectors should find a solution to 

the minimization problem: 
 

 
‖ ‖ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

On Condition   ( 
 ⃗⃗ ⃗⃗  ⃗  ⃗⃗⃗    )     Where C> 0 

represents the penalty parameter. 

We solve the following minimization    

problem: 
 

 
‖ ‖ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (1.5) 

Formal description of the task: 

We believe that the points have the form: 

*(     ) (     )   (     )+ 
Where   takes the values 0 or 1, depending on which 

class the point   belongs to. Each   is a p-dimensional 

real vector, usually normalized by the values [0,1]. If 

the points are not normalized, the point with large 

deviations from the average coordinates of the points 

will affect the classifier too much. We can treat this as 

a learning collection, in which the class to which it 

belongs is already assigned to each element. We want 

the algorithm of the support vector method to classify 

them in the same way. To do this, we construct a 

separating hyperplane that looks like this: 

w*x-b=0;   (1.6) 

Where w, b - are unknown, they need to be found. 

The vector w is the perpendicular to the separating 

plane (hyperplane); 

W=(          ); 
 

‖ ‖
- the distance from the hyperplane to the origin; 

If the parameter b is zero, the hyperplane passes 

through the origin, which limits the solution. 

‖ ‖  √∑   
  

    -Is the length of the vector (1.7) 

Since we are interested in the optimal separation, we 

are interested in support vectors and hyperplanes 

parallel to the optimal and closest to the supporting 
vectors of two classes. It can be shown that these 

parallel hyperplanes can be described by the following 

equations (up to normalization). 

w*x-b=1,     (1.8) 

w*x-b= 1 .   (1.9) 

If the training sample is linearly separable, then we can 

choose hyperplanes in such a way that no points of the 

training sample lie between them and then maximize 

the distance 

between the hyperplanes. The width of the strip 

between them is easy to find from considerations of 

geometry, it is 
 

     
, so our task is to minimize      . 

 

 

 

 

 

 

 

     
 

To exclude all points from the strip, we must verify for 

all   that 

[
                 

                                                    
 

(1.10) 

This can also be written in the form: 

  (      )                  (1.11) 

The problem of constructing an optimal separating 

hyperplane reduces to minimizing || w || , Under the 

condition (1.11). This is the problem of quadratic 

optimization, which has the form: 

{
‖  ‖     

  (      )             
 (1.12)  

By the Kuhn-Tucker theorem (necessary conditions for 

solving the problem of non-linear programming), this 

problem is equivalent to the dual problem of finding 

the saddle point of the Lagrange function. 

{

 (     )  
 

 
 ‖  ‖

 ∑   (  ((    )   )              
 
   

          

 

(1.13) 

  (       )     a vector of dual variables. 

We reduce this problem to an equivalent quadratic 

programming problem, which contains only dual 

variables: 

{

  ( )   ∑     
   

 

 
 ∑ ∑     

 
        

(    )       
 
   

          

∑        
   

        

            (1.14) 
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All variables are λ 

We single out the linear and quadratic parts as follows: 

  ( )   ∑   

 

   

 

 
 ∑∑    

 

   

    

 

(    )         

 

   

 

 

 
 

    CX                             DX 

(1.15) 

Next, we make a system check (1.10). Namely, a 

quadratic function having a nonnegative definite 

quadratic form is minimized, hence, the objective 

function is convex. An admissible region is a 

polyhedron, which means that we are faced with the 

problem of quadratic programming. 

Hence we can apply the Kuhn-Tucker optimality 

theorem. 

We have a task: CX + 
 

 
  DX    (1.16) 

Under the constraints: AX      , 

Next, we apply the Kuhn-Tucker theorem. The 

convexity conditions of the objective function and the 

admissible domain are allowed to use this theorem. 

We record the Kuhn-Tucker system: 

{

        
     * +     
   * +       * +   

          

  (1.17) 

Hence we have a system of equations. 

 * + =0,   * + =0  is called the complementary non-

rigidity condition. 

That is, if we introduce vectors  y = ( y1...,yn) и  v = 

(v1...,vm), Then relation 

(c+2xD+uA)x
Т
=0  

 xAТ—b £0   (1.18) 

(xAТ—b)u
Т
 =0  

 

 

 

 

 

 

 

 

 
 

 
 

Will look like: 

c + 2 x D + u А — в = 0  (1.19) 

x АО — b + v = 0  (1.20) 

в xТ = 0, v uТ = 0  (1.21) 

The system (1.19) - (1.20) consists of n + m linear 

equations relatively   (   ) Unknown        (  

      )        (        )  

In addition, as follows from conditions (1.18), there 

should be: 

If xj > 0, then yj = 0 (1.22) 

If yj > 0, then xj = 0 (1.23) 

If ui > 0, then vi = 0 (1.24) 

If vi > 0, then ui = 0. (1.25) 

Consequently, the desired solution of the system (1.19) 

- (1.20) can be an arbitrary inseparable basic solution 

of it, but such that the variables xj and yj (and also ui 

and vi) with the same indices cannot be basic at the 

same time. To find such a solution, one can apply any 

of the known methods of LP, in particular, the artificial 

base method. 

To this goal, we write the system (1.19) - (1.20) in the 

form 

2 x D + u А — в = — c (1.26) 

x АО + v = b. (1.27) 
 

Without limiting universality, we will assume that the 

right-hand parts of this system are inalienable. 

According to the artificial basis method, in every 

equation of the system (1.26)—(1.27), which does not 

contain a basic variable, we introduce an artificial 

variable. Since the variables vi (i=1...,m) Can be 

considered basic, then the artificial variables 

z=(z1...,zn) We introduce only Eq. (1.26) and consider 

the auxiliary CLRF. 

z iТ  min (1.28) 

2 x D + u А — в + z = — c (1.29) 

x AТ+ v = b (1.30) 
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Where i = (1,1...,1) — n  Dimensional unit vector. 

Next, we solve this system, applying the rule, the 

transition from one basis to another, which is used in 

the simplex method. 

We have, that      = 0 =      For all      The 

fulfillment of this condition means that if the variable 

   in the basic solution takes a positive value, then the 

variable   can not be a basic variable and take a 

positive value. Similarly, the variables   and    cannot 

simultaneously take positive values. That is, this rule is 

also applied in the simplex method. 
 

Quadratic simplex method 

If the found admissible basic solution of this problem 

satisfies the conditions of complementary non-rigidity, 

then it determines the optimal solution of the original. 

Otherwise, we must pass to a new admissible basic 

solution. In this case, a new variable with a zero 

estimate is included in the basic variables. The simplex 

method with the conditions (1.22) - (1.25) for the 

solution of the auxiliary CLPP (1.28) - (1.30), 

constructed on the basis of the problem of convex 

quadratic programming (1.16), is called the quadratic 

simplex method (the algorithm of the ordinary simplex 

method)[9]. 

If in the optimal solution of the auxiliary CPRF (1.28) - 

(1.30) all the artificial variables zj (j=1...,n)  take zero 

values, then discarding them, we obtain the DBR of the 

system (1.26) - (1.27). That part of it that corresponds 

to the variables of the initial problem of convex 

quadratic programming (1.16) is its optimal solution. 

If the value of at least one of the artificial variables is 

different from zero in the optimal solution of the 

auxiliary CLRP (1.28) - (1.30), then the system (1.26) - 

(1.27) has no solutions, and consequently the set of 

saddle points of the Lagrange function of the initial 

problem of convex Quadratic programming is empty. 

Let's say we solved the problem and found   

(       ) and now we can find a hyperplane that 

separates two classes: 

w=∑       
 
    ,    (1.31) 

b=w  -  ,        (1.32) 

The summation does not go over the entire sample, but 

only over reference ones, for which       
The advantage of support vector methods is that the 

problem of convex quadratic programming has a 

unique solution. And also the support vector method is 

the best method of linear classification. 

 

 

 

 

 

 
 

1.3. The solution of the problem of linear separation by 

the Fisher method 

Fisher's linear discriminant in the original value is a 

method that determines the distance between the 

distributions of two different classes of objects or 

events. It can be used in problems of machine learning 

with a statistical (Bayesian) approach to solving 

classification problems[3]. 

Suppose that the training sample satisfies the following 

hypotheses in addition to the basic hypotheses of the 

Bayesian classifier: 

Classes are distributed according to the normal law 

Covariance matrices of classes are equal 

Such a case corresponds to the best division of classes 

by the Fisher discriminator (in the original value). 

Then the statistical approach leads to a linear 

discriminant, and it is this classification algorithm that 

is now often understood as the linear discriminant of 

Fisher[4]. 

Under certain general assumptions, the Bayesian 

classifier reduces to the formula: 

a(x)=arg             ( )  (1.33) 

Where   is the set of answers (classes),   belongs to 

the set of objects  ,    is the a priori probability of 

class y,   (x)is the likelihood function of class y,   is 

the weighting factor (error price on object of class  ). 

In the extension of all the above hypotheses, in 

addition to the hypothesis of the equality of covariance 

matrices, this formula has the form: 

a(x)=arg       (  (     )    
 

 
(x   ) ∑ (    

 

  )  
 

 
    ( ∑    

 )  
 

 
   (  )),  

 (1.34) 

Where     
 

  
∑   

 
   
    

∑   
 

  
∑ (     )

 
   
    

 (   

  )
  Approximations of the expectation vector 

and the covariance matrix of class Y, obtained as 

maximum likelihood estimates, l is the length of the 

training sample,   is the number of objects of class   

in the training sample x     n. 
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This classification algorithm is 

A quadratic discriminant. It has a number of 

drawbacks, one of the most important of which is the 

poor conditionality or degeneracy of the covariance 

matrix ∑  with a small number of training elements of 

class Y, which can result in a strongly distorted result 

when the given matrix ∑    
  in the past, And the entire 

classification algorithm is unstable, it will work poorly  

(it is also possible that the inverse matrix ∑    
 does not 

exist at all). 

The linear discriminant of Fisher solves this problem 

The main idea of the algorithm 

When accepting the hypothesis of equality between 

covariance matrices, the classification algorithm takes 

the form: 

a(x)=arg       (  (     )    
 

 
  

 ∑      
 

  ∑   )
  
 , OR a(x)=arg    

   
(       ) (1.35) 

Simplicity of classification by the linear discriminant 

Fisher - 

One of the advantages of the algorithm: in the case of 

two classes in the two-dimensional characteristic 

space, the separating surface will be a straight line. If 

there are more than two classes, then the dividing 

surface will be piecewise-linear. But the main 

advantage of the algorithm in comparison with the 

quadratic discriminant is the decrease in the effect of 

the poor conditionality of the covariance matrix with 

insufficient data. 

For small    approximations 

∑    
 

  
∑ (     )

 
   
    

(     )
    (1.36)  

Will give a bad result, therefore, even in those 

problems where it is known that classes have different 

forms, sometimes it is advantageous to use the 

heuristic of the Fisher discriminator and to consider the 

covariance matrices of all classes to be equal. This will 

allow us to calculate some "average" covariance matrix 

using the entire sample[6]:  
 

 

 

 

∑  
 

  
∑(     )

 

   

(     )
          (    ) 

The use of which in most cases will make the 

classification algorithm more stable. 

Formulation of the problem: 

Let   and   represent a certain problem of classifying 

points into two classes. And let   = {  
    

        
 }Set 

of points belonging to class   

and    =  {  
    

        
 }   

 
     , Belong to the class 

Y. 

By Fisher's method, we solve the problem posed and 

determine whether the points are separable or not. The 

linear Fisher discriminator is given by the vector w, 

which maximizes 

J( ) ⃗⃗⃗⃗⃗⃗  =   ⃗⃗ ⃗⃗  ⃗    ⃗⃗  /   ⃗⃗ ⃗⃗  ⃗ SW   ⃗⃗ ⃗⃗  ⃗  
Where    Selective covariance matrix[8] 

The covariance matrix in probability theory is a 

matrix composed of the pairwise covariances of the 

elements of one or two random vectors. The covariance 

matrix of a random vector is a square symmetric non-

negative definite matrix on the diagonal of which the 

variances of the vector components are located, and the 

off-diagonal elements are the covariance between the 

components. The covariance matrix of a random vector 

is a multidimensional analog of the variance of a 

random variable for random vectors. The covariance 

matrix of two random vectors is a multidimensional 

analog of the covariance between two random 

variables. 

It is given by the following formulas: 

    = (   -   )(       )
 (1.38) 

    ∑ ∑ (  
    )

  
     *   + (  

    )
 
 (1.39) 

   = l   
  ∑   

   
    ;     

     ∑   
   

    
 

  
  

   - Number of elements in a class l . 

The parameter of the linear classifier is given by the 

vector ⃗⃗⃗ : 

q(x) = 0, for  ⃗⃗⃗       +b     (1.40) 

q(x) = 1, for  ⃗⃗⃗       +b    (1.41) 
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Example 1. Let the points belong to the classes X and 

Y. 

X = *(    ) (     ) (    )+ 
Y = *(    ) (   )+ 
                       ; 

                        ; 

For each class, calculate the mean of the points: 

    (           ) ; 

    (        )  ; 

                                             

                                              

  ,   - = Cov(      ) ;  (1.42) 

  ,   - = Cov(      ) ;  (1.43) 

   – Sum of two matrices 

   =            ,   - = Cov(      )  

 Cov(      );   (1.44) 

    .
           
        

/  

  
   – inverse matrix 

The inverse matrix is a matrix   
   multiplied by which 

the original matrix   gives the unit matrix E:   
  

     
       = E (1.45) 

We find the inverse matrix by the Gauss method, for 

the convenience of the definition we denote       

and   
    , we use the equation A * X = E, where: X 

is the inverse matrix of the matrix A, and E is the 

identity matrix. We reduce the matrix A to a triangular 

matrix using the Gauss algorithm "direct motion". In 

parallel, we perform similar operations with the unit 

matrix E. We represent the obtained equation in its 

expanded form (see Figure 1.2)[9]. 

 

Figure.1.2 finding the inverse matrix by the 

Gauss method 

 

 

 

 

 

 

 

 

 

 

 

 

Starting from the equation (Figure. 1.2), we express the 

values of the inverse matrix X. Multiplying the last row 

of the matrix A by the first column of the matrix X, we 

obtain the equality 

                                

         Here we express     
   

   
  Similarly,  

we obtain from the following equation         

               (   )(   )   (  

 )( )   (   )( )   ( )( )   (   )( )  

Express the  (   )( )   (   )( )  (  

 )(   )       (   )( )  (   )(   ) 

and so on. 

This operation is called the "reverse course of finding 

the elements of the inverse matrix X". Using formula 

(1.42), it is not difficult to calculate all the elements of 

the matrix X. 

Matrix elements X. 

     
 

   
(    ∑        

 
    ) (1.46) 

i=1…n, 

j=n…1 

  
   = .

          
          

/ 

W – The normal of the hyperplane; 

    
  (     ) ;  (1.47) 

   (             )      

Finally, we calculate the hyperplane shift: 

b = (          ) / 2  (1.48) 

               

        ; 

 

 

Known  Known    b = 0,42337 ; 
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Figure 1.3. Hyperplane for linear Fisher discriminator. 

 

The heuristic of the linear Fisher discriminator is in 

some way a simplification of the quadratic 

discriminant. It is used to obtain a more stable 

classification algorithm. It is most appropriate to use 

the linear discriminant of Fisher when Data for 

training is not enough. Owing to the main hypothesis 

on which the algorithm is based, it is most successfully 

solved by simple classification problems in which the 

forms are "similar" to each other in forms. The 

classification process by the linear Fisher discriminator 

can be described by the following scheme: 

 Estimation of mathematical expectations 

 Calculation of the general covariance matrix 

and its inversion 

Our sample of data 

 

)Fig 1  ( Feeding this data to the program  

 

 

 

 

We start on calculation and we see the following result: 

 

In this case, the points are linearly separable. And they 

are separated from each other by a separating 

hyperplane. Where b is the hyperplane shift, w is the 

normal of the hyperplane, min_X is the minimal scalar 

product of the vectors zi by the normal, is calculated by 

the formula: 

   
     ̅̅̅̅

       

max_Y is the maximum scalar product of the vectors zi 

by the normal, is calculated by the formula: 

   
     ̅̅ ̅̅ ̅

       

            Hyperplane shift. 

The thickness of the hyperplane    in separable cases 

is calculated as follows: 

  ̂ = 
 

‖ ‖
.t.

 

‖ ‖
/ = |        ̅̅̅̅      

 

‖ ‖
 

          ̅̅ ̅̅ ̅     
 

‖ ‖
  |t(  ̂) = |        ̅̅̅̅  

      ̂             ̅̅ ̅̅ ̅       ̂   | 
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The quadratic method and see the following result in 

practice: 

 
 

Time consumed 0.0840048 Sec 
 

The Fisher method in practice: 
 

 

Time consumption 0.01560089 Sec 

Results 

METHOD TIME CONSUMPTION 

EXAMPLE 1 

Quadric 0.0840048 

Fisher 0.01560089 

EXAMPLE 2 

Quadric 0.0890051 

Fisher 0.1480084 

EXAMPLE 3 

Quadric 0.0320019 

Fisher 0.0890051 

EXAMPLE 4 

Quadric 0.035002 

Fisher 0.0920052 

 

 

 

 

Another side view where there is no solution 

 

 The both methods did not find solution. 

Conclusion 

In the study, the problems related to the methods of 

solving the linear separation problem were considered. 

A software package was developed that numerically 

realizes the solution of the problem of linear separation 

of convex polyhedral by various computational means: 

1) By solving the linear programming problem by the 

simplex method; 

2) By reducing to the problem of quadratic 

programming; 

3) Through the application of the Fisher method. 

A general approach to solving the problem of linear 

separability of two data classes based on the listed 

methods was described. Computational experiments 

were conducted to analyze the effectiveness of the 

proposed approaches. A comparison of the 

effectiveness of the approaches considered was carried 

out for problems of the different dimensionality of 

space and the number of points defining separable sets 

with respect to the following indicators: 

1) The time for solving the problem, 

2) The thickness of the separation layer (formed 

between two hyperplanes supporting to shared sets) of 

two classes of points. 

 

Comparison of methods 

The task was to compare methods and determine which 

one is effective. When comparing, it is necessary to 

take into the complexity of the task, the time of 

performance of work and the value of the measure of 

the thickness of the compartment. 
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1. When input data of dimension n = 2, from the 

point of view of the thickness of separation by 

a hyperplane, the Simplex method and the 

quadratic programming method are effective. 

In most cases, they have the same thickness of 

separation tw. The results obtained (for 

dimension n = 2) can also be compared by the 

time of the work. After doing a lot of 

experiments, we saw that the quadratic 

programming method is optimal for the time 

of execution of the work. 

2. If the input data has the dimension n = 3, ... n 

= 10, etc., then the best method is the method 

based on quadratic programming. The 

effectiveness of the method of quadratic 

programming does not depend on the 

dimension. When comparing the thickness of 

the compartment, in these tests quadratic 

programming provided the greatest thickness. 

 And by the time of the work, the optimal is the 

simplex method. 

 

References  
1- [1] Article D. Elizondo "Linear Separation: 

Some Test Methods". 

 

2- [2] Bierman, H., C.P. Bonini, and W.H. 

Hausman. (Richard D. Irwin, Inc., 

Homewood, IL, 1977).  Quantitative Analysis 

for Business Decisions 642 pp. Dykstra, D.P. 

 

3- [3] BARANKIN, E. W., AND R. 

DORFMAN, 2 (1958) "On Quadratic 

Programming," University of Califoy'nia 

Publications in Statistics, 285-318. 

 

4- Ershova A.V. Method for solving the problem 

of strong separation for multi-processor 

systems with mass parallelism // Parallel 

computing technologies (PaVT'2010): 

Proceedings of the International Scientific 

Conference (March 29 - April 2, 2010, Ufa). 

Chelyabinsk: Publishing Center of SUSU, 

2010. pp. 660-661. 

 

5- Golikov AI, Yevtushenko Yu.G. Theorems on 

alternatives and their application in numerical 

methods. Zhurn. calculated. Math. and Math. 

fiz. 2003. P. 43, No. 3. P. 354-375. 

 

 

 

 
 

6- Gurin LG, Polyak BT, Raik E.V. Methods of 

projections for finding a general point of 

convex sets. Zhurn. calculated. Math. and 

Math. fiz. 1967. Vol. 7, No. 6. P. 1212-1228. 

 

7- [4] J. Fourier, 1827,Memoire de l’Academie 

Royale des Sciences de l’Institute de France, 7 

(1824), xlvij-lv. Chez Firmin Didot Pere et 

Fils. 

 

8- [5] H. W. Kuhn, 1956, ―Solvability and 

consistency for linear equations and 

inequalities,‖ American Mathematical 

Monthly, vol. 63, pp. 217–232. 

 

9- Hemdi A. Taha ,Doing, 2005, research 

operations. Seventh Edition, University of 

Arkansas, Fayetteville. Publishing house 

"William" Moscow | St. Petersburg | Kiev. 

 

10- [7]Hillier, F.S., and G.J. Lieberman. 

(McGraw-Hill, Inc., New York, 1995).  

Introduction to Operations Research, sixth 

edition 998 pp. 

 
11- [6] M. Sakarovitch,  1984 ,Optimisation 

Combinatoire Graphe et Programmation 

Lineaire. Paris: Hermann, Editeurs de 

Sciences et des Arts. 

 

 

12- [8] M. A. Aizerman, E. M. Braverman, and L. 

I. Rozono´er , 1964, Theoretical foundations 

of the potential function method in pattern 

recognition learning. Automation and Remote 

Control, 25:821–837 . 

 

13- [9] Mathematical Programming for Natural 

Resource Management (McGraw-Hill, Inc., 

New York, 1984). 318 pp. 

 

 

14- [10] N. Aronszajn,1950Theory of reproducing 

kernels. Trans. Amer. Math. Soc., 686:337–

404. 

 
15- Vapnik VN, Chervonenkis A.Ya. Theory of 

pattern recognition. Moscow: Nauka, 1974. 

416 p. 

 

 

 

 

Sarmad .H/ Osamah .A/ Samir .C 



 

91 

 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.10   No.2   Year  2018 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 
 

 

 

 

 

16- Vasiliev FP, Ivanitsky A.Yu. Linear 

programming. Moscow: Factorial, 2003. 352 

p. 

 
17- Voevodin Vl.V., Kapitonova A.P. Methods 

for describing and classifying the 

architectures of computing systems. M: Izd-vo 

MGU, 1994. 103 p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18- Vorontsov K.V. Lectures on the method of 

support vectors. CC RAS, Moscow. URL: 

http: 

//www.ccas.ru/voron/download/SVM.pdf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 سمير قيصر عجمي      اسامت عبد الجليل علي      سرمد حمزة علي

 مركز الحاسبت الالكترونيت /جامعت المثنى 

sarmad@mu.edu.iq      osama@mu.edu.iq       Samir@mu.edu.iq 

 

 

 مستخلص :ال

اٌ   في ْزا انبحث، َحأل حم انعادلاث انبسيطت انخي حسخخذو  في  إيجاد انحم الأيثم ، ٔرنك باسخخذاو إَٔاع يخخهفت يٍ انًعادلاث  انخطيت،

( الاٌ يعخبش يٍ اْى انًٕاضع عهى َطاق انعانى حيث اسخخذاياحت ٔاسعت حصم حخى نميادة  Machine Learning) اسخخذاو يفٕٓو حعهى الانّ

انسياسة ٔنٓزا انغشض سُسخخذو يفٕٓو انفصم انخطي يسخخذو عهى َطاق ٔاسع في دساست حعهى الآنت، يٍ خلال ْزِ انبحث  ٔسٕف َجذ 

 سخٓهكت يٍ لبم كم يٍ طشق كٕادسيك ٔ فيشش.انطشيمت انًثهى نحم عٍ طشيك يماسَت انٕلج انً
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